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Review
The prevalence of chronic viral infectious diseases, such
as human immunodeficiency virus (HIV), hepatitis C
virus (HCV), and influenza virus; the emergence and
re-emergence of new viral infections, such as picorna-
viruses and coronaviruses; and, particularly, resistance
to currently used antiviral drugs have led to increased
demand for new antiviral strategies and reagents. In-
creased understanding of the molecular mechanisms of
viral infection has provided great potential for the dis-
covery of new antiviral agents that target viral proteins
or host factors. Virus-targeting antivirals can function
directly or indirectly to inhibit the biological functions of
viral proteins, mostly enzymatic activities, or to block
viral replication machinery. Host-targeting antivirals tar-
get the host proteins that are involved in the viral life
cycle, regulating the function of the immune system or
other cellular processes in host cells. Here we review key
targets and considerations for the development of both
antiviral strategies.

Current antiviral strategies
Viruses comprise a large group of pathogens that are
responsible for causing severe infectious diseases. Over
the past 30 years, antiviral agents that target viral pro-
teins or host factors have been successfully developed.
Based on their inhibitory mechanisms, antiviral reagents
can be divided into two groups: (i) inhibitors that target the
viruses themselves or (ii) inhibitors that target host cell
factors. Virus-targeting antivirals (VTAs) can function
directly (DVTAs) or indirectly (InDVTAs) to inhibit biolog-
ical functions of viral proteins, mostly enzymatic activities,
or they block the correct formation of the viral replication
machinery (Table 1). Host-targeting antivirals (HTAs)
include reagents that target the host proteins that are
involved in the viral life cycle (Figure 1), regulating the
function of the immune system or other cellular processes
in host cells. With increased knowledge of viral protein and
host factors, the scientific community has achieved great
progress in mechanism-based antiviral discovery against
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chronic viral infectious diseases, and in understanding of
the emergence of new viral diseases and of the resistance to
traditional antivirals. This review will highlight recent
achievements in antiviral development and discuss vari-
ous strategies for preventing virus attachment and entry
into the host cell, as well as strategies for preventing virus
replication and transcription within the host cell.

Direct virus-targeting antivirals
Attachment inhibitors

The first step in viral invasion is the attachment to host
cells via an interaction with functional receptor(s). For
enveloped viruses, the viral proteins located on the outer
envelope of the virion are responsible for the recognition of
receptors and the attachment to host cells. HIV (a member
of the Retroviridae family) is a typical enveloped virus, and
its invasion is mediated by the envelope proteins gp120
and gp41, which are arranged on the viral membrane as a
trimer of three trans-membrane gp41 and three noncova-
lently attached gp120 surface subunits [1] (Figure 2).
gp120 recognizes the CD4 receptor and launches the con-
formational changes that expose the binding sites for the
binding of a co-receptor, (i.e., CCR5 and CXCR4 [2]).
Antagonists that block the interactions between HIV
and its receptor and co-receptors have therefore been
developed as anti-HIV therapeutics. Attempts to find spe-
cific inhibitors that block the interaction between HIV-1
and CD4 were initiated using a soluble extracellular do-
main of CD4 protein that retained the ability to bind
gp120. Although the preliminary results revealed that
either soluble CD4 protein or a CD4–immunoglobulin
fusion protein showed good in vitro anti-HIV activity,
all failed in clinical trials due to poor pharmacokinetic
features (e.g., the half-life of CD4–immunoglobulin fusion
protein in mice is only 2.4 h) [3–5]. Small molecule in-
hibitors that occupy a specific region within the
CD4-binding pocket of gp120 were subsequently developed
to block the gp120–CD4 interaction (Figure 2A). For
example, BMS488043 [6] and BMS663068 [7] were found
to significantly reduce HIV-1 proliferation and have good
pharmaceutical characteristics.

Another success is influenza neuraminidase (NA) inhib-
itor (NAI). Influenza NA is a surface glycoprotein and
functions at two steps of the viral life cycle: (i) cleaves
the cell receptor sialic acid residues, which bind to influ-
enza hemagglutinin (HA), and allows the release of the
progeny virus; and (ii) cleaves the sialic acid moieties on
the mucin that bathes the airway epithelial cells or co-
binds the receptor with HA [8]. In line with the structure of

http://dx.doi.org/10.1016/j.tips.2013.11.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tips.2013.11.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tips.2013.11.006&domain=pdf
mailto:louzy@xtal.tsinghua.edu.cn
mailto:raozh@xtal.tsinghua.edu.cn


Table 1. A summary of the antivirals described in this review

Group Subgroup Name Structure formula Target and

mechanism

Direct virus-

targeting

antivirals (DVTAs)

Attachment

inhibitors

BMS488043 Block HIV-1 gp120–

CD4 interaction

BMS663068

ICAM-1 Block HRV–receptor

interaction

Oseltamivir Influenza NAI

Zanamivir

Laninamivir

Peramivir

Entry inhibitors T20 peptide

(Enfuvirtide)

YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF Block the

conformational

changes of HIV-1 gp41Cp32M VEWNEMTWMEWEREIENYTKLIYKILESSQEQ

Sifuvirtide SWETWEREIENYTRQIYRILEESQEQQDRNERDLLE

T2635 TTWEAWDRAIAEYAARIEALIRAAQEQQEKNEAALREL

Pleconaril Replace the natural

pocket factor and

inhibit picornaviral

uncoating

BTA798
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Table 1 (Continued )

Group Subgroup Name Structure formula Target and

mechanism

Protease inhibitors Amprenavir HIV-1 PIs

Atazanavir

Darunavir

Fosamprenavir

Indinavir

Lopinavir

Nelfinavir
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Table 1 (Continued )

Group Subgroup Name Structure formula Target and

mechanism

Ritonavir

Saquinavir

Tipranavir

Polymerase

inhibitors

Zidovudine (AZT) HIV-1 NRTI

Didanosine (ddi)

Zalcitabine (ddC)

Stavudine (d4T)
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Table 1 (Continued )

Group Subgroup Name Structure formula Target and

mechanism

Lamivudine (3TC)

Nevirapine HIV-1 NNRTI

Delavirdine

Efavirenz

Etravirine

Rilpivirine

Integrase inhibitors Raltegravir Integrase strand

transfer inhibitor

(INSTI)

Dolutegravir
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Table 1 (Continued )

Group Subgroup Name Structure formula Target and

mechanism

Elvitegravir (Stribild)

Methyltransferase

inhibitors

Aurintricarboxylic

acid

Inhibit the 20-O activity

of DENV MTase

Sinefungin An analog of SAM that

inhibits the activity of

flavivirus MTase

BG323 Inhibit the

guanylyltransferase

activity of DENV

MTase

Helicase inhibitors Biphenyls Inhibit HPV E1

helicase activity

Biphenysulfonacetic

acid

Triclocarban (CID

7547)

Inhibit SV40 Tag

helicase activity

Bisphenol A (BPA;

CID 6623)

Triphenylmethanes

(CID 42618092)

Inhibit HCV NS3

helicase activity

Aurintricarboxylic

acid (ATA)
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Table 1 (Continued )

Group Subgroup Name Structure formula Target and

mechanism

Indirect virus-

targeting antivirals

(InDVTAs)

RTC blockers BMS790052 Inhibit the

hyperphosphorylation

of NS5A

RNP blockers Nucleozin Inhibit the nuclear

accumulation of

influenza NP

The first 25 amino

acids of PB1

GPLGSMDVNPTLLFLKVPAQNAISTTFPYT Inhibit the interaction

of PA-PB1 and

influenza polymerase

activity

Suramin Bind to the RNA-

binding cavity and

inhibit SFTSV

replication

Others CHEMBL1207308 Inhibit the interaction

of HPV E1–E2

Host-targeting

antivirals (HTAs)

Cyclophilin

inhibitors

Alisporivir (Debio-

025)

Inhibit the function of

cyclophilins

NIM811
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Table 1 (Continued )

Group Subgroup Name Structure formula Target and

mechanism

SCY635

HIV-1 co-receptor

antagonists

Aplaviroc CCR5 antagonist

Maraviroc

Vicriviroc

Cenicriviroc
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NA [9,10], several NAIs have been successfully developed
to competitively occupy the sialic acid-binding pocket of
NA. Among these NAIs, oseltamivir and zanamivir were
first used clinically as an anti-flu therapy [11]. Oseltamivir
is a prodrug that is readily absorbed by the gastrointestinal
tract and is converted by hepatic esterases to the active
compound (oseltamivir carboxylate). Zanamivir has poor
oral bioavailability and is currently available as a dry
powder mixed with lactose. Moreover, laninamivir and
peramivir were also approved in North Asia recently.
Laninamivir has excellent in vitro activity against wild
type, as well as oseltamivir-resistant, influenza viruses
currently circulating [12]. Additionally, peramivir is an-
other NAI that differs structurally from other inhibitors
through novel substitutions that result in multiple binding
interactions with the active site and allows the antiviral to
be active against NAI-resistant viruses [13].

Non-enveloped viruses, such as the picornavirus (Picor-
naviridae family) and human papillomavirus (HPV)
(Papillomaviridae family), interact with their functional
receptors through viral capsid proteins. Picornaviruses are
typical non-enveloped viruses, and some members, includ-
ing enterovirus 71 (EV71) and human rhinoviruses
(HRVs), are responsible for causing severe human infection
diseases. The non-enveloped capsids of picornaviruses are
icosahedral structures comprising 60 copies of viral struc-
tural proteins VP1–4 [14,15]. VP1–3 each adopt a b-barrel
configuration and are arranged with icosahedral symmetry
such that VP1 surrounds the 5-fold axes and VP2 and VP3
alternate around the 2- and 3-fold axes [16]. Although the
receptor-binding sites on the surface of picornavirus cap-
sids are not conserved [17], these sites have been used to
discover inhibitors that block virus–receptor interactions.
For example, the canyon structure on the surface of the
HRV capsid serves to bind to the HRV receptor, and the
soluble portion of the intercellular adhesion molecule-1
(ICAM-1) [18] and numerous compounds that compete
with the putative HRV receptor binding site have been
shown to bind in a nearby hydrophobic pocket to inhibit
virus attachment to the receptor [19]. However, none of
these compounds have been clinical successes to date.

