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Abstract

Responses of neurons that integrate multiple sensory inputs are traditionally characterized in terms 

of a set of empirical principles. However, a simple computational framework that accounts for 

these empirical features of multisensory integration has not been established. We propose that 

divisive normalization, acting at the stage of multisensory integration, can account for many of the 

empirical principles of multisensory integration exhibited by single neurons, such as the principle 

of inverse effectiveness and the spatial principle. This model, which employs a simple functional 

operation (normalization) for which there is considerable experimental support, also accounts for 

the recent observation that the mathematical rule by which multisensory neurons combine their 

inputs changes with cue reliability. The normalization model, which makes a strong testable 

prediction regarding cross-modal suppression, may therefore provide a simple unifying 

computational account of the key features of multisensory integration by neurons.

INTRODUCTION

In an uncertain environment, organisms often need to react quickly to subtle changes in their 

surroundings. Integrating inputs from multiple sensory systems (e.g., vision, audition, 

somatosensation) can increase perceptual sensitivity, enabling better detection or 

discrimination of events in the environment 1–3. A basic question in multisensory integration 

is: how do single neurons combine their unisensory inputs? Although neurophysiological 

studies have revealed a set of empirical principles by which two sensory inputs interact to 

modify neural responses 4, the computations performed by neural circuits that integrate 

multisensory inputs are not well understood.

A prominent feature of multisensory integration is the “principle of inverse effectiveness”, 

which states that multisensory enhancement is large for weak multimodal stimuli and 
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decreases with stimulus intensity 4–7. A second prominent feature is the “spatial/temporal 

principle of multisensory enhancement“, which states that stimuli should be spatially 

congruent and temporally synchronous for robust multisensory enhancement to occur, with 

large spatial or temporal offsets leading instead to response suppression 8–10. Although these 

empirical principles are well established, the nature of the mechanisms required to explain 

them remains unclear.

We recently measured the mathematical rules by which multisensory neurons combine their 

inputs 11. These studies were performed in the dorsal medial superior temporal area (MSTd), 

where visual and vestibular cues to self-motion are integrated 12–14. We found that bimodal 

responses to combinations of visual and vestibular inputs were well described by a weighted 

linear sum of the unimodal responses, consistent with recent theory 15. Notably, however, 

the linear weights appeared to change with reliability of the visual cue 11, suggesting that the 

neural “combination rule” changes with cue reliability. It is unclear whether this result 

implies dynamic changes in synaptic weights with cue reliability or whether it can be 

explained by network properties.

We propose a divisive normalization model of multisensory integration that accounts for the 

apparent change in neural weights with cue reliability, as well as several other key empirical 

principles of multisensory integration. Divisive normalization 16 has been successful in 

describing how neurons in primary visual cortex (V1) respond to combinations of stimuli 

having multiple contrasts and orientations 17, 18. Divisive normalization has also been 

implicated in motion integration in area MT 19, as well as in attentional modulation of neural 

responses 20. Our model extends the normalization framework to multiple sensory 

modalities, demonstrates that a simple set of neural operations can account for the major 

empirical features of multisensory integration, and makes predictions for experiments that 

could identify neural signatures of normalization in multisensory areas.

RESULTS

Brief description of the model

The model consists of two layers of primary neurons, each sensitive to inputs from a 

different sensory modality (e.g., visual or auditory), and one layer of multisensory neurons 

that integrate the primary sensory inputs (Fig. 1A). In our basic version of the model, we 

assume that a pair of primary neurons with spatially overlapping receptive fields (RFs) 

provides input to the same multisensory neuron. Therefore, each multisensory neuron has 

spatially congruent RFs, like neurons in the superior colliculus 9.

The unisensory inputs to each multisensory neuron increase monotonically, but sublinearly, 

with stimulus intensity (Fig. 1B). This input non-linearity models response saturation in the 

sensory inputs 21, which could be mediated via synaptic depression 22 or normalization 

within the unisensory pathways. This assumption has little effect on the multisensory 

properties of model neurons, but it plays an important role in the response to multiple 

unisensory inputs.
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Following the input nonlinearity, each multisensory neuron performs a weighted linear sum 

(E) of its unisensory inputs with weights, d1 and d2, that we term modality dominance 

weights:

(1)

Here, I1(x0,y0) and I2(x0,y0) represent, in simplified form, the two unisensory inputs to the 

multisensory neuron, indexed by the spatial location of the receptive fields (see Methods for 

a detailed formulation). The modality dominance weights are fixed for each multisensory 

neuron in the model (they do not vary with stimulus parameters), but different neurons have 

different combinations of d1 and d2 to simulate various degrees of dominance of one sensory 

modality. Following an expansive power-law output nonlinearity, which simulates the 

transformation from membrane potential to firing rate 17, 23, the activity of each neuron is 

divided by the net activity of all multisensory neurons to produce the final response (divisive 

normalization 16):

(2)

The parameters that govern the response of each multisensory neuron are the modality 

dominance weights (d1 and d2), the exponent (n) of the output nonlinearity, the semi-

saturation constant (α), and the locations of the receptive fields (x0,y0). The semi-aturation 

constant, α, determines the neuron’s overall sensitivity to stimulus intensity, with larger α 

shifting the intensity-response curve rightward on a logarithmic axis. We show that this 

simple model accounts for key empirical principles of multisensory integration that have 

been described in the literature.

