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Long noncoding RNAs (lncRNAs) have been shown to play key
roles in a variety of biological activities of the cell. However, less is
known about how lncRNAs respond to environmental cues and
what transcriptional mechanisms regulate their expression. Stud-
ies from our laboratory have shown that the lncRNA Tug1 (tau-
rine upregulated gene 1) is crucial for the progression of diabetic
kidney disease, a major microvascular complication of diabetes.
Using a combination of proximity labeling with the engineered
soybean ascorbate peroxidase (APEX2), ChIP-qPCR, biotin-la-
beled oligonucleotide pulldown, and classical promoter luciferase
assays in kidney podocytes, we extend our initial observations in
the current study and now provide a detailed analysis on a how
high-glucosemilieu downregulates Tug1 expression in podocytes.
Our results revealed an essential role for the transcription factor
carbohydrate response element binding protein (ChREBP) in con-
trolling Tug1 transcription in the podocytes in response to
increased glucose levels. Along with ChREBP, other coregulators,
including MAX dimerization protein (MLX), MAX dimerization
protein 1 (MXD1), and histone deacetylase 1 (HDAC1), were
enriched at the Tug1 promoter under high-glucose conditions.
These observations provide the first characterization of themouse
Tug1 promoter’s response to the high-glucose milieu. Our find-
ings illustrate a molecular mechanism by which ChREBP can
coordinate glucose homeostasis with the expression of the
lncRNA Tug1 and further our understanding of dynamic tran-
scriptional regulation of lncRNAs in a disease state.

Long noncoding RNAs (lncRNAs) are classically known as
diverse RNA transcripts that are more than 200 nucleotides
long and are not translated into proteins or encode very short
peptides (1, 2). Recent advances in high-throughput DNA
sequencing and single-cell RNA-Seq studies have revealed that
lncRNAs have crucial roles in regulating gene expression and
play broad roles impacting human physiology and pathophysiol-

ogy (1, 3), yet despite the striking prevalence of lncRNAs and
countless attempts to explore their function, the functional land-
scape of themajority of lncRNAs remains elusive (3–5).
Growing evidence suggests that lncRNAs play key roles in

linking the metabolic state of the cell to extracellular cues and
nutrient availability. For instance, we have recently shown that
the lncRNATug1 is downregulated in the podocytes of diabetic
mice and plays an important role in progression of diabetic ne-
phropathy (6). Mechanistically, we found that Tug1 regulates
the expression of PGC-1a (peroxisome proliferator-activated
receptor gamma coactivator 1a), a master transcription regula-
tor of mitochondrial biogenesis, under high-glucose (HG)
stress conditions by binding to an enhancer region that is 400
kb upstream of the PGC-1a gene, serving as a bridge that con-
nects the cis-element and trans-factor for the expression of this
important mitochondrial master regulator. However, despite
much progress in identifying the biological scope and the func-
tion of Tug1, our current understanding of the precise regula-
tion of Tug1 and its upstream transcriptional regulatory mech-
anisms remains very limited.
lncRNAs are often expressed in tissue- and/or development-

specific patterns (7, 8), suggesting that their expression is tightly
regulated by a number of well-characterized transcription factors
(7–9). In this study, we provide strong evidence indicating that
the HG-mediated suppression of Tug1 expression is, at least in
part, regulated by ChREBP (carbohydrate response element bind-
ing protein, also known as MLXIPL, for Mlx-interacting protein-
like), amajor glucose-responsive transcription factor (10).
Enriched in adipose tissue, ChREBP is a basic helix-loop-he-

lix leucine zipper transcription factor that regulates glucose ho-
meostasis and the response to dietary carbohydrates (11–13).
Indeed, an HG environment promotes ChREBP translocation
to the nucleus, leading to the formation of a heterodimeric
complex with MLX (Max-like protein X) and binding to the
carbohydrate response elements (ChoRE) of ChREBP target
genes in the nucleus (14–16).
In the current study, we show that in response to HGmilieu,

ChREBP can recruit other members of the ChREBP network,
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including MLX, MAX (Myc-associated factor), MXD1 (Max
dimerization protein 1), and HDAC1 (histone deacetylase 1), to
a ChoRE element and neighboring E-box (enhancer box) in the
Tug1 promoter, suppressing transcriptional activity.

Results

Genomic organization of mouse lncRNA Tug1 and its
promoter

The human lncRNA TUG1 gene (NCBI reference sequence
NR_110492 transcript variant 1) is located on chromosome
22q12.2 and has 8 variant transcripts, ranging from 5.2–7.6 kil-
obase in length, whereas the murine Tug1 lncRNA locus is
located on chromosome 11 and has three variant (a, b, and c)
transcripts that are 4.1–6.7 kilobases long (Fig. 1A). The Tug1
promoter has in vitro transcriptional activity in both orienta-
tions and acts as a bidirectional promoter driving the expres-
sion of the protein-coding geneMorc2a as well (4, 17, 18). Con-
sistent with a classical feature of bidirectional promoters,
where the transcription start sites (TSS) of the two genes are
predictably separated by less than 1 kb, theMorc2aTSS is sepa-
rated by only 374 bp from the Tug1 TSS. Importantly, Tug1 is
highly conserved among species and shows a wide tissue
expression pattern in mice, rats, and humans (Fig. 1B) (4, 19).
Moreover, theTug1 locus is enriched with key features of active
transcription, such as open chromatin regions harboring tran-
scription factors and histonemodifications, including H3 lysine
4-trimethylation (H3K4me3) and H3K36me3 (Fig. 1A), sug-
gesting active transcription along theTug1 gene body.