Entry inhibitors

After attaching to host cells, a virus will release its genome
into the cytoplasm through endocytosis or direct mem-
brane fusion. Because this viral entry is one of the key
early steps in the viral life cycle (Figure 1), entry inhibitors
have been successfully developed for antiviral therapies.
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Figure 1. A schematic representation of the viral life cycle. The life cycle of a virus can be divided into six basic steps: 1. receptor or co-receptor binding; 2. fusion; 3. release

of the viral genome; 4. translation of viral proteins; 5. genome multiplication; and 6. assembly, packaging, and release of the progeny virus. Because viral life cycles have

extremely large discrepancies according to the type of virus, we refer the readers to find more detail in [143].
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As an enveloped virus, HIV-1 uses gp41 to facilitate its
entry process after gp41 is activated by the binding of
gp120 to the receptor. The extracellular portion of gp41
contains two heptad repeat domains (HR1 and HR2) sepa-
rated by a loop region and a hydrophobic fusion peptide
(FP) at the N terminus. During the fusion process, the FP of
gp41 is inserted into the host cell membrane, and HR1
adopts a triple-stranded coiled-coil structure, forming a
meta-stable prefusion intermediate. HR2 subsequently
folds into the hydrophobic grooves of the HR1 coiled-coil
to form a stable six-helix bundle that juxtaposes the viral
and cellular membranes for fusion (Figure 2C).

Fusion inhibitors are designed to block the conforma-
tional changes that are required for membrane fusion. The
T20 peptide (Enfuvirtide), which is a peptidic mimic of HR2
and acts by competitively binding to HR1, is the first and
the only clinically approved fusion inhibitor [20,21]. T20
can inhibit a broad range of HIV strains at the nanomolar
level, but the poor bioavailability of the drug (it has a
plasma half-life of �4 h) make the clinical application of
this drug difficult [22,23]. To overcome this pharmacoki-
netic disadvantage, a series of modified peptides including
Cp32M [24], Sifuvirtide [25], and T2635 [26] have been
generated to stabilize the helical structure of the HR2-like
peptide by incorporating intrahelical salt bridges between
the helix turns. In particular, the plasma half-life of sifu-
virtide is 5-fold greater than that of T20 [27]. Moreover,
chemical modifications including the PEGylation [28],
glycosylation [29], and more have also been introduced
to improve the pharmacokinetics of HR2-based fusion
inhibitors.

Alternatively, a subset of bioavailable small molecule
fusion inhibitors have been developed targeting the HR2-
binding pocket on the HR1 trimer [30–32] or other unde-
fined regions [33]. A similar strategy has been successfully
used against many viruses that use a class I fusion
94
mechanism, including influenza virus, Ebola virus (Filo-
viridae family), and severe acute respiratory syndrome
coronavirus (SARS-CoV) (Coronaviridae family) [34], but
this approach is rare in antiviral development targeting
viruses with a class II/III fusion mechanism. However, the
difficulty in production and delivery means that none of
these small molecule fusion inhibitors can be approved for
clinical use.

Non-enveloped viruses use a different strategy for virus
entry. After attaching to their receptors, a non-enveloped
virus releases its genome into the host cell through a
conformational shift of its capsid protein(s). For example,
the capsid of EV71 harbors 60 copies of a hydrophobic
‘pocket factor’, a natural lipid (sphingosine), at the base
of the canyon in the capsid protein VP1 [35] (Figure 3). The
expulsion of sphingosine following the binding of the virus
to its receptor triggers the opening of the capsid to release
the viral genome. Pleconaril [36] and BTA798 are two
examples of hydrophobic compounds that can replace
the natural pocket factor and inhibit picornaviral uncoat-
ing by generating resistance to the expulsion of pocket
factor [37–39]. Using the skeletons of pleconaril and relat-
ed molecules, a novel class of imidazolidinones has been
further synthesized with significant anti-EV71 activity
(IC50 in the range of 0.001–25 mM) [40].