Inverse effectiveness

The principle of inverse effectiveness states that combinations of weak inputs produce 

greater multisensory enhancement than combinations of strong inputs 4–7. In addition, the 

combined response to weak stimuli is often greater than the sum of the unisensory responses 

(super-additivity), whereas the combined response to strong stimuli tends toward additive or 

sub-additive interactions. Note, however, that inverse effectiveness can hold independent of 

whether weak inputs produce super-additivity or not 7, 24. The normalization model accounts 

naturally for these observations, including the dissociation between inverse effectiveness 

and super-additivity.

Responses of a representative model neuron (d1 = d2) as a function of the intensities of the 

two unisensory inputs are shown in Fig. 2A. For inputs of equal strength (Fig. 2B), bimodal 

responses (solid black) exceed the corresponding unimodal responses (red, blue) at all 

intensities, consistent with physiological results obtained with balanced unisensory stimuli 

that are centered on the receptive fields 24. For low stimulus intensities, the bimodal 

response (solid black) exceeds the sum of the unimodal responses (dashed black), indicating 
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super-additivity (Fig. 2B). However, as stimulus intensity increases, the bimodal response 

becomes sub-additive, demonstrating inverse effectiveness.

To quantify this effect, we computed an additivity index (AI), which is the ratio of the 

bimodal response to the sum of the two unimodal responses. The normalization model 

predicts that super-additivity (AI > 1) only occurs when both sensory inputs have low 

intensities (Fig. 2C), which may explain why super-additivity was not seen in previous 

studies in which one input was fixed at a high intensity 11. Furthermore, the degree of super-

additivity is determined by the exponent parameter (n) of the output nonlinearity (Fig. 2D). 

For an exponent of 2.0, which we used as a default 25, the model predicts AI ≈ 2 for low 

intensities (Fig. 2D, black). Larger exponents produce even greater super-additivity (Fig. 

2D, magenta), whereas the model predicts purely additive responses to low intensities when 

the exponent is 1.0 (Fig. 2D, dark blue). Thus, the degree of super-additivity is determined 

by the curvature of the power-law nonlinearity, and greater super-additivity can be achieved 

by adding a response threshold to the model (not shown).

For large stimulus intensities, responses become sub-additive (AI < 1) regardless of the 

exponent (Fig. 2D), and this effect is driven by divisive normalization. Thus, all model 

neurons exhibit inverse effectiveness, but super-additivity is seen only when responses are 

weak such that the expansive output nonlinearity has a substantial impact. These predictions 

are qualitatively consistent with physiological data from the superior colliculus, where 

neurons show inverse effectiveness regardless of whether or not they show super-additivity, 

and only neurons with weak multisensory responses exhibit super-additivity 24.

To evaluate performance of the model quantitatively, we compared model predictions to 

population data from the superior colliculus 26. Response additivity was quantified by 

computing a z-score 7 that quantifies the difference between the bimodal response and the 

sum of the two unimodal responses (a z-score of zero corresponds to perfect additivity, 

analogous to AI=1). For combined visual-auditory stimuli, significant super-additivity (z-

score>1.96) was observed for weak stimuli and additivity was seen for stronger stimuli (Fig. 

2E, black curve), thus demonstrating inverse effectiveness. After adding Poisson noise and 

adjusting parameters to roughly match the range of firing rates, the normalization model 

produces very similar results (Fig. 2F, black curve). Thus, the model accounts quantitatively 

for the transition from super-additivity at low intensities to additivity (or sub-additivity) at 

high intensities, with a single set of parameters.

Although the simulations of Fig. 2 assumed specific model parameters, inverse effectiveness 

is a robust property of the model even when stimuli are not centered on the receptive fields, 

or modality dominance weights are unequal (Supplementary Figs. 1 and 2).

Spatial principle of multisensory integration

The spatial principle of multisensory enhancement states that a less effective stimulus from 

one sensory modality (e.g., a stimulus placed off the RF center) can suppress the response to 

a highly effective stimulus from the other modality 9, 10. Divisive normalization accounts 

naturally for this effect, as illustrated in Fig. 3.
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In this simulation, one of the unimodal inputs (Input1, ‘+’ symbol) is presented in the center 

of the RF, while the other input (Input2, ‘×’ symbol) is spatially offset from the RF center by 

different amounts (Fig. 3A). When both inputs are centered on the RF (Fig. 3B, left-most 

column), the combined response exceeds the unimodal responses for all stimulus intensities 

(as in Fig. 2B). As Input2 is offset from the RF center, the bimodal response decreases 

relative to that of the more effective Input1. Importantly, when the stimulus offset 

substantially exceeds one standard deviation of the Gaussian RF profile (two right-most 

columns of Fig. 3B), the combined response becomes suppressed below the unimodal 

response to Input1. Hence, the model neuron exhibits the spatial principle. The intuition for 

this result is simple: the less effective (i.e., offset) input contributes little to the underlying 

linear response of the neuron, but contributes strongly to the normalization signal because 

the normalization pool includes neurons with RFs that span a larger region of space. Note 

that the model neuron exhibits inverse effectiveness for all of these stimulus conditions (Fig. 

3C), although super-additivity declines as the spatial offset increases.

Figure 3D shows data from two cat superior colliculus neurons that illustrate the spatial 

principle 9, 27. Both neurons show cross-modal enhancement when the spatial offset between 

visual and auditory stimuli is small, and a transition toward cross-modal suppression for 

large offsets. The normalization model captures the basic form of these data nicely (Fig. 3D, 

black curves). We are not aware of any published data that quantify the spatial principle for 

a population of neurons.

