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Abstract

Background: In the host innate immune system, various pattern recognition receptors (PRRs) recognize conserved
pathogen-associated molecular patterns (PAMPs) and represent an efficient first line of defense against invading
pathogens. Toll-like receptors (TLRs) are a major class of PRRs, which are able to recognize a wide range of PAMPs
and play a central role in initiating innate immune responses. TLR21 is one of the non-mammalian TLRs identified
in some bird and fish species.

Results: In the present study, we reported the cloning and identification of a TLR21 cDNA from the head kidney of
common carp (Cyprinus carpio L.), named CcTLR21. The full-length CcTLR21 cDNA was 3557 bp long, including an
open reading frame (ORF) of 2895 bp, which encoded a putative protein of 964 amino acids. The putative CcTLR21
protein was found to comprise a signal peptide, 14 LRR domains in the extracellular region and a TIR domain in the
cytoplasmic region, which fits with the characteristic TLR domain architecture. The phylogenetic analysis showed
that CcTLR21 possessed high amino acid identities with the TLR21s in other freshwater teleosts. A Real-time PCR
assay showed that CcTLR21 mRNA was expressed in almost all tissues examined in healthy common carp, while
the levels obviously varied among different tissues. During the embryonic and early larval developmental stages
of common carp, the CcTLR21 showed two peaks of expression, with the first at 1 dpf and the second at 10 dpf.
When challenged with poly(I:C) (a viral model) or Aeromonas hydrophila, the expression level of CcTLR21 was
up-regulated in a variety of common carp tissues.

Conclusions: Our findings indicate that CcTLR21 plays a significant role in innate immune defense during larvae
ontogeny and in responses to viral or bacterial pathogens.
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Background
Toll-like receptors (TLRs) are one class of pattern recogni-
tion receptors (PRRs), which recognize various pathogens-
associated molecular patterns (PAMPs) in the host innate
immune system, such as lipopolysaccharide (LPS), peptido-
glycan, lipoteichoic acid, non-methylated CpG DNA and so
on [1, 2]. To date, 11 kinds of TLRs have been identified in
humans, 13 in mice and 17 in fish [3, 4]. Among these,
TLR21 is a kind of non-mammalian TLR found in fish,
birds and amphibians; some examples are chicken (Gallus
gallus) [5], south African clawed frog (Xenopus laevis)
[6], zebrafish (Danio rerio) [7], grass carp (Ctenopharyn-
godon idella) [8], orange-spotted grouper (Epinephelus
coioides) [9], channel catfish (Ictalurus punctatus) [10],
Atlantic salmon (Salmo salar) [11], turbot (Scophthalmus
maximus) [12], large yellow croaker (Larimichthys crocea)
[13], yellow catfish (Pelteobagrus fulvidraco) [14], rock
bream (Oplegnathus fasciatus) [15] and yellowtail (Seriola
lalandi) [16].
TLRs are type-I transmembrane proteins that are com-

posed of three domains: an intracellular Toll/interleu-
kin-1 receptor (TIR) domain, a transmembrane region
and an extracellular leucine-rich repeat (LRR) domain.
The LRR domain binds to PAMPs, and the TIR domain
transmits signals into the cytosol by recruiting Myeloid dif-
ferentiation factor 88 (MyD88) or TIR-domain-containing
adapter-inducing interferon-β (TIRF) [17], which are re-
sponsible for the production of pro-inflammatory cytokines
or type I interferons [18]. Previous studies reported that fish
TLR21 could recognize non-methylated CpG DNA and
were considered a functional homologue of mammalian
TLR9 [12]. Accordingly, upon stimulation with viral
stimulants, such as turbot reddish body iridovirus (TRBIV),
infectious salmon anaemia virus (ISAV), rock bream
iridovirus (RBIV), polyinosinic: polycytidylic acid [poly(I:C)]
or CpG oligodeoxynucleotides (CpG-ODN), the TLR21
mRNA expression was up-regulated in turbot [12], Atlantic
salmon [11], large yellow croaker [13], yellow catfish [14]
and rock bream [15]. In addition, upon stimulation with
bacteria, such as Aeromonas hydrophila, Streptococcus
iniae, Edwardsiella tarda, Vibrio alginolyticus or Vibrio
parahaemolyticus, the mRNA expression levels of the
TLR21 gene were also up-regulated in grass carp [8], large
yellow croaker [13], yellow catfish [14] and rock bream
[15]. This suggests that fish TLR21s play key roles in im-
mune defense against both viral and bacterial infections.
Common carp (Cyprinus carpio L.) is a freshwater fish