Reduced expression of lncRNA Tug1 in several experimental
models of diabetes is transcriptionally regulated

Previously, we had identified Tug1 as an lncRNA that is
downregulated in the diabetic milieu using an unbiased RNA-
sequencing (RNA-Seq) analysis of kidney glomeruli (6). Here,
we have expanded on our previous observations, finding signifi-
cantly reduced expression of Tug1 in several kidney cell lines
that were cultured under HG conditions, including podocytes
(Fig. 1C), TCMK-1 tubular cells (Fig. 1D), and HeLa cells (Fig.
1E). Notably, all three isoforms of Tug1 transcripts were down-
regulated under HG condition in podocyte (Fig. S1). We also
validated that podocytes isolated from kidneys of leptin recep-
tor-deficient (db/db) mice, an established model of type 2 dia-
betes, exhibited significant downregulation of Tug1 expression
compared with podocytes obtained from control nondiabetic
(db/m) mice (Fig. 1F).We next argued that theTug1 downregu-
lation could be because of diminished transcriptional activity
or enhanced RNA degradation under high-glucose conditions.
Therefore, wemonitoredTug1 RNA abundance by quantitative
RT-PCR in the presence of actinomycin D, which intercalates
into DNA, forming a stable complex and thereby inhibiting
new RNA transcription (Fig. 1G). We found that the rate of
RNA degradation was not significantly different between cells
cultured under HG or NG conditions. This result suggests that
the rate of Tug1 degradation was similar in podocytes whether
cultured under HG or NG conditions and indicates that HG-
mediated downregulation of Tug1 was mainly because of its
transcriptional regulation.

Because previous results had suggested that the Tug1 pro-
moter acts as a bidirectional promoter driving the expression of
Morc2a, we also determined whether HG has the same effect
on Morc2a expression. To this end, cultured podocytes were
exposed to HG for 24 h or 48 h (Fig. 1H). Unlike its neighbor
Tug1 gene, which is transcribed in an opposite strand, we found
that HG only modestly inhibited the expression of Morc2a at
48 h but not at 24 h. On the other hand, HG treatment did not
have a significant effect onMORC2 mRNA expression in HeLa
cells (Fig. 1I). These results suggest that HG does not have a
consistent effect onMorc2a expression.

ChoRE motif is present at the promoter region of Tug1 gene

To further explore how HG regulates Tug1 transcription, we
retrieved the promoter region of themurine Tug1 gene to iden-
tify potential binding sites for transcription factors. Alignment
of mouse, human, and rat Tug1 promoter sequences indicated
that these sequences are highly conserved, with over 90% of the
sequences identical among these three species (Figs. 2A–C).
Using a web-based tool, rVista 2.0, we identified several poten-
tial binding sites for transcription factors (Fig. 2B). Notably, we
found multiple p53 candidate binding sites as well as SP1, YY1,
E47, IRF-3, and PPAR-a binding sites. Importantly, we also
found one ChoRE consensus sequence in this region that was
almost identical in the three species we analyzed (Fig. 2B and
C). The ChoRE sequence matched well with the consensus motif
where two E-boxes (CAYGYG and CRCRTG) are separated by 5
nucleotides (where Y denotes pyrimidine [C or T] and R denotes
purine [A orG]) (10, 20–22). Identifying ChoRE as a potential sig-
naturemotif in the region was of great interest to us, because pre-
vious reports had demonstrated that ChoRE is recognized by the
transcriptional factor ChREBP, a key transcription factor that is
upregulated underHG conditions (10, 11).
We then screened whether the Tug1 promoter serves as a

ChREBP binding site by taking advantage of genome-wide
ChIP-Seq (ChIP coupled with high-throughput DNA sequenc-
ing) data from one of our previous studies of adipose tissue
(21). Using model-based analysis of ChIP-Seq (MACS) (23), we
detected a peak of ChREBP binding site at 324 bp upstream of
the Tug1 promoter (Fig. 2D).
To mechanistically validate binding of ChREBP to the pro-

moter of Tug1 under HG conditions, we used a ChIP assay by
incubating nuclear extracts of cultured podocytes grown under
HG with a rabbit antibody against ChREBP. As shown in Fig.
2E, only ChREBP-IgG, but not the control rabbit IgG, enriched
Tug1 promoter chromatin DNA, which was detected by PCR
amplification, suggesting that ChREBP indeed binds to the
Tug1 promoter under HG conditions.
To further validate binding of ChREBP to the Tug1 promoter