For the example neurons of Fig. 3D, responses to the offset stimulus were not 

presented 9, 27, so it is not clear whether cross-modal suppression occurs while the non-

optimal stimulus is excitatory on its own. However, the normalization model makes a 

critical testable prediction: within a specific stimulus domain, the less effective Input2 

evokes a clearly excitatory response on its own (Fig. 3B, 3rd column from left, blue curve) 

but suppresses the response to the more effective Input1 (red) when the two inputs are 

presented together (black). Analogous interactions between visual stimuli were 

demonstrated in V1 neurons and attributed to normalization 17. Importantly, the cross-modal 

suppression shown in Fig. 3B appears to be a signature of a multisensory normalization 

mechanism, as alternative model architectures that do not incorporate normalization 28, 29 

fail to exhibit this behavior (Supplementary Figs. 3 and 4).

An analogous empirical phenomenon is the temporal principle of multisensory integration, 

which states that multisensory enhancement is strongest when inputs from different 

modalities are synchronous, and declines when the inputs are separated in time 8. The 

normalization model also accounts for the temporal principle as long as there is variation in 

response dynamics (e.g., latency, duration) among neurons in the population, such that the 

temporal response of the normalization pool is broader than the temporal response of 

individual neurons (Supplementary Fig. 5). More generally, in any stimulus domain, adding 

a non-optimal (but excitatory) stimulus can produce cross-modal suppression if it increases 

the normalization signal enough to overcome the additional excitatory input to the neuron.
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Multisensory suppression in unisensory neurons

Multisensory neurons are often much more responsive to one sensory modality than the 

other. Responses of such neurons to the more effective input can be suppressed by 

simultaneous presentation of the seemingly non-effective input 5, 30. In the normalization 

model, each neuron receives inputs from primary sensory neurons with modality dominance 

weights that are fixed (Fig. 1), but the specific combination of weights (d1, d2) varies from 

cell to cell. We show that normalization accounts for response suppression by the non-

effective input.

Simulated responses are shown (Fig. 4) for four model neurons with different combinations 

of modality dominance weights, ranging from balanced inputs (d1 = 1.0, d2 = 1.0) to strictly 

unisensory input (d1 = 1.0, d2 = 0.0). When modality dominance weights are equal (d1 =1.0, 

d2 =1.0), the model shows multisensory enhancement (Fig. 4B, left-most column). As the 

weight on Input2 is reduced, the bimodal response (black) declines along with the unimodal 

response to Input2 (blue). Importantly, when d2 is approximately 0.5 or less, the bimodal 

response becomes suppressed below the best unimodal response (Fig. 4B, two right-most 

columns). For the “unisensory” neuron with d2 = 0.0 (right column), Input 2 evokes no 

excitation (blue) but suppresses the combined response (black). This effect is reminiscent of 

cross-orientation suppression in primary visual cortex 18, 31, 32.

Normalization accounts for cross-modal suppression in unisensory neurons by similar logic 

used to explain the spatial principle: although Input2 makes no contribution to the linear 

response of the neuron when d2 = 0, it still contributes to the normalization signal via other 

responsive neurons with non-zero d2. This effect is robust as long as the normalization pool 

contains neurons with a range of modality dominance weights. Response additivity (Fig. 4C) 

again shows inverse effectiveness in all conditions, with super-additivity for weak, balanced 

inputs.

To assess model performance quantitatively, we compared predictions to an extensive 

dataset of multisensory responses of macaque ventral intraparietal (VIP) neurons to visual 

and tactile stimuli 30. In this dataset, a measure of response additivity is plotted against a 

measure of multisensory enhancement (Fig. 4D). The pattern of data across the population 

of VIP neurons (black symbols) is largely reproduced by a subset of model neurons (colored 

symbols) that vary along just two dimensions: the semi-saturation constant (α) and the ratio 

of dominance weights (d2/d1). Increasing the value of α shifts the intensity-response curve 

to the right and yields greater super-additivity for a fixed stimulus intensity (neuron #1, 

inset). For a fixed value of α, varying the ratio of dominance weights shifts the data from 

upper right toward lower left, as illustrated by example neurons #2–4. Model neuron #4 is an 

example of multi-sensory suppression in a unisensory neuron. Overall, a significant 

proportion of variance in the VIP data can be accounted for by a normalization model in 

which neurons vary in two biologically plausible ways: overall sensitivity to stimulus 

intensity (α) and relative strength of the two sensory inputs (d2/d1).
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Response to within-modal stimulus combinations

Previous studies have reported that two stimuli of the same sensory modality (e.g., two 

visual inputs) interact sub-additively whereas two stimuli of different modalities can 

produce super-additive interactions 26. This distinction arises naturally from the 

normalization model if each unisensory pathway incorporates a sublinear nonlinearity (Fig. 

1B) that could reflect synaptic depression or normalization operating at a previous stage.

Responses to two inputs from the same modality (Input1a and Input1b) are shown for a 

model neuron in Fig. 5. Input1a (‘+’ symbol) is presented at the center of the RF, while 

Input1b (‘×’ symbol) is systematically offset from the RF center (Fig. 5A). When both 

inputs are centered in the RF (Fig. 5B, left column), the combined response is modestly 

enhanced. The corresponding AI curve (Fig. 5C) indicates that the interaction is additive for 

weak inputs and sub-additive for stronger inputs. This result contrasts sharply with the 

super-additive interaction seen for spatially aligned cross-modal stimuli (Figs. 2B and 3B). 

As Input1b is offset from the center of the RF (Fig. 5B, left to right), the combined response 

(black) becomes suppressed relative to the stronger unisensory response (solid red). The AI 

curves demonstrate that the interaction is either additive or sub-additive for all spatial offsets 

(Fig. 5C).