widespread in Europe and Asia. To date, TLR1 and
TLR2 [19, 20], TLR3 [21], TLR4 [22], TLR9 [23], TLR18
[24], TLR20 [25] and TLR22 [26] were reported in com-
mon carp. Since TLRs play an important role in host
anti-pathogen responses, the study of TLRs will be bene-
ficial to the disease control of common carp. In this
study, we reported the cloning and identification of a

TLR21 cDNA from common carp (named CcTLR21). We
analysed the gene expression profiles of CcTLR21 in vari-
ous tissues and during embryonic and early larval devel-
opmental stages of common carp. Moreover, the gene
expression of CcTLR21 is studied after viral or bacterial
stimulation to speculate on the possible role of TLR21 in
fish immune response against pathogenic infections.

Methods
Fish rearing and sample collection
Common carp, with an average weight of 75 g, were ob-
tained from the Fresh Water Fishery Research Institute
of Shandong Province. Before the start of the experi-
ment, the fish were reared at 20–25 °C in a recirculating
freshwater system for at least two weeks, and fed once a
day with commercial carp diet. The fish were euthana-
tized by immersion in a solution of Tricaine Methane
Sulfonate (MS222, Sigma Aldrich) at a concentration of
100 mg/l of water, and the tissue samples obtained from
three healthy common carp, including liver, spleen, head
kidney, foregut, hindgut, gills, skin, brain, gonad, muscle
and buccal epithelium, were separately frozen in liquid
nitrogen until use for RNA extraction.
To study the gene expression of CcTLR21 during the

embryonic and early larval stages, four pairs of parent
fish were selected for artificial propagation. Fertilized
eggs were incubated in water reservoir at 28–30 °C with
enough oxygen. After fertilization, the embryonic stage
of common carp is from one to two days, and the hatch-
ing was at three days post fertilization (dpf ). At 1, 2, 3,
4, 6, 10, 16 and 24 dpf, embryo or larvae samples were
sampled randomly for RNA extraction (three repeats for
each time piont).

Viral and bacterial challenges in vivo
The fish for the in vivo challenge were divided equally
into two independent groups. One group was injected
intraperitoneally with formalin-inactivated A. hydrophila
with 5 × 107 CFU per fish [27–29], and the other group
injected intraperitoneally with 500 μl of poly(I:C) (SIGMA)
solution per fish at a dose of 1.6 mg/ml [30, 31]. After
challenge, the tissues (liver, spleen, head kidney, foregut and
hindgut) of fish were sampled at different time points from
three fish in each group, and total RNA were extracted
(Tiangen) and reverse transcripted to cDNA (Tiangen).

Cloning and analysis of CcTLR21 cDNA
Primers TLR21 F1 and TLR21 R1, which were designed
based on the conserved regions of the other species
TLR21 sequences, were used to amplify the cDNA frag-
ment of CcTLR21 from the head kidney of common
carp. PCR was performed with the following setting:
30 cycles of 94 °C for 30 s, 55 °C for 45 s, and 72 °C for
1 min. The PCR products were ligated into the pMD18-
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T vector and transformated into competent E. coli DH-
5α for sequencing. The full-length of the TLR21 cDNA
were obtained by RACE (rapid amplification of the
cDNA ends) using the 3′-full and 5′-full RACE core set
(TaKaRa). The primers used are shown in Table 1.
The structural domains of CcTLR21 were character-

ized using the SMART (a simple modular architecture
research tool) program (http://smart.embl-heidelberg.de/).
The amino acid sequence alignment of TLR21s was per-
formed with MegAlign in DNAstar 7.0 using the method
of Clustal W. The phylogenetic tree was generated with
MEGA 6.0 using the Neighbour-Joining method.