in live cells and to identify the regulatory factors that could poten-
tially form a complex with ChREBP to control Tug1 expression
under HG conditions, we used a combination of CRISPR target-
ing and proximity labeling with an engineered ascorbate peroxi-
dase (APEX2) technology (24–26). We engineered a piggyBac
vector to express U6 RNA promoter-driven guide RNA (gRNA)
that targets the Tug1 promoter region and a dead Cas9 (dCas9)-
APEX2 fusion construct under a CMV enhancer/promoter (27)
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(see Fig. S2 for construct design and sequence). We transfected
this construct together with piggyBac transposase (28, 29) into
the cultured podocytes. As depicted in Fig. 2F, the gRNA directs
the fusion protein dCas9-APEX2 to the Tug1 promoter region.
In the presence of H2O2, APEX2 will oxidize biotin-phenol into

biotin-phenoxyl radicals (27, 30). The biotin-phenoxyl radicals
can tag and attach to nearby proteins (;20-nm radius) (31). We
usedmagnetic conjugated streptavidin beads to enrich the biotin-
ylated proteins in cultured podocytes. As a control, we used
podocytes that expressed dCas9-APEX2 with a nontargeting
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Figure 1. Tug1 genomic locus, tissue expression pattern, and transcription regulation by high glucose. A, selective UCSC Genome Browser tracks for
ATAC-Seq (E15.5) and various histone 3 lysines methylation and acetylation patterns. B, Tug1 RNA expression in various tissues of mice, rats, and humans
(human HPA RNA-Seq, rat RNA-Seq, and mouse ENCODE transcriptome data). C–E, RNA levels of Tug1 in mouse podocytes (C), transformed C3H mouse kid-
ney-1 (TCMK-1) cell line (D), or HeLa cells (E) cultured under NG (5 mM) or HG (25 mM) conditions for the indicated time were analyzed by RT-qPCR (n = 3).
Expression values were normalized to Gapdh. Data are presented as mean6 S.E.M. *, p, 0.05; **, p, 0.01; ***, p, 0.001. F, relative Tug1 RNA expression in
primary podocytes isolated from leptin receptor-deficient heterozygous (Leprdb/m) and homozygous (Leprdb/db) mice at 16 or 24 weeks of age (n = 5 ani-
mals). G, podocytes cultured under normal glucose (NG; 5 mM) or high-glucose (HG; 25 mM) conditions were treated with actinomycin D (ActD) (4 mM) for the
indicated time, and Tug1 levels were measured by qRT-PCR and normalized to Gapdh (n = 3). H–I, relative mouse Morc2a or human MORC2 mRNA levels in
podocytes (H) or HeLa cells (I) cultured in NG and HG for the indicated time were analyzed by RT-qPCR (n = 3). Expression values were normalized to Gapdh or
GAPDH. Data are presented as mean6 S.E.M. n.s., not significant. *, p, 0.05.
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gRNA. We proceeded to assess the biotinylated proteins la-
beled by dCas9-APEX2 in the gRNA-targeted Tug1 pro-
moter region. Immunoblotting against ChREBP showed
that ChREBP was biotinylated only in the cells transduced
by the Tug1 promoter-targeted gRNA but not in the control
podocytes (Fig. 2G). Importantly, we also confirmed that
ChREBP is present at the Tug1 promoter and HG increases
its prevalence (Fig. 2G).

ChREBP suppresses Tug1 transcription through the ChoRE
motif in Tug1 promoter
Because mouse ChREBP has two different transcript variants

(61), ChREBP-a and ChREBP-b (Fig. 3A), we next examined
which isoform is HG responsive in the podocyte cell line. Using
quantitative RT-PCR and isoform-specific primers, we found
that only the ChREBP-a transcript is upregulated under HG
conditions (Fig. 3B). To explore the function of ChREBP on
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Tug1 transcription in vitro, we generated a luciferase expres-
sion construct driven by the 1-kb Tug1 promoter and cotrans-
fected it with a construct expressing WT ChREBP-a. In the lu-
ciferase reporter assay, cultured cells transfected with a pGL4
control vector had negligible luciferase readings (Fig. 3C), but
the vector containing the 1-kb Tug1 promoter gave significant
luciferase activity. This promoter activity was suppressed by
cotransfection with the ChREBP-a cDNA construct in a dose-
dependent manner (Fig. 3C), suggesting that ChREBP can
repress Tug1 transcription. Using luciferase reporter assays in
podocytes, we also compared the effect of two ChREBP iso-
forms on Tug1 transcription and found that ChREBP-b is
much less potent for repressing Tug1 transcription than
ChREBP-a (Fig. S3A). Furthermore, we found transcription
factor p53 significantly activates, whereas YY1 represses, Tug1
transcription (Fig. S3B), consistent with the presence of con-
sensus binding sites for these transcription factors in the pro-
moter region (Fig. 2B) and previous reports about the induction
of Tug1 expression by p53 (32, 33). Because there are two
potential ChoREs present in the promoter region of the murine
Tug1 gene, we also generated several ChoREmutant constructs
where the 5-nucleotide (nt) spacer between the two direct
repeat (DR1) motifs was shortened to 4 nt that should abolish
the binding of ChREBP to either ChoRE1 or ChoRE2 (10, 34).
The mutant ChoRE1 (mut1) failed to show suppression of the
Tug1 promoter activity (Fig. 3D). The double mutant (mut3) in
which single-nucleotide deletion occurred in both ChoRE1 and
ChoRE2 showed promoter activity similar to that of the
ChoRE1 mutant. In contrast, mutant ChoRE2 (mut2) showed
the same level of promoter activity as the WT (Fig. 3D). These
results indicate that ChoRE1, but not ChoRE2, plays an impor-
tant role in ChREBP-mediated repression of Tug1 expression.
We further used loss-of-function and gain-of-function