Protease inhibitors

Most viruses encode one or several proteases that play
crucial roles in the viral life cycle. The viral proteases carry
out the proteolysis of a polyprotein precursor and release
functional viral proteins, allowing them to function cor-
rectly and individually in replication/transcription and
maturation [41,42]. Viral proteases also effectively protect
viral proteins by modulating host cell pathways, including
ubiquitination and ISGylation [43–48]. In contrast to the
diversity of viral protease functions and structures, the
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Figure 2. Mechanisms for antivirals targeting HIV-1 entry. (A) The crystal structure of HIV-1 gp120 with a complete V3 loop (PDB code: 2B4C [144]) is shown as a colored

cartoon diagram covered by a transparent molecular surface. The gp120 molecule is colored in blue, and the CD4-binding site is highlighted in red. (B) The architecture of

the HIV-1 Env (gp120–gp41) trimer presented as a cryo-EM map shown from a perspective parallel to the viral membrane [1]. The relative positions of gp120 and gp41 are

circled. (C) The crystal structure of the HIV-1 gp41 fusion core (PDB code: 1DLB). HR1 and HR2 are colored green and blue, respectively. The core formed by the three HR1

and two HR2 fragments is covered with a molecular surface, whereas the remaining HR2 fragment is shown as a cartoon diagram. The binding site for the HR2 region is

highlighted in red. (B) Reproduced and modified, with permission, from [1]. Abbreviations: HIV, human immunodeficiency virus; PDB, Protein Data Bank; cryo-EM, cryo-

electron microscopy; HR, heptad repeat domain.
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catalytic active site of viral proteases generates stringent
substrate specificity in protein cleavage. Synthetic sub-
strate peptides, which can be designed according to the
natural substrates of individual viral proteases, usually
generate high-affinity binding and thus provide potent
candidates for further drug discovery. One of the great
successes is the HIV-1 protease inhibitors (PIs). There are
ten PIs currently approved to treat HIV-1 infection: ampre-
navir (APV), atazanavir (ATZ), darunavir (TMC114),
fosamprenavir (Lexiva), indinavir (IDV), lopinavir (LPV),
nelfinavir (NFV), ritonavir (RTV), saquinavir (SQV), and
tipranavir (TPV) [49]. All HIV-1 PIs share relatively simi-
lar chemical structures derived from its natural peptidic
substrate and, therefore, the cross-resistance to PIs occurs
at the active site of HIV-1 protease [50]. As a result, PIs are
commonly used as the combination with other anti-HIV
drugs to avoid drug resistance. Because most of the phar-
maceutical disadvantages have been overcome, PIs have
become the most potent types of antiviral drugs. Current
progress in generating antiviral PIs has been systemati-
cally reviewed elsewhere [51,52].

Polymerase inhibitors

Almost all viruses encode polymerases in the central steps
of replication and transcription. Thus, polymerases are
becoming the most attractive and suitable targets for
antiviral development. Based on the function and struc-
ture of viral polymerases, there are two major types of
polymerase inhibitors: (i) nucleoside and nucleotide sub-
strate analogs and (ii) allosteric inhibitors. Nucleoside/
nucleotide analogs play a dominant role in antiviral drugs
targeting viral polymerases. Nucleoside analogs are first
triphosphated by the host cell to produce the active inhibi-
tor and then act as an inhibitor by competing with
the natural nucleoside triphosphates and terminating
the growing viral nucleic acids. The disadvantage of nucle-
oside analogs is that the initial phosphorylation step, that
is, production of the monophosphorylated form, required
for activation to a triphosphate may not correctly occur in
the host cell [53]. Therefore, monophosphate nucleotide
analogs were developed as polymerase inhibitors to avoid
this problem. To date, most of the approved antiviral drugs
for anti-HIV therapy utilize this mechanism, including
Zidovudine (AZT, 30-azido-20,30-dideoxythymidine), Didan-
osine (ddi, 20,30-dideoxyinosine), Zalcitabine (ddC, 20,30-
dideoxycytidine), Stavudine (d4T, 20,30-dideoxy-20,30-dide-
hydrothymidine), Lamivudine (3TC, (–)-b-L-30-thia-20,30-
dideoxycytidine), and others. The same strategy was also
successfully used in the development of antivirals against a
wide range of viruses, including cytomegalovirus (CMV)
[54] and herpes simplex virus (HSV) [55] (Herpesviridae
family), hepatitis B virus (HBV) (Hepadnaviridae family)
[56], and HCV [57].

During the course of a polymerase cycle, the relative
orientation of the polymerase domains undergoes a slight
shift and this shift causes the conformational change of a
specific site, the allosteric site, in the viral polymerase.
Therefore, compounds that bind to the allosteric site could
conceivably block the structural movement of polymerase
domains and thus inhibit the function of viral polymerases.
Antiviral inhibitors that work by this mechanism are
known as ‘allosteric inhibitors’. The allosteric inhibitors
of HIV reverse transcriptase (RT) are also known as non-
nucleoside reverse transcriptase inhibitors (NNRTIs).
NNRTIs and the hydrophobic binding site on HIV RT were
first identified by screening compound libraries against
HIV-1 RT combined with structural biological analysis
[58–61]. The binding of NNRTI to HIV-1 RT prevents
the flexibility and movement of RT required for the elon-
gation of the nucleic acid. To date, there are five NNRTIs,
that is, nevirapine, delavirdine, efavirenz, etravirine, and
rilpivirine, that have been approved by the FDA for clinical
use to treat HIV-1 infection. Furthermore, the develop-
ment of NNRTIs against other viral polymerases, such as
that of HCV, is ongoing, and other polymerases are likely to
have suitable sites for allosteric inhibitors [62].