Real-time PCR
The Real-time PCR analysis of CcTLR21 gene expression
was performed with a Rotor-Gene Q PCR instrument
(Qiagen) using SYBR Green Real Master Mix (Tiangen).
The amplification scheme was: incubated for 1 min at
94 °C, followed by 40 cycles of 20 s at 94 °C, 20 s at 59 °C
and 50 s at 70 °C. For each mRNA, gene expression was
corrected by the 40S ribosomal protein S11 in each
sample. Relative expression of CcTLR21 mRNA was de-
termined using the 2(-ΔΔCt) method. The primers used are
shown in Table 1. In all cases, each PCR was performed
with triplicate samples.

Statistical analysis
Differences in relative gene expression between the chal-
lenged group and the control group were analysed using
the Graphpad Prism 6 and were considered significant
when p < 0.05. A two-way analysis of variance (ANOVA)
was performed to test differences in gene expression in
each tissue.

Results
cDNA sequence of CcTLR21
The full-length CcTLR21 cDNA (GenBank accession
number MF615210) was amplified from the head kidney
of common carp, which was 3557 bp long, including a
149 bp 5`-untranslated region (UTR), an open reading
frame (ORF) of 2895 bp and a 513 bp 3`-UTR. The ORF
of CcTLR21 encoded a putative protein of 964 amino

acids. Using the SMART program, the CcTLR21 protein
was found to comprise a signal peptide (24 amino acids),
14 LRR domains in the extracellular region and a TIR
domain in the cytoplasmic region (Fig. 1).

Homology alignment and phylogenetic analysis of TLR21
Homology alignment analysis showed that the deduced
CcTLR21 protein exhibited significant similarity (from 43.
4% to 81.7%) to other known TLR21s (Additional file 1:
Table S1). Moreover, the amino acid sequences of CcTLR21
showed a relatively higher degree of similarity with
other fish TLR21 than with bird TLR21. The TIR
domain of TLR21 presented three conserved regions:
box 1 (YDXFXSY), box 2 (LCLHHRDFXPG) and box 3
(FWXXLXXA), which were all found through multiple
sequence alignment with the TLR21 family proteins
(Additional file 2: Figure S1). To investigate the evolution-
ary relationships of TLR21 in fish and birds, a phylogen-
etic tree was constructed. In the tree, all teleost TLR21
members were separated from the TLR21 in birds (Fig. 2).

Constitutive expression of the CcTLR21 gene in
common carp
The expression of CcTLR21 mRNA was found in almost
all tissues examined, but the levels varied strongly be-
tween different tissues. The highest expression level of
CcTLR21 mRNA was detected in the spleen, head kid-
ney and gills, with a moderate level of expression ob-
served in the brain, gonad, hindgut and muscle, while
very low expression was observed in the foregut, skin,
buccal epithelium and liver (Fig. 3).
We analyzed the constitutive expression of the

CcTLR21 gene in embryo and early larvae of common
carp from 1 to 24 days post fertilization (dpf). The results
showed that CcTLR21 have two peaks of expression, with
the first at 1 dpf and the second at 10 dpf (Fig. 4).

Expression profiles of CcTLR21 gene in common carp
upon poly(I:C) challenge
The expression level of CcTLR21 mRNA in common
carp after poly(I:C) stimulation was up-regulated in the
spleen, foregut, hindgut and liver (Fig. 5, p < 0.05 or

Table 1 The primers and their applications in this study

Primer Sequence (5`→ 3`) Application

TLR21 F1
TLR21 R1

CTACAGTTTCAGGAGTTGCA
TACGATTGTATCGATAGCTCAG

cDNA amplification

5′- GSP Outer
5′- GSP Inner
3′- GSP Outer
3′- GSP Inner

TGGCAAGCGAGTTTGGTAGACGGGTGGA
TAGACGGGTGGAGTGATGCAGGGTG
CCAGCTATCGTCTCTTTCAAGA
GCAACYGTCTACTTATCACC

RACE gene specific
primers

TLR21 F2
TLR21 R2
40S F
40S R

AAGGACCAGGAGGAGAAAT
AGAGCCGAAATGAAGAACC
CCGTGGGTGACATCGTTACA
TCAGGACATTGAACCTCACTGTCT

Real-time PCR
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p < 0.01), with an increase of 5.29-, 2.73-, 6.22-, and
14.44-fold, respectively. The highest induced expres-
sion level was found at 3 hpi in the foregut, 12 hpi
in the spleen and hindgut, and 24 hpi in the liver.
However, CcTLR21 expression was down-regulated in
the head kidney at 3 hpi (p < 0.01).