approaches to examine the role of ChREBP in the transcrip-
tional regulation of the Tug1 gene. We first knocked down
ChREBP expression by shRNA in podocytes (Fig. 3E). Consist-
ent with our previous observations, we found that ChREBP
knockdown led to enhanced expression of Tug1 and its down-
stream target gene, Pgc1a. The knockdown efficiency was
shown by Western blotting (Fig. 3E). Conversely, ChREBP
overexpression led to the repression of both Tug1 and Pgc1a
genes (Fig. 3F). These results suggest that lncRNATug1 is a tar-
get gene of transcription factor ChREBP.

Identification of a repressor complex at the Tug1 promoter

ChREBP is known to bind to the ChoRE with another tran-
scription factor, MLX, a ChREBP obligate partner, forming a
heterodimer (14–16). Using the promoter-reporter system of
the Tug1-1kb promoter luciferase construct in podocytes, we
observed that Mlx dose-dependently suppressed the Tug1 pro-
moter activity. A dominant-negative Mlx, however, did not
exert a suppressive effect on the Tug1 promoter (Fig. 4A). We
also identified a consensus E-box (enhancer box) (59-
CACGTG-39) in the murine Tug1 promoter region 21 nt
downstream of the ChoRE (Fig. 4B). We thought this E-box
could be important because it is a consensus binding sequence
for basic helix-loop-helix-leucine-zipper-containing transcrip-

tion factors, such as MAX and MXD1 (35, 36). Thus, we first
tested the role of this E-box on Tug1 suppression by generat-
ing the Tug1 promoter-luciferase reporters that contained a
mutation in the E-box region (E-box mut) or a deletion of
the E-box (DE-box). Both E-box mutants showed higher lu-
ciferase activities than theWT control (Fig. 4C), and the mutant
activities were very similar to the promoter activity of the ChoRE
mutant, suggesting that ChoRE and E-box function as a single
cis-regulatory element, recruiting a cohort of transcription factors
that downregulate Tug1 transcription.
Because it is well established that E-boxes recruit heterodi-

meric MAX and MXD1 transcription factors (35), we next
examined the effect of these two transcription factors on Tug1
promoter activity. As shown in Fig. 4D, both Max and Mxd1
dose-dependently suppressed Tug1 promoter activity. Further-
more, because MXD1 has been shown to recruit HDAC1 to
suppress gene transcription (37), we also performed ChIP
assays using an HDAC1 antibody followed by qRT-PCR. We
showed that under HG conditions, there was a marked enrich-
ment of HDAC1 binding to the Tug1 promoter in cultured
podocytes compared with that of the NG condition (Fig. 4E).
Similarly, ChIP-qPCR also indicated enrichment of ChREBP,
MLX, MAX, and MXD1 on the Tug1 promoter region (Fig.
4E). Using an HDAC1 inhibitor, trichostatin A (TSA), in cul-
tured podocytes transfected with the Tug1-1kb promoter-lucif-
erase construct, we tested whether inhibition of the HDAC1
resulted in a change in Tug1 promoter activity. We observed
that TSA dose-dependently increased Tug1 promoter activity
(Fig. 4F), suggesting that HDAC1 activity suppresses Tug1
expression. We also observed that a functional E-box in the
Tug1-1kb promoter is necessary for this suppression, because
the promoter lacking an intact E-box is unresponsive to TSA
treatment (Fig. 4F).
Further independent experiments were designed to interro-

gate the interactions of MAX/MXD1 with ChREBP/MLX on
HG-mediated suppression of the Tug1 promoter. After gener-
ating several fusion constructs with short epitope tags, includ-
ing ChREBP fused to a Flag tag, Mlx fused to a Myc tag, and
Max and Mxd1 fused to HA tags, these constructs were then
either individually or in various combinations cotransfected
into the podocytes. Figure 5A shows the results of these experi-
ments. The top three panels are theWestern blotting results of
the protein factors brought down by anti-Flag antibody, an in-
dication of ChREBP-interacting proteins. The lower three pan-
els exhibit the Western blotting results of the whole-cell lysate
(WCL). From the anti-Flag immunoprecipitated proteins, we
detected MXD1 (lane 3), MXD1 and MLX (lane 4), MAX (lane
5), andMAX andMLX (lane 6), suggesting that ChREBP inter-
acts with MLX, MXD1, and MAX. Importantly, MLX can sig-
nificantly enhance the interaction between MXD1 and
ChREBP (lane 4 versus lane 3) but does not increase the associ-
ation of MAX with ChREBP, suggesting that there is a ternary
complex of ChREBP/MLX/MXD1.
To explore whether these transcription factors interact with