Integrase inhibitors

Integrase is an enzyme that helps the retrovirus to facili-
tate the incorporation of proviral DNA into the host cell
genome and catalyzes a vital function in viral replication.
Inhibitors of integrase represent the newest class of
95
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Figure 3. Pocket factor-binding site as a target for antivirals against picornaviral

uncoating. The crystal structure of one structural unit, viral structural proteins 1 to

4 (VP1–4), of the enterovirus 71 (EV71) virus is shown as a cartoon diagram with

VP1–4 depicted in blue, red, green, and yellow, respectively. The hydrophobic

pocket (blue mesh) in VP1 EV71 is occupied by a natural lipid (magenta). The inset

shows an enlarged structural comparison of the hydrophobic pockets of the

mature virus (gray, with pocket factor shown in magenta) and empty particles

(blue). Reproduced and modified, with permission, from [145].
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Figure 4. The sites in HIV-1 integrase targeted by antivirals. The crystal structure of

the two dimeric HIV-1 integrase core domains are shown as a cartoon diagram

covered with a transparent molecular surface and colored as blue and green (PDB

code: 3ZSQ). The binding sites for INSTIs and LEDGINs are colored gold and red,

respectively. Abbreviations: HIV, human immunodeficiency virus; PDB, Protein

Data Bank; INSTI, integrase strand transfer inhibitor; LEDGIN, lens epithelium-

derived growth factor (LEDGF)/p75 binding site of integrase.
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antiretroviral drugs (Figure 4). Raltegravir, an integrase
strand transfer inhibitor (INSTI), was the first generation
drug of this class to be approved and is a potent and well-
tolerated antiviral agent [63]. Dolutegravir is the most
advanced second generation INSTI, and it possess good
tolerability, once-daily dosing with no need for a pharma-
cological enhancer, and relatively little cross-resistance
with raltegravir [64]. Another INSTI, elvitegravir, was
recently approved for the treatment of HIV infection as
part of a fixed dose combination known as Stribild [65].
Furthermore, inhibitors of the lens epithelium-derived
growth factor (LEDGF)/p75 binding site of integrase (LED-
GINs) have also been developed, but these are still in a very
early stage. Each of these drugs contributes a new benefit
to the class and will extend the treatment options for
patients with HIV-1 infection.

Methyltransferase inhibitors

The 50 terminus of the genomic RNA in a subset of RNA
viruses requires a cap structure, which can be directly
taken from the mRNA of host cells, as in influenza virus,
or synthesized by viral enzymes, as in flavivirus and
coronavirus. In the latter cases, a cap structure is gener-
ated by a series of enzymes and attached to the first
nucleotide of the genome RNA via a 50-50 triphosphate
linker. For example, the genome of flavivirus is capped
by a type 1 cap structure (m7GpppAm), which is methylat-
ed at the N-7 position of the guanine (m7G) and on the 20

OH of the ribose of the first nucleotide (Am) of the genome
RNA [66]. Three enzymatic steps are required to form the
cap structure, including an RNA triphosphatase (NS3), a
guanylyl transferase (GTase), and a methyltransferase
(MTase), provided by the N terminus of NS5 protein. Based
on the structure of MTase and its complex with different
substrates, three key ligand-binding sites were identified
(Figure 5). The binding site for S-adenosyl methionine
(SAM), which acts as the methyl donor, is located at
the core domain of MTase, whereas the binding site for
96
the receiver GTP molecule and the guanine moiety of the
RNA cap is formed by the core domain and the N-terminal
extension. Moreover, there is another site that binds RNA
between the SAM and GTP pockets; this site is known to be
a second, lower affinity binding site that is formed by the
core domain and by a channel between two helices of the N-
terminal extension.

Because these sites are crucial for MTase activity and
virus replication, all are valid sites for the design of
DVTAs (Figure 4). Ribavirin was first shown to inhibit
the binding of the RNA cap to dengue virus (DENV)
MTase by competitively binding to the GTP/RNA cap
pocket [67]. Through structure-based drug design, aur-
intricarboxylic acid was found to inhibit the 20-O activity
of DENV MTase with an IC50 of 2 mM by binding to the
lower affinity site [68]. Another inhibitor, sinefungin,
which is an analog of SAM with the methylated sulfur
of SAM replaced by a carbon and amine, can inhibit
flavivirus activity with an IC50 as low as 0.7 mM [69].
Recently, the compound BG323 has been discovered
using high-throughput screening (HTS) methods as an
in vitro inhibitor of the guanylyltransferase activity
of DENV MTase (and thus DENV replication) [70].
However, these inhibitors must be used at a high concen-
tration to outcompete the high-affinity endogenous li-
gand, and it is necessary to solve this problem before
this mechanism can be clinically exploited.