Presenting two overlapping inputs from the same modality is operationally equivalent to 

presenting one input with twice the stimulus intensity. Due to the sub-linear nonlinearity in 

each unisensory pathway, doubling the stimulus intensity does not double the postsynaptic 

excitation. As a result, the combined response does not exhibit super-additivity for low 

intensities, even with an expansive output nonlinearity in the multisensory neuron (n = 2.0). 

For high stimulus intensities, the combined response becomes sub-additive due to 

normalization. If normalization were removed from the model, combined responses would 

remain approximately additive across all stimulus intensities (data not shown). For large 

spatial offsets and strong intensities, the combined response is roughly the average of the 

two single-input responses (Fig. 5B, right columns). Similar averaging behavior has been 

observed for SC neurons 26, as well as neurons in primary 18 and extrastriate 33, 34 visual 

cortex.

In the superior colliculus 26, super-additivity was significantly reduced for pairs of inputs 

from the same modality (Fig. 2E, red curve) relative to cross-modal inputs (black curve). 

This difference is reproduced by the normalization model (Fig. 2F) with a single set of 

model parameters. Hence, the inclusion of an input nonlinearity appears to account 

quantitatively for the difference in additivity of responses between cross-modal and within-

modal stimulation.

Multisensory integration and cue reliability

We have shown that normalization accounts for key empirical principles of multisensory 

integration. We now examine whether the model can account for quantitative features of the 

combination rule by which neurons integrate their inputs. We recently demonstrated that 

bimodal responses of multisensory neurons in area MSTd are well approximated by a 

weighted linear sum of visual and vestibular inputs, but that the weights appear to change 
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with visual cue strength 11. To explain this puzzling feature of the multisensory combination 

rule, we performed a “virtual” replication of the MSTd experiment 11 using model neurons. 

To capture known physiology of heading-selective neurons 13, 35, the model architecture 

was modified such that each cell had spherical heading tuning, lateral heading preferences 

were more common than fore-aft preferences, and many neurons had mismatched heading 

tuning for the two cues (see Materials and Methods and Supplementary Figs. 6 and 7).

Responses of model neurons were computed for 8 heading directions in the horizontal plane 

using visual inputs alone, vestibular inputs alone, and all 64 combinations of visual and 

vestibular headings, both congruent and conflicting. The bimodal response profile of an 

example neuron, Rbimodal (ϕvest,ϕvis), is plotted as a color contour map, along with the two 

unimodal response curves, Rvest(ϕvest) and Rvis(ϕvest), along the margins (Fig. 6A). The 

intensity of the vestibular cue was kept constant, while the intensity of the visual cue varied 

to simulate the manipulation of motion coherence used in MSTd 11. At 100% coherence, the 

bimodal response is dominated by the visual input, as is typical of MSTd neurons (c.f., Fig. 

3 of ref 11). As visual intensity (motion coherence) is reduced, the bimodal response profile 

changes shape and becomes dominated by the vestibular heading tuning (Fig. 6A–C).

The bimodal response of each model neuron was fit with a weighted linear sum of the two 

unimodal response curves:

(3)

The mixing weights, wvest and wvis, were obtained for each of the three visual intensities, 

corresponding to motion coherences of 25%, 50% and 100%. This analysis was performed 

for model neurons with different combinations of modality dominance weights (dvest, dvis; 

all combinations of values 0.25, 0.5, 0.75, and 1.0). Note that dvest, dvis characterize how 

each model neuron weights its vestibular and visual inputs, and that these modality 

dominance weights are fixed for each neuron in the model. In contrast, wvest and wvis are 

weights that characterize the best linear approximation to the model response for each 

stimulus intensity.

For all visual intensities, the weighted linear fit was a good approximation to responses of 

model neurons, with average R2 values of 0.98, 0.96, and 0.96 for simulated coherences of 

25, 50, and 100%, respectively. Importantly, different values of wvest and wvis were required 

to fit the data for different coherences. Specifically, wvest decreased with coherence (Fig. 

6D) and wvis increased with coherence (Fig. 6E). The slope of these dependencies was 

similar for all model neurons, whereas the absolute values of wvest and wvis varied somewhat 

with the modality dominance weights assigned to each neuron. To summarize this effect, 

Figure 6F shows the average weight ratio, wvis/wvest, as a function of coherence, normalized 

to a value of 1 at 100% coherence. The results are strikingly similar to the data from area 

MSTd (see Fig. 5C–E of ref 11), including the fact that weight changes are similar for cells 

with congruent and opposite heading preferences (red and blue curves in Fig. 6D,E). 

Because this result depends mainly on response saturation, it could also be predicted by 

other models that incorporate a saturating nonlinearity.
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The effect of coherence on the visual and vestibular mixing weights can be derived from the 

equations of the normalization model, with a few simplifying assumptions (including 

n=1.0). As shown in Methods, the mixing weights, wvest and wvis, can be expressed as:

(4)

Clearly, wvest declines as a function of visual intensity (Cvis), whereas wvis rises as a function 

of Cvis. In the simulations of Fig. 6, the exponent (n) was 2.0. In this case, the mixing 

weights become functions of the modality dominance weights (dvest, dvis) as well as stimulus 

intensities, resulting in vertical shifts among the curves in Fig. 6D, E.

In summary, normalization simply and elegantly accounts for the apparent changes in 

mixing weights exhibited by MSTd neurons as coherence was varied 11. For any particular 

combination of stimulus intensities, the behavior of the normalization model can be 

approximated as linear summation, but the effective mixing weights appear to change with 

stimulus intensity due to changes in the net activity of the normalization pool.