each other in the context of the Tug1/ChoRE transcription, we
performed a biotin-oligonucleotide pulldown assay, where a bi-
otin-labeled ChoRE oligonucleotide from the Tug1 promoter
region was incubated in vitro with cell extracts from podocytes
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transfected with combinations of these transcription factors
(Fig. 5B). ChoRE DNA-bound proteins were then enriched by
magnetic streptavidin beads and detected by immunoblotting.
Whereas the bindings of MLX, MAX, and MXD1 to ChoRE
DNA were easily detected, the binding of ChREBP to ChoRE
was relatively weak but could be enhanced by the coexpression

of MLX and MXD1 (lane 9 versus lane 8) but not MLX and
MAX (lane 6 versus lane 5), suggesting that the presence of
MLX/MXD1 further amplifies the binding of ChREBP to
ChoRE on the Tug1 promoter.
Finally, we used CRISPR coupled with APEX2 proximity

labeling to dissect transcription factors binding to the ChoRE
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region of the Tug1 gene under HG conditions. The gRNA target-
ing site is 12 bp from the ChoRE motif itself (Fig. 2F) and, there-
fore, falls within the expected;20-nm radius of APEX2 labeling.
Our initial results indicated that ChREBP was labeled by APEX2
in a ChoRE gRNA-dependent manner (Fig. 2G). A follow-up
APEX2 proximity labeling detected additional proteins, including
MXD1, HDAC1, and SIN3A (Fig. 5C). This labeling was specific
because it was not observed when nontargeting gRNA was
used or H2O2 treatment was omitted. As a control, V5-tagged

dCas9-APEX2 fusion protein was labeled by both gRNAs at
comparable levels. Taken together, these data strongly indi-
cate that under HG conditions, binding of the ChREBP/MLX
heterodimer to ChoRE triggers the formation of a multisubu-
nit complex, composed of at least MXD1, HDAC1, and
SIN3A, to repress the transcription of Tug1 in podocytes.
A model depicting transcriptional regulation of HG-induced

Tug1 expression, focusing on the roles of ChREBP, MLX,
MXD1, andHDAC1, is shown in Fig. 5D.
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Discussion
Tug1 was first identified as an lncRNA transcript that could

be upregulated by taurine in developing retinal cells (38). De-
spite the importance of Tug1 in cell homeostasis and its critical
role in a number of unique biological activities, including kid-
ney pathobiology and reproduction, information regarding the
Tug1 promoter regulation is very limited; thus, the characteri-
zation of the Tug1 promoter is significant and provides insights
into the underlying regulatory mechanisms of lncRNAs in gen-

eral. To the best of our knowledge, this is the first report of
transcriptional regulation of an lncRNA in response to glucose,
and Tug1 is the first bona fide lncRNA transcriptional target
gene of ChREBP in the literature.
Previous studies from our laboratory have demonstrated that

Tug1 is markedly downregulated in response toHG (6). However,
howHGmilieu regulates the expression of Tug1 remained elusive.
The current study outlines a mechanism coupling HG environ-
ment with the transcriptional repression of Tug1 in podocytes.
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A network of multiple regulatory layers controls Tug1 gene
expression. For instance, recently published work has shown
that Tug1 expression can be induced by antioxidant taurine
(38), hypoxia (39), TGF-b (40), and p53 (32, 33) but inhibited
by polycomb repressive complex 2 (PRC2) (32, 33). In this
study, we uncovered the unexpected regulatory effect of
ChREBP on Tug1 expression and found that the effect of HG
on Tug1 expression is, at least in part, transcriptional and
through binding of ChREBP to the promoter region of Tug1.
Genome-wide ChIP-Seq studies from us and others have

shown that ChREBP can bind to ChoRE, a carbohydrate
response element, in the promoter of its target genes (20, 21). It
has been proposed that under HG conditions, ChREBP-a is
translocated from the cytoplasm into the nucleus, where it
forms a heterodimer with MLX and binds to ChoRE motifs in
the promoters of glycolytic and lipogenic genes to activate tran-
scription (11, 14–16). Further studies have shown that glucose
metabolites, such as glucose-6-phosphate, and posttransla-
tional modifications, such as O-GlcNacylation, can also medi-
ate ChREBP activation and its nuclear translocation, whereas
adenosine monophosphate (AMP), ketone bodies, and cAMP
suppress its activation (41–45). Interestingly, the suppression
of ChREBP stimulates mitochondrial respiration, suggesting
that ChREBP also plays a key role in redirecting glucose metab-
olism from oxidative phosphorylation pathways to glycolic
pathways (46). This could be of significance, because in a previ-
ous study, we demonstrated that Tug1 upregulates a key tran-
scription factor of mitochondrial biogenesis, PGC-1a (6). Thus,
it is tempting to speculate that the suppression of Tug1 by
ChREBP under HG conditions could contribute to the
ChREBP-mediated effects on mitochondria. However, fur-
ther studies are needed to explore these presumably mito-
chondrion-specific effects of ChREBP.
Our in silico and in vitro analyses have led to the identifica-