Expression profiles of CcTLR21 gene in common carp
upon A. hydrophila challenge
After i.p. injection with formalin-inactivated A. hydro-
phila, the expression level of CcTLR21 mRNA was up-
regulated in the head kidney, foregut, hindgut and liver
of common carp (Fig. 6, p < 0.05), with an increase of 1.
96-, 6.99-, 8.95-, and 7.30-fold, respectively. The highest
induced expression level was found at 3 hpi in the fore-
gut, 6 hpi in the head kidney and hindgut, and 24 hpi in
the liver. However, CcTLR21 expression remained un-
changed in the spleen after A. hydrophila challenge.

Discussion
In the present study, the full-length CcTLR21 cDNA was
first amplified from common carp. The ORF of CcTLR21

encoded a putative protein of 964 amino acids, which was
found to comprise a signal peptide, 14 LRR domains in
the extracellular region and a TIR domain in the cytoplas-
mic region. This represents the characteristic TLR domain
architecture, although the number of LRR domains in dif-
ferent fish TLR21s differs greatly. Like CcTLR21, the
TLR21 of C. idella and S. salar exhibit 14 LRR domains,
while the TLR21 of D. rerio and L. crocea contain 12, P.
fulvidraco and O. fasciatus contain 15, E. coioides and S.
maximus contain 16, S. lalandi contains 17, I. punctatus
contains 18 and G. gallus contains 21 LRR domains
(Fig. 1). The LRR motif was involved in ligand recog-
nitions that bind to PAMPs for the purpose of subse-
quent signal transduction [32, 33]. The exact reasons
for species-wise variations in number of LRR remain
unknown, but the variation in the number of LRR do-
mains suggest that fish TLR21 may exhibit a special
mode of ligand binding [34, 35].
The TIR domain of CcTLR21 presented three conserved

regions: box 1 (YDXFXSY), box 2 (LCLHHRDFXPG) and
box 3 (FWXXLXXA), which were also found in other
species TLR21 proteins (Additional file 2: Figure S1). The

Fig. 1 The domain organizations for TLR21 in various species. Schematic representation of TLR21 domains was predicted by SMART. N-terminal
signal peptide (red box), LRRs and LRR-CT domain are denoted at the extracellular region, followed by a transmembrane domain (blue box), and
a TIR domain in the cytoplasmic region
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conserved box 1 and box 2 motifs were known to mediate
the coupling of receptor molecules in signal transduction
pathways, while the function of box3 region was to con-
trol subcellular location of these receptors [12]. Thus, the
TIR domain is structurally and functionally conserved

Fig. 2 Phylogenetic analysis of TLR21 amino acid sequences. The evolutionary tree of known TLR21s in fish and birds. These trees are generated
using the method of Neighbour-Joining in MEGA 6. The GenBank accession numbers of these sequences are shown in the trees

Fig. 3 Tissue expression of CcTLR21 in healthy common carp.
CcTLR21 transcripts in the spleen, head kidney, gills, brain, gonad,
hindgut, muscle, foregut, skin, buccal epithelial and liver of common
carp are detected by Real-time PCR. Amplification of 40S ribosomal
protein S11 in each tissue is performed as an internal control. n = 3

Fig. 4 CcTLR21 gene expression during common carp larvae
ontogeny. A normalized expression of CcTLR21 gene during the
development of common carp larvae between 1 and 24 days post
fertilization. Amplification of 40S ribosomal protein S11 in each
tissue is performed as an internal control. n = 3
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among different species and seems to trigger similar intra-
cellular signal transduction pathways.
To investigate the evolutionary relationships of TLR21

in fish and birds, a phylogenetic tree was constructed in
which all teleost TLR21 members were separated from
the TLR21 in birds. As for teleost TLR21, there were
two distinct subgroups, one of which consisted of mar-
ine teleost TLR21 proteins, including TLR21 of S. salar,
C. maraena, E. coioides, E. lanceolatus, S. lalandi, O. fas-
ciatus, T. rubripes, S. maximus, O. niloticus, M. miiuy, L.
crocea and G. morhua; the other was comprised of fresh-
water teleost TLR21 proteins, including C. carpio, M.
amblycephala, C. idella, D. rerio, I. punctatus, C. batra-
chus and T. fulvidraco. Interestingly, the TLR21 of A. ja-
ponica was in a signal branch. The result suggested that
TLR21 in marine and freshwater teleosts might undergo
different evolutionary processes.
The expression of CcTLR21 mRNA was found in al-