DISCUSSION

We propose that divisive normalization can explain many fundamental response properties 

of multisensory neurons, including the empirical principles described in seminal work on the 

superior colliculus 4, 5 and the effect of cue reliability on the neural combination rule in area 

MSTd 11. The normalization model is attractive because it relies on relatively simple and 

biologically plausible operations 36. Thus, the same basic operations that account for 

stimulus interactions in visual cortex 17–19 and attentional modulation 20 may also underlie 

various nonlinear interactions exhibited by multisensory neurons. The normalization model 

may therefore provide a good computational foundation for understanding multisensory cue 

integration.

Critical comparison with other models

Despite decades of research, only relatively recently have quantitative models of 

multisensory integration been proposed 28, 29, 37–40. One of the first mechanistic models of 

multisensory integration 37, 40 is a compartmental model of single neurons that accounts for 

inverse effectiveness and sub-additive interactions between inputs from the same modality. 

It was also constructed to account for the modulatory effect of top-down cortical input on 

multisensory integration in the SC 41, 42. This model shares some elements with ours: it 

includes a squaring nonlinearity that produces super-additivity for weak inputs and a 

shunting inhibition mechanism that divides the response by the net input to each 

compartment. Importantly, this model does not incorporate interactions among neurons in 

the population. Therefore, it cannot account for the spatial principle of multisensory 

integration or cross-modal suppression in unisensory neurons. In addition, this model cannot 

account for the effects of cue reliability on the neural combination rule, as seen in area 

MSTd 11.
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In contrast to this compartmental model 37, 40, a recent neural network architecture 28, 29 

incorporates lateral interactions among neurons with different receptive field locations. Like 

the normalization model, this neural network model can account for inverse effectiveness 

and the spatial principle, but there are important conceptual differences between the two 

schemes. First, to produce inverse effectiveness, the neural network model 28, 29 

incorporates a sigmoidal output nonlinearity into each model neuron (see also 39). By 

contrast, in the normalization model, response saturation at strong intensities arises from the 

balance of activity in the network, not from a fixed internal property of individual neurons. 

Second, although the neural network model can produce cross-modal suppression, it appears 

to do so only when the less effective input is no longer excitatory on its own (Fig. 7A of 

ref 29) but rather becomes suppressive due to lateral connections that mediate subtractive 

inhibition. We verified this observation by simulating an alternative model containing the 

key structural features of the neural network model 28, 29. As shown in Supplementary Figs. 

3 and 4, this alternative model only produces cross-modal suppression when the non-optimal 

input is no longer excitatory. Thus, the key testable prediction of the normalization model—

that an excitatory non-optimal input can yield cross-modal suppression (Fig. 3)—does not 

appear to be shared by other models of multisensory integration. The divisive nature of 

lateral interactions in the normalization model appears to be critical for this prediction. 

Indeed, the alternative model does not account for the VIP data 30 shown in Fig. 4D as 

successfully as the normalization model (Supplementary Fig. 8).

A recent elaboration of the neural network model 38 incorporates a number of specific 

design features to account for the experimental observation 41–43 that inactivation of cortical 

areas in the cat gates multisensory enhancement by SC neurons. We have not attempted to 

account for these results in our normalization model, as it is intended to be a general model 

of multisensory integration, not a specific model of any one system.

A recent computational theory 15 has demonstrated that populations of neurons with 

Poisson-like spiking statistics can achieve Bayes-optimal cue integration if each multi-

sensory neuron simply sums its inputs. Thus, nonlinear interactions like divisive 

normalization are not necessary to achieve optimal cue integration. Because this theory 15 

involves simple summation by neurons, independent of stimulus intensity, it cannot account 

for various empirical principles of multisensory integration discussed here, including the 

effects of cue reliability on the neural combination rule 11. It is currently unclear what roles 

divisive normalization may play in a theory of optimal cue integration, and this is an 

important topic for additional investigation.

Parallels with visual cortical phenomena

Divisive normalization was initially proposed 16 to account for response properties in 

primary visual cortex. Normalization has often since been invoked to account for stimulus 

interactions in the responses of cortical neurons 17, 19, 33, 44 and has been implicated recently 

in the modulatory effects of attention on cortical responses 20. The apparent ubiquity of 

divisive normalization in neural circuits 36, 45 makes normalization operating at the level of 

multisensory integration an attractive general model to account for cross-modal interactions.
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Perhaps the clearest experimental demonstration of normalization comes from a recent 

study 18 that measured responses of V1 neurons to orthogonal sine-wave gratings of various 

contrasts. This study found that population responses to any pair of contrasts can be well fit 

by a weighted linear sum of responses to the individual gratings. However, as the relative 

contrasts of the gratings varied, a linear model with different weights was required to fit the 

data 18, as predicted by divisive normalization. This result closely parallels the finding 11 

that the multisensory combination rule of MSTd neurons depends on the relative strengths of 

visual and vestibular inputs. Here, we show that multisensory normalization can account for 

analogous phenomena observed in multisensory integration 11.

In summary, empirical principles of multisensory integration have guided the field for many 

years 4, but a simple computational account of these principles has been lacking. We 

demonstrate that divisive normalization accounts for the classical empirical principles of 

multisensory integration as well as recent findings regarding the effects of cue reliability on 

cross-modal integration. The normalization model is appealing for its simplicity and because 

it invokes a functional operation that has been repeatedly implicated in cortical function. 