tion of a regulatory repressor complex that interacts with
ChoRE in the Tug1 promoter region. Indeed, our data indicate
that along with ChREBP, a number of other factors, including
MLX, MXD1, and HDAC1, play crucial roles in the HG-de-
pendent Tug1 transcriptional regulation (Fig. 5D). Our data
suggest that these transcription factors and cofactors interact
with ChREBP, leading to Tug1 suppression. The current under-
standing of the mechanism by which ChREBP regulates gene
transcription is that ChREBP dimerizes with the cofactor MLX
and directly binds to ChoRE consensus sequences in target
gene promoters (12, 13). Using peroxidase proximity labeling
to tag proteins that are located in the vicinity of the ChoRE in
the Tug1 promoter, we found ChREBP is a protein that was bi-
otinylated. Our data also demonstrated that along with
ChREBP, other transcription factors, including MXD1 as
well as HDAC1, are enriched at the Tug1 promoter, suggest-
ing that histone deacetylation is important in HG-mediated
Tug1 repression. It has been previously reported that the
MXD family of proteins dimerize with MAX and recruit a
histone deacetylase complex through an N-terminal Sin3
interaction domain, thereby suppressing transcription (37,
47–50). Importantly, the involvement of MXD1 and
HDAC1 in the suppression of target genes was previously
described in the context of cancer progression (51). How-

ever, the role of these factors in HG-mediated repression of
Tug1 expression was unknown.

Conclusions

Our observations demonstrate that the transcription of the
lncRNATug1 is suppressed under HG conditions in podocytes.
We characterized the promoter region for Tug1 transcription
and identified ChREBP and its partner, MLX, as transcriptional
factors that bind to a ChoREmotif in the promoter. Our results
also provide evidence that, along with ChREBP and its obligate
partner, MLX, other key factors, includingMXD1 and HDAC1,
coordinate the regulatory effect of HG on the Tug1 promoter.
Thus, our studies further strengthen the relevance of Tug1 and
ChREBP in podocyte response to HG and provide strong evi-
dence for considering Tug1 and ChREBP as potential targets
for novel diabetic nephropathy therapy. Furthermore, we dem-
onstrate that ChREBP coordinates with MLX, MXD1, and
HDAC1 to suppress the Tug1 promoter. In this regard, our
results establish a basis for future efforts to identify regulatory
factors and mechanisms involved in the transcription of other
lncRNAs in podocytes.

Experimental procedures

Tissue culture

Conditionally immortalized mouse podocytes were cultured
as previously reported (52). Briefly, podocytes were cultured on
BD BioCoat collagen I plates (BD Biosciences, San Jose, CA) at
33 °C in RPMI 1640 complete medium with 20 units/ml mouse
recombinant IFN-g (Thermo Fischer, Carlsbad, CA). To
induce differentiation, podocytes were cultured in DMEM (5
mM glucose and 5% FBS) at 37 °C without IFN-g for 10–12 days.
For glucose treatment experiments, podocytes were serum
deprived for 24 h prior to addition of normal glucose (NG; 5
mM) or high glucose (HG; 25 mM). Mouse renal tubular epithe-
lial cells (TCMK-1; CCL-139), human cervical carcinoma HeLa
cells (CCL-6), and human embryonic kidney fibroblast 293T
cells (CRL-3216) all were obtained from the ATCC and cul-
tured according to the instructions at 37 °C. All cell culture
experiments were repeated at least three independent times.
To assess the stability of Tug1 RNA, cells were treated with ac-
tinomycin D (4 mM; MilliporeSigma, St. Louis, MO) or with ve-
hicle (DMSO) added into cells to 4mM.

Animal work

All animal studies were conducted according to the Princi-
ples of Laboratory Animal Care (NIH publication no. 85023, re-
vised 1985) and the guidelines of the IACUC of The University
of Texas MD Anderson Cancer Center. Diabetic db/db mice
and their control littermates, db/m, were obtained from Jack-
son Laboratories (strain 000642, BKS.Cg-Dock7m1/1Leprdb/J;
Bar Harbor, ME). All mice used in experiments were male. No
animals were excluded from the studies performed. All animals
were maintained on a normal chow diet and housed in a room
with a 12-h/12-h light/dark cycle and an ambient temperature
of 22 °C. Kidney podocytes were isolated by positive selection
with biotin-labeled Kirrel3 and podocalyxin antibodies (2.5 mg/
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antibody/mouse; R&D Systems, Minneapolis, MN) followed by
DynabeadsM-450, as previously described (53).

RNA extraction and real-time RT-PCR

Total RNAs were extracted using the PureLink RNA Mini
Kit (Thermo Fischer Scientific) with on-column digestion of
DNase I (New England Biolabs, Ipswich, MA). After reverse
transcription using an iScript cDNA synthesis kit (Bio-Rad,
Hercules, CA), cDNAs were diluted into 10 ng per well and
quantified by real-time PCR using PowerUp SYBR Green mas-
ter mix (Thermo Fischer) on a StepOnePlus real-time PCR sys-
tem (Applied Biosystems). Individual samples were run in
duplicate, and each experiment was repeated at least 3 times.
Relative gene expression was calculated using the 22rCT

method (54). Sequences of gene-specific primers are listed in
Table S1.