most all examined tissues of the healthy common carp,

but the levels varied strongly among different tissues. In
fish, the spleen and head kidney are important systemic
lymphoid organs [36], and a high expression of CcTLR21
in these organs suggests an important role of CcTLR21
in the immunity of common carp. Similar high expres-
sion of the TLR21 gene in the spleen and head kidney
was found in grass carp [8], orange-spotted grouper [9],
Atlantic salmon [11], large yellow croaker [13], yellow cat-
fish [14], rock bream [15] and yellowtail [16]. Meanwhile,
the gills, hindgut, foregut, buccal epithelium and skin are
mucosal immune organs in fish. The high expression level
of the CcTLR21 gene in the gills and hindgut suggests that
CcTLR21 might play a role in the mucosal defenses of
common carp, although there is much lower expression in
the foregut, skin and buccal epithelium. Similarly, high ex-
pression of the TLR21 gene in gills was found in grass
carp [8], orange-spotted grouper [9], Atlantic salmon [11],
large yellow croaker [13] and rock bream [15]. In addition,
in grass carp [8], large yellow croaker [13] and yellowtail

Fig. 5 The relative expression of CcTLR21 in common carp after i.p. injection with poly(I:C). The relative expression of CcTLR21 in the spleen, head
kidney, foregut, hindgut and liver of common carp was examined at different time points by Real-time PCR. All these results are corrected by 40S
ribosomal protein S11. Data are presented as a fold increase of the challenged group to the un-stimulated control group (denoted by 0 h) and
shown as the mean ± SEM (n = 3). *p < 0.05 or **p < 0.01 versus un-stimulated fish
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[16], the TLR21 gene also had high expression in the in-
testine and skin, indicating that the tissue expression pat-
tern of TLR21 varied among different fish species.
We analyzed the constitutive expression of the

CcTLR21 gene in embryo and early larvae of common
carp post fertilization. The results showed that CcTLR21
had two peaks of expression. Similarly, in yellow catfish,
the expression of TLR21 mRNA was at a high level from
the fertilized egg stage to the late blastula stage, and
subsequently showed an significant up-regulation from 1
to 30 days post hatching (dph) [14]. Additionally, the
mRNA expression of other TLRs during embryonic de-
velopment of fish, such as TLR3, TLR5, TLR18 and
TLR19 genes were also reported. The TLR3 mRNA had
a higher expression at the fertilized egg stage than at
other embryonic developmental stages in rohu [37], and
the expression level of TLR5 mRNA was the highest at
5 h post fertilization in mrigal [38]. In yellow catfish, the
expressions of TLR18 and TLR19 mRNA were high

during the early-stage embryonic development from the
fertilized egg to the late blastula [14]. These results sug-
gested that the mRNAs of maternal TLRs might be
transferred to the fertilized eggs of fish and will be grad-
ually consumed during the embryonic developmental
stage [39]. After hatching, the CcTLR21 mRNA expres-
sion levels increased in common carp. In line with this,
the mRNA expressions of other TLR genes have also
been reported to be up-regulated post hatching of fish,
such as rohu, mrigal and yellow catfish [14, 37, 38]. All
these results suggest that TLRs may be involved in some
immune-related activities, as the larvae will be exposed
to the complicated water environment after hatching.
Therefore, CcTLR21 might play important immune roles
in the embryonic and early larval developmental stages
of common carp.
In some reported fish species, significant up-regulation

of the TLR21 mRNA was observed after viral or bacter-
ial stimulation, suggesting a possible immune function