Moreover, the model makes a key prediction—that a non-optimal excitatory input can 

produce cross-modal suppression—that can be tested experimentally. Although this 

prediction has not yet been tested systematically, a careful inspection of published data (e.g., 

Fig.1E of ref 30; Fig.7 of ref 10; Fig.3C of ref 46) reveals some examples that may 

demonstrate cross-modal suppression by a non-optimal excitatory input, although it is 

generally not clear whether the non-optimal input is significantly excitatory. Ongoing work 

in our laboratory systematically examines cross-modal suppression in area MSTd and 

preliminary results support the model predictions (T. Ohshiro, D.E. Angelaki & G.C. 

DeAngelis, Conference Abstract: Computational and Systems Neuroscience 2010). Thus, 

normalization may provide a simple and elegant account of many phenomena in 

multisensory integration.

METHODS

Two different versions of the normalization model were simulated: one to model 

multisensory spatial integration in the superior colliculus and area VIP (Fig. 1), and the 

other to model visual-vestibular integration of heading signals in area MSTd 

(Supplementary Figs. 6, 7). We first describe the spatial integration model in detail, and then 

consider the modifications needed for the heading model.

Spatial model: primary sensory neurons

Each unimodal input to the spatial integration model is specified by its intensity c and its 

spatial position in Cartesian coordinates, θ= (xθ,yθ). The spatial receptive field (RF) of each 

primary sensory neuron is modeled as a two-dimensional Gaussian:

(5)

where θ̂ = (xθ̂,yθ̂) represents the center location of the RF. Arbitrarily, xθ̂,yθ̂ take integer 

values between 1 and 29, such that there are 29 × 29 =841 sensory neurons with distinct θ̂ in 
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each primary sensory layer. The size of the receptive field, given by σ, was chosen to be 2 

(arbitrary units).

The response of each primary sensory neuron was assumed to scale linearly with stimulus 

intensity, c, such that the response can be expressed as;

(6)

In addition, we assume that two inputs of the same sensory modality, presented at spatial 

positions θ1a, θ1b interact linearly such that the net response is given by;

(7)

where c1a, c1b represent the intensities of the two inputs.

We further assume that the linear response in each unisensory pathway is transformed by a 

nonlinearity, h(x), such that the unisensory input is given by:

(8)

We used a sub-linearly increasing function,  to model this nonlinearity, although 

other monotonic functions such as log(x + 1) or x/(x+1) appear to work equally well. This 

nonlinearity models the sublinear intensity response functions often seen in sensory 

neurons 47. It might reflect synaptic depression 22 at the synapse to the multisensory neuron 

or normalization operating within the unisensory pathways. This input non-linearity, h(x), 

has little effect on the multisensory integration properties of model neurons, but it plays an 

important role in responses to multiple unisensory inputs (Fig. 5).

Spatial model: multisensory neurons

Each multisensory neuron in the model receives inputs from primary neurons of each 

sensory modality, as denoted by a subscript (1 or 2). The multisensory neuron performs a 

weighted linear sum of the unisensory inputs:

(9)

The modality dominance weights, d1 and d2, are fixed parameters of each multisensory 

neuron, and each weight takes one of five values: 1.0, 0.75, 0.5, 0.25 or 0.0. Therefore, 5 × 5 

=25 multisensory neurons with distinct combinations of modality dominance weights are 

included for each set of unisensory inputs. The linear response of the i-th neuron Ei (Eqn. 9) 

is then subjected to an expansive power-law output nonlinearity and divisively normalized 

by the net response of all other units, to obtain the final output (Ri) of each neuron:
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(10)

Here, α is a semi-saturation constant (fixed at 1.0), N is the total number of multisensory 

neurons, and n is the exponent of the power-law nonlinearity that represents the relationship 

between membrane potential and firing rate 17, 23, The exponent, n, was assumed to be 2.0 in 

our simulations, except where noted (Fig. 2D). Model responses were simulated for the 

following stimulus intensities: c1, c2 = 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024.

To compare model responses to the physiological literature, an additivity index (AI) was 

computed as the ratio of the bimodal response to the sum of the unimodal responses:

(11)

Runimodal1, Runimodal2 are obtained by setting one of the stimulus intensities, c1 or c2, to zero.

In the simulations of Figs. 2–5, the RFs of the two primary sensory neurons projecting to a 

multisensory neuron were assumed to be spatially congruent (e.g., θ̂1 = θ̂2). In total, there 

were 841 (RF locations) × 25 (modality dominance weight combinations) = 21,025 distinct 

units in the multisensory layer.

For the simulations of Fig. 2F, the exponent (n) was fixed at 1.5, and responses were 

generated for all 9 combinations of three dominance weights: d1, d2 = 0.50, 0.75 or 1.00. 

Five neurons having each combination of dominance weights were simulated, for a total 

population of 45 neurons (similar to that recorded by Alvarado et al. 26), Responses were 

computed for five stimulus intensities (4, 16, 64, 256, and 1024), Poisson noise was added, 

and 8 repetitions of each stimulus were simulated. A z-score metric of response additivity 

was then computed using a bootstrap method 7, 26. Within-modal responses were also 

simulated (Fig. 2F, red) for pairs of stimuli of the same sensory modality, one of which was 

presented in the RF center while the other was offset from the RF center by 1 σ.

For the simulations of Fig. 4D, responses were generated for model neurons with all 

possible combinations of 5 dominance weights (d1,d2 = 0.0, 0.25, 0.50, 0.75 or 1.00) except 

d1, = d2 = 0.0, and semi-saturation constants (α) taking values of 1, 2, 4, 8, or 16. The 

exponent (n) was fixed at 2.5 for this simulation. Two cross-modal stimuli with intensity = 

1024 were presented at the RF center to generate responses.