Transcription factor binding site analysis, subcloning,
mutagenesis, luciferase assay, and modulation of ChREBP
expression

Sequences of putative 1-kb promoters of the TUG1 gene
from human or Tug1 genes from mouse and rat were retrieved
from the UCSC Genome Browser as 1 kb of genomic DNA
upstream of each transcription start site (TSS) and aligned to
mouse Tug1 promoter using Clustal Omega (RRID:SCR_
001591). Binding sites for transcription factors were analyzed
using rVista 2.0 (RRID:SCR_018707). Expression plasmids of
Flag-YY1 (Addgene, 104396), Myc-ChREBP-a (CA-ChREBP)
(55), Myc-ChREBP (55), Myc-Mlx (15), and Myc-DN-Mlx
(dominant negative) (15) in the pcDNA3 backbone or p53
(Addgene, 16434) and Flag-HDAC1 (56) in the pCMV5 vector
were previously described. Mouse ChREBP cDNA (55), mouse
Mlx cDNA (15), human MAX cDNA (Addgene, 82944), and
MXD1 cDNA (human ORFeome clone ID 100072779, from
Dharmacon, provided by the Functional Genomics Core at
MDACC) were also subcloned by PCR using appropriate pri-
mers (see Table S1 for detailed sequence) into modified pRK5
vectors with a Flag tag or a 33HA tag at the N terminus (57) or
into the pCS3-6Myc vector (56) with a 63Myc tag at the N ter-
minus to generate Flag-ChREBP, HA-Mlx, HA-MAX, HA-
MXD1, Myc-MAX, and Myc-MXD1. The mouse Tug1 gene 1-
kb proximal promoter region (2996 to21) was amplified from
cultured mouse podocyte genomic DNA by PCR using Hercu-
lase II fusion DNA polymerase (Agilent, Santa Clara, CA)
with the primers CAGGTACCAAACACAGCTTGCTATTA
TGCC (forward) TCCTCGAGCTGCGCCCCAAGAGCTG-
GAT (reverse) and subcloned into a KpnI-XhoI digest site of
the promoterless luciferase reporter vector pGL4.10 [luc2]
(Promega, Madison, WI). Site-directed mutagenesis was car-
ried out using a QuikChange II site-directed mutagenesis
kit (Agilent). The putative ChREBP binding sites ChoRE1
(CACGTGACCGGATCTTG, 2324 to 2308) and ChoRE2
(TCCGCCCCCATCACGTG, 2298 to 2282) were mutated
into CACGTGACGGATCTTG and TCCGCCCCATCAC
GTG, respectively, where the 5-nt spacer between the two
E-boxes in ChoRE motifs were shortened to 4 nt (under-
lined) as previous studies showed (10, 34). E-box mutants

were designed so the E-box in ChoRE2, GCCCCCATCA
CGTGAGGGCGCG, was mutated into a non-E-box, GCCCC
CATTTACAAGGGCGCG, or completely deleted into GCCCC
CATAGGGCGCG. All constructs were verified by sequencing.
For experiments using the pGL4.10 luciferase reporter con-

structs in vitro, 1.5 3 105 undifferentiated podocytes were
plated in 12-well plates and transfected the next morning with
Lipofectamine 2000 according to the manufacturer’s instruc-
tions. 24 h posttransfection, cells were serum starved overnight
and treated with glucose or with trichostatin A (Millipore-
Sigma), if necessary, for 24 h before harvest, as previously
described (37, 50, 58). Luciferase activity was measured using
the Steady-Glo luciferase assay system (Promega, Madison,
WI) on a BioTek Synergy 2 microplate reader with lumines-
cence normalized to b-galactosidase.
Glycerol stocks of GIPZ-based lentiviral shRNAs against

mouse ChREBP or a nonsilencing control (see Table S1 for
detailed sequence) (from Dharmacon) were provided by the
Functional Genomics Core at MDACC. Lentiviral plasmids
were transfected into HEK 293T cells together with packaging
plasmids psPAX2 and pMD2.G (Addgene, Watertown, MA)
using Lipofectamine 2000 (Thermo Fischer). Lentiviruses con-
centrated with Lenti-X Concentrator (Clontech, Mountain
View, CA) were used to infect undifferentiated podocytes in
the presence of 6 mg/ml Polybrene (MilliporeSigma). After
selection with 1 mg/ml puromycin and FACS sorting via the
GFP channel in 1 cell/well onto a 96-well plate by the Flow
Cytometry and Cellular Imaging Core Facility at MDACC, sin-
gle stable clones were collected. For gain-of-function study of
ChREBP, mouse ChREBP cDNA (55) was subcloned into the
Zeo-pT-MCS-GFP-T2A-Puro plasmid (28) and transfected to-
gether with piggyBac transposase (29) into undifferentiated
podocytes. Single stable clones were collected as above after pu-
romycin selection and FACS sorting.