Helicase inhibitors

Some viruses utilize a viral helicase to separate one strand
of DNA or RNA from the complementary strand in a
process driven by adenosine triphosphate (ATP) hydroly-
sis. The most widely studied viral helicase is the flaviviral
helicase, which is the helicase domain of nonstructural
protein 3 (NS3) encoded by HCV. SARS-CoV (nsp13 pro-
tein), Simian virus 40 (SV40) (Polyomaviridae family) (TAg
protein), and HPV (E1 protein) are also known to encode
helicases for their replication [71].
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Figure 5. The sites in DENV MTase targeted by antivirals. The crystal structure of

DENV MTase (PDB code: 3P8Z) is shown as a blue cartoon covered with

transparent molecular surface. The SAM binding site, GTP binding site, and low-

affinity site are highlighted in red, gold, and magenta, respectively. Abbreviations:

DENV, dengue virus; PDB, Protein Data Bank; SAM, S-adenosyl methionine;

MTase, methyltransferase.
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The inhibitors of helicase-catalyzed ATP hydrolysis are
the most straightforward class, and several nucleotide and
nucleobase analogs have been discovered targeting this
mechanism. Biphenyls and triphenylmethanes have been
studied as inhibitors of SV40 TAg [72], HPV E1 [73], and
HCV NS3 helicase [74]. Biphenyls and biphenysulfonacetic
acid were found to inhibit HPV growth, an inhibitor of HPV
E1-catalyzed ATP hydrolysis with an IC50 value >2 mM
[75]. Compounds similar to triclocarban (CID7547) and
Bisphenol A (BPA; CID6623) were found to inhibit the
helicase activity of SV40 TAg. Based on the complex struc-
ture of the HCV NS3 helicase domain and soluble blue HT
(PDB code 2ZJO), triphenylmethanes, a more potent tri-
phenylmethane [76], and aurintricarboxylic acid (ATA)
[77] were developed to inhibit the helicase activity of
HCV NS3.

The nucleic acid binding site of helicase is also a prom-
ising site for the discovery of antiviral compounds that
directly inhibit helicase-catalyzed unwinding [78]. For
example, many DNA-binding pharmacophores, such as
anthracyclines, acridones, tropolones, and amidinoanthra-
cyclines, have been optimized as HCV helicase inhibitors
[78]. Although there are numerous efforts that have been
launched to find antivirals targeting viral helicase, little
progress had been made to push them into clinical usage,
and these projects have met great challenges on cytotoxici-
ty, bioavailability, and pharmacokinetic properties [79].

Indirect virus-targeting antivirals
Replication and transcription complex blockers

Following viral entry, viral proteins, together with a num-
ber of host cell factors, assemble a viral replication and
transcription complex (RTC) that is responsible for the
production of the viral genome or other nucleic acids
[80]. Therefore, reagents that can efficiently block the
formation of the viral RTC could conceivably inhibit viral
proliferation.

For example, once HCV enters the host cell, the genome
of HCV will work as mRNAs to produce viral proteins and
form an RTC in which the host factors account for viral
replication and transcription. NS5A is a membrane-asso-
ciated nonstructural phosphoprotein, and it is believed
that NS5A has no enzymatic activity but plays a critical
role in regulating the formation of the HCV RTC. Gao et al.
identified a potent HCV inhibitor, BMS790052, that tar-
gets NS5A and produced few side effects in a Phase I
clinical study [81]. Although the exact mechanism by which
BMS790052 exerts its effects is yet to be defined, the
resistance profile reveals that inhibitor sensitivity maps
to the N terminus of domain 1 of NS5A. This inhibitor is
further shown to block the hyperphosphorylation of NS5A,
which is believed to play an essential role in the viral life
cycle. This work, for the first time, proved the concept that
small molecules targeting a non-traditional viral protein
without any known enzymatic activity can also have pro-
found antiviral effects with considerable promise for the
treatment of HCV infection.

During the replication of EV71 and other picorna-
viruses, polymerase (also named 3Dpol), 3B (also named
VPg), and protease (also named 3Cpro) participate in the
formation of viral RTC, together with host polyA-binding
protein 1 (PABP-1) and polyC-binding protein 2 (PCBP-2)
[15]. Unlike many other viruses, the replication of the
picornavirus genome is initiated by the 50 end of genome
covalently linked to VPg through a so-called VPg uridyly-
lation process [82]. Although VPg-binding sites vary in
picornaviruses [14,15,83,84], the binding of VPg to 3Dpol

is known to be critical for VPg uridylylation and virus
replication. In our recent study, we demonstrated that a
ten amino acid peptide of VPg can effectively inhibit the
VPg uridylylation process with an EC50 as low as 50 nM
(Z. Lou et al., unpublished). These results shed light on
discovering future InDVTAs.

Ribonucleoprotein complex inhibitors

Throughout the life cycle of a negative sense single-strand-
ed RNA (ssRNA) virus, the genome length RNA is encap-
sidated by a virally encoded nucleoprotein (NP), instead of
a naked RNA, and associated with RdRp (polymerase
complex) to form a stable ribonucleoprotein (RNP) com-
plex, which is responsible for virus replication, transcrip-
tion, and assembly [85]. During this process, NP can
protect the RNA against exogenous nucleases or the innate
immune system in the host cell.