To replot published data (Figs. 2E and 4D), a high-resolution scan of the original figure was 

acquired and the data were digitized using software (Engauge, http://

digitizer.sourceforge.net). To replot the experimental data in Fig. 3D (top panel), 

peristimulus time histograms from the original figure were converted into binary matrices 

using the ‘imread’ function in MATLAB. Spike counts were tallied from the digitized 

PSTHs and used to compute the enhancement index.
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Visual-vestibular heading model

To simulate multisensory integration of heading signals in macaque area MSTd 

(Supplementary Fig. 6), the normalization model was modified to capture the basic 

physiological properties of MSTd neurons. Because heading is a circular variable in three 

dimensions 13, responses of the unisensory neurons (visual, vestibular) were modeled as:

(12)

Here, c represents stimulus intensity (e.g., the coherence of visual motion) ranging from 0–

100, and Φ represents the angle between the heading preference of the neuron and the 

stimulus heading. Φ can be expressed in terms of the azimuth (ϕ̂) and the elevation (θ̂) 

components of the heading preference, as well as azimuth (ϕ) and elevation (θ) components 

of the stimulus:

(13)

where Ĥ =[cos θ̂ * cosϕ̂ cosθ̂,* sinϕ̂, sinθ̂], and H =[cosθ * cosϕ, cosθ sinϕ, sinθ]. The dot 

operator ‘·‘ denotes the inner product of the two vectors.

In the spatial model (Eqns. 5–10), we assumed that stimulus intensity multiplicatively scales 

the receptive field of model neurons. However, in areas MT and MST, motion coherence has 

a different effect on directional tuning 48, 49. With increasing coherence, the amplitude of the 

tuning curve scales roughly linearly, but the baseline response decreases (c.f., Fig. 1C of 

ref 48). To model this effect (see Supplementary Fig. 7D), we included the right-hand term 

in Eqn. 12, with ξ in the range from 0 to 0.5 (typically 0.1), such that total population 

activity is an increasing function of c. However, our conclusions regarding changes in 

mixing weights with coherence (Fig. 6D–F) do not depend appreciably on the value of ξ.

Each model MSTd neuron performs a linear summation of its visual and vestibular inputs:

(14)

where dvest, dvis are the modality dominance weights which take values from the array [1.0, 

0.75, 0.5, 0.25, 0.0]. In Eqn. 14, the input non-linearity h(x) was omitted for simplicity, 

because it has little effect on the multisensory integration properties of model neurons, 

including the simulations of Fig. 6 (data not shown).

In area MSTd, many neurons have heading tuning that is not matched for visual and 

vestibular inputs 13. Therefore, the model included multisensory neurons with both 

congruent and mismatched heading preferences. Our model also incorporated the fact that 

there are more neurons tuned to the lateral self-motion than fore-aft motion 13, 35. 

Specifically, two random vector variables, (ϕ̂ vest θ̂vest) and (ϕ̂ vis, θ̂
vis), were generated to 

mimic the experimentally observed distributions of heading preferences (Supplementary 

Fig. 7A, B), and visual and vestibular heading preferences were then paired randomly (200 
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pairs). To mimic the finding that more neurons have congruent or opposite heading 

preferences than expected by chance (Fig. 6 of ref 13), we added twenty eight units with 

congruent heading preferences, and another twenty eight with opposite preferences 

(Supplementary Fig. 7C). Combining these factors, a population of 256 (heading preference 

combinations) × 25 (dominance weight combinations) = 6400 units comprised our MSTd 

model. The linear response of each unit (Eqn. 14) was squared and normalized by net 

population activity, as in Eqn. (10). The semi-saturation constant was fixed at 0.05.

In the simulations of Figure 6, motion coherence took on values of 25, 50, and 100%, while 

the intensity of the vestibular input was fixed at 50, reflecting the fact that vestibular 

responses are generally weaker than visual responses in MSTd (Fig.3 of ref 50). In Eqn.3, 

baseline activity (cvis = cvest = 0) was subtracted from each response before the linear model 

was fit. In MSTd 11, the effect of coherence on the mixing weights, wvest and wvis, did not 

depend on the congruency of visual and vestibular heading preferences. To examine this in 

our model (Fig. 6D–F), we present results for three particular combinations of heading 

preferences, congruent (ϕ̂ vest = 90°, ϕ̂ vis = 90°), opposite (ϕ̂
vest = 90°, ϕ̂

vis =270°), and 

intermediate (ϕ̂
vest = 90°, ϕ̂

vis =180°), all in the horizontal plane (θ̂vest = θ̂
vis = 0°). Note, 

however, that all possible congruencies are present in the model population (Supplementary 

Fig. 7C). For each congruency type, all possible combinations of modality dominance 

weights from the set (d1, d2 = 1.0, 0.75, 0.5, 0.25) were used. Therefore, we simulated 

responses for a total of 3 (congruency types) × 16 (dominance weight combinations) = 48 

model neurons (Fig. 6D–F). For each congruency type, simulation results were sorted into 

three groups according to the ratio of dominance weights: dvest/dvis <= 0.5, 0.5 < dvest/dvis < 

2.0, or 2.0 <= dvest/dvis. Data were averaged within each group. Thus, results are presented 

(Fig. 6D–F) as nine curves, corresponding to all combinations of 3 congruency types and 3 

weight ratio groups

Derivation of the cue-reweighting effect

Here, we derive the expression for the effective mixing weights of the model MSTd neurons 