CRISPR/APEX-mediated proximity labeling and streptavidin
pulldown

We engineered the dCas9-APEX2-NLS construct from two
Addgene clones (97421 [24] and 124617 [27]), and the expres-
sion cassette was introduced into a Zeo-pT-MCS-GFP-T2A-
Puro piggyBac expression vector (28); gRNAs against themouse
Tug1 promoter region or a scramble control (sequence in Table
S1) were cloned into the BsaI sites of pX333 (Addgene, 64073),
released with XbaI-SnaB double digestion, and cloned into the
same piggyBac-dCas9-APEX2-NLS vector. Constructs were
verified by sequencing (see Fig. S2B for complete sequence)
and introduced into podocytes together with piggyBac transpo-
sase (29) and selected with 1 mg/ml puromycin. Proximity
labeling was performed as recently described (24, 30, 59).
Briefly, cells at 80–90% confluency were pretreated with 500
mM biotin-tyramide (Iris Biotech Gmbh) for 30 min, followed
by 1 mM H2O2 for 1 min. After quenching and washing three
times with DBPS with 5 mM Trolox and 10 mM sodium ascor-
bate, cells were scraped into PBS. Cell pellets were lysed in
RIPA buffer, 1 mM PMSF, 5 mM Trolox, 10 mM sodium ascor-
bate, and 10 mM sodium azide. Cell lysates were incubated with
prewashed Pierce streptavidin magnetic beads (Thermo
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Fischer) overnight in a cold room. The beads were washed
twice with RIPA buffer and once each with 1 M KCl, 0.1 M

Na2CO3, and 2 M urea in 10 mM Tris-HCl (pH 8.0) and twice
with RIPA buffer. Bound biotinylated proteins were eluted in
13 SDS sample buffer (Bio-Rad) and separated on 4–20%
PAGE (Bio-Rad), followed by immunoblotting with antibodies
against ChREBP,Mxd1, Sin3A, HDAC1, V5, and b-actin.

Immunoprecipitation, biotinylated oligonucleotide pulldown
assay, and ChIP-qPCR

Co-IPs were performed in transiently transfected podocytes
or HEK293T cells as previously described (56). Briefly, cells
were lysed in TNMG buffer (50 mM Tris-HCl, pH 8.0, 50 mM

NaCl, 5 mM MgCl2, 10% glycerol, 0.5% Nonidet P-40) followed
by IP with magnetic anti-Flag M2 beads (MilliporeSigma),
eluted with 100 mg/ml 33 Flag peptide (MilliporeSigma) and
then boiled in 13 SDS sample buffer, followed by
immunoblotting.
Biotinylated oligonucleotide pulldown assay was carried out

essentially as previously described (58, 60). Briefly, podocytes
were transiently transfected with the indicated plasmids and
collected in S1 lysis buffer (10 mM HEPES, pH 7.5, 150 mM

NaCl, 1 mM MgCl2, 0.5 mM EDTA, 0.5 mM DTT, 0.1% NP-40,
10% glycerol). The cell lysates were incubated with 40 pmol bio-
tinylated ChoRE oligonucleotides and 5 mg of poly(dI-dC)
(Santa Cruz) at 4 °C for 16 h. DNA-bound proteins were col-
lected with Dynabeads M-280 (Thermo Fischer) for 2 h and
washed 5 times with S1 lysis buffer, followed by immunoblot-
ting. Validated tag-specific antibodies were used: anti-Flag
(SigmaMillipore, F1804, and Cell Signaling, 2368), anti-HA
(Cell Signaling, 3724), anti-Myc (Cell Signaling, 2276), and
anti-V5 (Cell Signaling, 13202). Western blots were imaged
on an Odyssey FC imaging system (Li-Cor, Lincoln, NE)
using appropriate DyLight fluorescent secondary antibodies
(Thermo Fischer) and were analyzed and quantitated using
Image Studio Lite v5.25 (Li-Cor).
ChIP was carried out using a SimpleChIP enzymatic chroma-

tin IP kit (Cell Signaling) according to the manufacturer’s
instructions, where chromatin was partially digested with
Micrococcal Nuclease (New England Biolabs) to ensure nucleo-
some release. Validated ChIP-grade antibodies were used:
anti-ChREBP (Novus, NB400-135), anti-MLX (Cell Signaling,
85570), anti-MAX (Proteintech, 10426-1-AP), anti-MXD1
(Proteintech, 19547-1-AP), anti-HDAC1 (ActiveMotif, 91215),
anti-SIN3A (Active Motif, 39865), or normal rabbit IgG (Cell
Signaling, 2729). Purified chromatin was quantitated by real-
time qPCR using specific primers spanning the ChREBP bind-
ing elements in the Tug1 promoter (see Table S1 for
sequence). The amount of immunoprecipitated DNA in
each sample is represented as fold of enrichment relative to
the input chromatin.

Statistical analysis

Group data are expressed as mean6 S.E.M. Comparisons of
multiple groups were performed using one-way analysis of var-
iance followed by Tukey’s multiple-comparisons test. Compari-
sons between two groups were performed using Student’s t

test. All tests were two-tailed, with a p value of ,0.05 consid-
ered a statistically significant result. Tests were performed with
Prism ver. 8.0 (GraphPad, SanDiego, CA).

Data availability

All data are contained within this manuscript.
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