Based on the crystallographic achievements regarding
the ssRNA virus RNP complex [86–96] over the past few
years, great progress has been made in this new putative
antiviral strategy. Kao et al. first identified a compound,
nucleozin, that triggers the aggregation of and inhibits the
nuclear accumulation of NP; this compound can inhibit the
replication of influenza virus with a nanomolar median
effective concentration (EC50) [97]. In a parallel effort,
Gerritz et al. discovered a series of influenza replication
inhibitors and showed that they interfere with NP-depen-
dent processes via the formation of higher order NP
97
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oligomers with an EC50 of 60 nM [98]. Notably, the struc-
ture of the NP in complex with a representative compound
from this class of inhibitors revealed that two molecules of
an inhibitor in an antiparallel orientation lock two adja-
cent NP protomers. This unexpected quaternary complex
explained the viral inhibition via ligand-induced formation
of stable NP oligomers [98]. In addition to inhibiting NP,
the disruption of the polymerase complex of influenza virus
has been proposed for antiviral strategies. Based on the
complex structure of the PA C-terminal domain (PAC) and
the first 25 amino acids of PB1 [99], a subset of modifica-
tions on N-terminal peptide of PB1 was shown to diminish
the binding affinity of PA and PB1, inhibit polymerase
activity, and attenuate the replication of influenza virus
[100–102]. Moreover, the structure of SFTSV NP in com-
plex with Suramin, an antiviral inhibitor, revealed that the
blockers bind to the RNA-binding cavity and can attenuate
SFTSV replication; this indicated that targeting RNP
formation may be a new therapeutic antiviral approach
[103,104]. Because both the polymerase complex and NP
show significant conservation between different influenza
viruses, these results demonstrated that targeting the
formation of viral RNP is a valid approach to the develop-
ment of small molecule therapies against serious antiviral
resistance to currently available drugs, such as adaman-
tanes or neuraminidase inhibitors.

Other key interaction blockers during the viral life cycle

Other key interactions between viral proteins and/or host
factors play essential roles in virus entry, replication, and
maturation. A very interesting example is the interaction
between HPV E1 and E2 protein, helping E1 helicase to
tether to the HPV origin of replication. This interaction can
therefore be used to guide the development of antivirals
treating HPV infection. The disruption of the HPV E1–E2
interaction was first facilitated by a very potent inhibitor,
CHEMBL1207308. This inhibitor can effectively diminish
the interaction between HPV E1 and E2 and thus inhibit
HPV proliferation with an EC50 of 6 nM [105].

Although a few InDVTAs have been discovered for
antiviral therapy, their mechanisms of working are still
required to be further investigated. We cannot conclude
the possibility that InDVTAs may have additional func-
tions (or may be the major function) and the category of
antivirals will be refined according to further knowledge.

Host-targeting antivirals
Viruses utilize many host factors for their efficient prolif-
eration. The correct functions of these host factors are
crucial for virus replication and, therefore, compounds that
regulate the function of host factors can be introduced as
antiviral agents. Next we discuss two host factors that are
involved in broad spectrum virus infection.

Interferon

Apart from the acquired immune response, host cells
mount a number of defenses, such as the innate immune
response, to virus infection. Interferon (IFN) is one of the
most crucial molecules in the innate immune response and
acts as the primary switch for initiating antiviral immuni-
ty in vertebrates. Upon being infected by a virus, host cells
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produce and secrete type I (mainly IFN-a and IFN-b) and
type III (IFN-l) IFNs. These secreted IFNs interact with
the membrane-anchored IFN receptors (IFNARs), mainly
IFNAR1 and INFAR2, and subsequently stimulate and
upregulate the expression of hundreds of IFN-stimulated
genes (ISGs) to inhibit the replication of viruses [106].
Among these ISGs, IFN-inducible transmembrane
(IFITM) proteins restrict the entry of influenza virus, West
Nile virus (WNV), and DENV. Additionally, Mx (myxovi-
rus resistance) GTPases can inhibit the correct function of
viral nucleocapsids and polymerases, such as influenza
virus [107].

Due to the significance of IFN in the host cells to restrict
viral infections, IFN is used in certain instances as a
primary antiviral therapy, particularly in the absence of
an effective antiviral or vaccination strategy. The use of
IFN for antiviral therapy was first developed for treating
HBV infection [108] and subsequently applied to treat
HCV in combination with ribavirin [109]. IFN-b [110]
and IFN-g [111] have also been evaluated for use in
anti-HCV treatment. To further improve the therapeutic
efficacy of IFN-a therapy, several options are being inves-
tigated. Some clinical benefits were observed in pilot stud-
ies with ofloxacin [112,113] and an immunomodulatory
peptide, a1-thymosin [114]. In particular, PEG-modified
IFN-a [115] combined with ribavirin is now standard
treatment for HCV infection.