Fig. 6 The relative expression of CcTLR21 in common carp after i.p. injection with A. hydrophila. The relative expression of CcTLR21 in the spleen,
head kidney, foregut, hindgut and liver of common carp was examined at different time points by Real-time PCR. All these results are corrected
by 40S ribosomal protein S11. Data are presented as a fold increase of the challenged group to the un-stimulated control group (denoted by 0 h) and
shown as the mean ± SEM (n = 3). *p < 0.05 or **p < 0.01 versus un-stimulated fish
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of fish TLR21. Accordingly, in the present study, we ana-
lysed the expression pattern of CcTLR21 mRNA after
poly(I:C) and A. hydrophila challenges in a variety of
immune-related tissues.
Poly(I:C) is used here as a model of double-stranded

genome virus infection [40, 41]. After poly(I:C) challenge,
the expression level of CcTLR21 mRNA was up-regulated
in the spleen, foregut, hindgut and liver. Similarly, upon
stimulation with poly(I:C), TRBIV and CpG-ODN, the
TLR21 mRNA expression was up-regulated in the gills,
head kidney, spleen and muscle of turbot [12]. Addition-
ally, three CpG-ODNs were found to significantly up-
regulate the expression of TLR21 in large yellow croaker
head kidney cells [13], and TLR21 mRNA levels signifi-
cantly increased in the spleen tissues of rock bream in re-
sponse to RBIV infection [15]. The changes of gene
expression induced by various infections might be due to
the cell migration or proliferation, or actual modulation of
gene transcription in resident cells. Although the viral
stimulation and subsequent up-regulation of TLR21 gene
expression does not claim the recognition of specific li-
gands by TLR21, induction of TLR21 gene expression is
consistent over different studies across different fish spe-
cies, at least indicating the involvement of fish TLR21 in
innate immune defense against viral pathogens [42].
Otherwise, in the head kidney of common carp, the
CcTLR21 expression was down-regulated upon poly(I:C).
Similarly, the TLR21 expression was down-regulated in
the kidneys of Atlantic salmon after ISAV infection [11],
and in the liver and spleen of grass carp upon aquareo-
virus induction [8]. The down-regulation of TLR21 gene
expression indicates an altered rate of transcription or a
migration of the relevant cell type away from the tissues,
implying that TLR21 may have different roles in different
tissues of fish.
In the present study, A. hydrophila, a Gram-negative

bacterium found in fresh or brackish water and associated
with some diseases of freshwater fish and amphibians
[24, 26, 29, 31], was performed to investigate the pos-
sible role of CcTLR21 in the immune defenses against
bacterial pathogens in common carp. After i.p. injection
with formalin-inactivated A. hydrophila, the expression
level of CcTLR21 mRNA was up-regulated in the head
kidney, foregut, hindgut and liver of common carp. Simi-
lar results have been reported in some other fish species.
After challenge with A. hydrophila, the expression level of
the TLR21 gene was up-regulated in the spleen, head kid-
ney, trunk kidney, liver and blood of yellow catfish [14],
and in the liver and spleen of grass carp [8]. Post C. irri-
tans infection, TLR21 transcript was induced in the skin
and gill of orange-spotted grouper [9]. Upon stimulation
with S. iniae or E. tarda, TLR21 mRNA levels was signifi-
cantly up-regulated in the spleen of rock bream [15]. The
expression of TLR21 gene was quickly increased in the

spleen and head kidney of large yellow croaker, in re-
sponse to a trivalent bacterial vaccine consisting of V.
alginolyticus, V. parahaemolyticus, and A. hydrophila
[13]. Thus, similar to the results of viral stimulation, the
induced expression of TLR21 indicates its potential role in
the innate immune response of fish against bacterial
pathogens.

Conclusions
The structure, evolutionary relationship and expression
characteristics of a TLR21 gene in common carp were
reported in the present study. CcTLR21 seems to have a
closer evolutionary relationship with other freshwater
fish TLR21s than those of marine fish species. The consti-
tutive expression of CcTLR21 in various tissues and during
early larval ontogeny implies its possible relevance to im-
mune function of common carp. Moreover, the up-
regulated expression of CcTLR21 strongly indicates that
CcTLR21 plays a significant role in innate immune defense
against viral and bacterial pathogenic microbes.
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TLR21s. The signal peptide, LRRs domain, transmembrane region and TIR
domain were denoted, respectively. The three active motifs in TIR domain
are boxed: box 1 (YDXFXSYN), box 2 (LCLHHRDFXXG) and box 3 (FWXXL). X
denotes an arbitrary amino acid. (TIF 3641 kb)
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