Cyclophilin inhibitors

Cyclophilins (Cyps) are key cellular factors that function in
numerous cellular processes, including transcriptional reg-
ulation, the immune response, protein secretion, and mi-
tochondrial function [116,117]. Cyclophilin A (CypA) is a
key member of the Cyp family and was first identified as a
mediator of the immunosuppressive function of cyclosporin
A (CsA) through the formation of a CsA–CypA complex.
This complex binds to and inhibits the function of the
protein phosphatase calcineurin [118], which normally
functions to dephosphorylate NF-AT, a transcription factor
important for T cell activation.

CypA is also known to play critical roles in the prolifer-
ation of viruses, including HIV-1, influenza virus, HCV,
vesicular stomatitis virus (VSV), vaccinia virus, SARS-
CoV, rotavirus (RV), and HPV [117,119], by interacting
with viral proteins or facilitating IFN-b production
[14,120–123]. CypA was first revealed to be incorporated
into HIV-1 virions by interacting with the capsid protein
(CA), and an interaction between newly synthesized HIV-1
CA and CypA is required for HIV-1 to induce dendritic
cell maturation [114,124]. CypA also interacts with other
HIV-1 proteins, such as Vpr and p6, to regulate HIV
infection [88,91,125–128]. Several lines of evidence indi-
cate that CypA and cyclophilin B (CypB) [129] function in
the replication of HCV by either increasing the affinity of
HCV polymerase NS5B for viral RNA to enhance HCV
replication [130] or binding to the HCV NS5A protein to aid
viral replication [131].

The discovery of CypA inhibitors as antiviral agents
started with the immunosuppressive drug CsA that inhi-
bits HCV [129] and HIV [132]. On the basis of these
results, CypA antagonists, which are often derived from
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CsA, have been developed, including alisporivir (Debio-
025), NIM811, and SCY635; these compounds lack immu-
nosuppressive effects but retain high-affinity CypA
binding and show very good antiviral effects against
HIV or HCV infection [133–135].

HIV-1 co-receptors antagonists

HIV-1 co-receptor antagonists that block the interactions
between HIV-1 and CCR5 and/or CXCR4 have also been
introduced to the anti-HIV efforts, and a few of these have
been successful. For instance, CCR5 antagonists that po-
tently inhibit HIV-1 replication and have good pharmaceu-
tical properties, including aplaviroc [136], maraviroc (the
only clinically used anti-HIV drug as a co-receptor antago-
nist) [137], vicriviroc [138], and cenicriviroc [139,140], have
been successfully advanced to Phase II/III clinical trials
or approved for clinical usage in the past 5 years. However,
the precise mechanisms of these co-receptor antagonists are
still not clear. Recently, the crystal structures of CCR5 [141]
and CXCR4 [142] have been reported. These two structures
provided the atomic information of the ligand-binding pock-
et and the sites for co-receptor oligomerization. Further
structural study on the complex of CCR5 and CXCR4 with
their antagonists will promote the investigation into the
inhibitory mechanisms of these inhibitors and help us to
increase their anti-HIV efficacy.

Concluding remarks
At present, diverse antiviral drugs are clinically approved
or in the later stages of clinical trials. Most are based on the
conserved mechanisms described in this review, in partic-
ular through targeting of viral polymerases and proteases.
However, the majority of drug-resistant infection cases
have been reported with the usage of antivirals based on
this strategy. The requirement for new antiviral drugs to
treat chronic infectious diseases and the emergence of
more efficient new viruses serve as catalysts for research
to find additional targets and mechanisms for antiviral
development.

A few novel strategies have been introduced for antivi-
ral research, including inhibitors of viral MTase and heli-
case, blockages of viral RTC formation (e.g., nucleozin to
influenza), and host factor antagonists or agonists. How-
ever, protease and polymerase inhibitors still occupy a
dominant place among antivirals. This is because we still
do not have very precise knowledge on the mechanisms
underlying alternative strategies, and this requires fur-
ther investigations on their mechanism before these strat-
egies can be widely used for antiviral development, in
particular those targeting drug-resistant viral infections.
In our opinion, protease and polymerase inhibitors will
still be the first, and probably the major, choice in the
development of therapies against emerging novel viruses.

In addition, we must consider another important aspect
for antiviral development. For some viruses, currently
available drugs can effectively eliminate the virus in the
host, but genetic components are left behind. Thus, the
host still suffers from the infection because the virus can
integrate its genetics into the host cell. For example,
treatment with the combination of INF and adefovir (or
other antivirals) can effectively, if not completely, reduce
HBV titer in human liver. However, the covalently closed
circular DNA (cccDNA) cannot be removed and still exists
in the nuclei of infected liver cells, where it continuously
coordinates the expression of HBV antigens. Therefore,
new mechanisms and strategies to completely remove viral
components integrated in host cells, as well as to kill the
virus itself, are required in future antiviral development.
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