(Eqn. 4) through some simplification and rearrangement of the equations for the 

normalization model. Assuming that the exponent (n) is one and that tuning curves simply 

scale with stimulus intensity ( ξ =0), the net population activity in response to a vestibular 

heading (ϕvest) with intensity cvest and a visual heading (ϕvis) with intensity cvis, can be 

expressed as:

(15)

where Fvest(ϕ̂
vest; ϕvest), Fvis (ϕ̂

vis;ϕvis) represent vestibular and visual tuning curves with 

heading preferences at ϕ̂
vest and ϕ̂

vis, respectively. Because heading preferences and 

dominance weights are randomly crossed in the model population, we can assume that this 

expression can be factorized:
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(16)

If we make the additional simplification that heading preferences, ϕ̂
vest; and ϕ̂

vis are 

uniformly distributed, then terms involving sums of tuning curves, Σϕ̂vest Fvest (ϕ̂
vest; ϕvest) 

and Σϕ̂vis Fvis (ϕ̂; ϕvis), become constants. Moreover, the summations Σdvest dvest and Σdvis 

dvis are also constants because dvest, dvis are fixed parameters in the model. With these 

simplifications, Eqn. (15) can be expressed as:

(17)

where k is a constant that incorporates the sums of tuning curves and dominance weights. 

The bimodal response of a model neuron can now be expressed as:

(18)

Unimodal responses can be obtained by setting one of the stimulus intensities, cvest or cvis, to 

zero:

With these simplifications, the bimodal response (Eqn. 18) can be expressed as a weighted 

linear sum of the unimodal responses, with weights that depend on stimulus intensity:

(19)

Comparing Eqns.3 and 19, the closed forms of the mixing weights (Eqn.4) are obtained.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic illustration of the normalization model of multisensory integration. (A) Overview 

of network architecture. The model consists of two layers of primary neurons that respond 

exclusively to sensory modalities 1 and 2. These primary sensory units feed into a layer of 

multisensory neurons that integrate responses from unisensory inputs with matched 

receptive fields. (B) Signal processing at the multisensory stage. Each unisensory input first 

passes through a nonlinearity that could represent synaptic depression or normalization 

within the unisensory pathways. The multisensory neuron then performs a weighted linear 

sum of its inputs with modality dominance weights, d1 and d2. Following an expansive 

power-law non-linearity that could represent the transformation from membrane potential to 

firing rate, the response is normalized by the net activity of all other multisensory neurons.
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Figure 2. Normalization accounts for the principle of the inverse effectiveness
(A) The bimodal response of a model unit is plotted as a function of the intensities of Input1 

and Input2. Both inputs were located in the center of the receptive field. Diagonal line: 

inputs with equal intensities. Exponent, n = 2.0. (B) The bimodal response (solid black 

curve) and the unimodal responses (red and blue curves) are plotted as a function of stimulus 

intensity (from the diagonal of panel A). The sum of the two unimodal responses is shown 

as the dashed black curve. Red and blue curves have slightly different amplitudes to improve 

clarity. (C) Additivity index (AI) is plotted as a function of both input intensities. AI > 1 

indicates super-additivity, and AI < 1 indicates sub-additivity. (D) AI values (from the 

diagonal of panel C) are plotted as a function of intensity for three exponent values: n = 1.0 

(blue), 2.0 (black), and 3.0 (magenta). (E) Data from cat superior colliculus, demonstrating 

inverse effectiveness (replotted from ref 26). The z-scored bimodal response (± SD) is 

plotted against the predicted sum of the two unimodal responses, both for cross-modal 

(visual-auditory) inputs (black curve) or pairs of visual inputs (red). Z-score values >1.96 

represent significant superadditivity, and values <−1.96 denote significant sub-additivity. (F) 

Model predictions match the data from cat superior colliculus. For this simulation, model 

neurons had all 9 combinations of dominance weights from the set (d1, d2 = 0.50, 0.75 or 

1.00), and the exponent, n, was 1.5.
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Figure 3. Normalization and the spatial principle of multisensory enhancement
(A) Schematic illustration of stimulus conditions used to simulate the spatial principle. Input 

1 (‘+’ symbol) was located at the center of the receptive field for modality 1 (red contours). 

Input 2 (’×’ symbol) was offset by various amounts relative to the receptive field for 

modality 2 (blue contours). Contours defining each receptive field are separated by one 

standard deviation (σ of the Gaussian. The modality dominance weights were equal (d1 = d2 

= 1). (B) Responses of the model neuron to the stimuli illustrated in panel A (format as in 

Fig. 2B). Response is plotted as a function of intensity for Input1 (red), Input2 (blue), and 

the bimodal stimulus (black). Critically, Input2 can be excitatory on its own (blue) but 

suppress the response to Input 1 (red) when the two are combined (black, 3rd column). (C) 

Additivity Index (AI) as a function of stimulus intensity. (D) Two examples of the spatial 

principle for neurons from cat superior colliculus, re-plotted from refs 9, 27. The response 

enhancement index (%) is plotted as a function of the spatial offset between visual and 

auditory stimuli (gray bars). Locations marked with an “X” denote missing data in the 

original data set. Predictions of the normalization model are shown as black curves. Model 

parameters (fit by hand) were: d1, d2 = 1.0, α =1.0 and n = 2.0. Stimulus intensity was set at 

16 for the top neuron and 64 for the bottom neuron.
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Figure 4. Multisensory suppression in “unisensory” neurons
(A) Responses were simulated for four model neurons. The dominance weight for modality 

1, d1, was fixed at unity while the dominance weight for modality 2, d2, decreased from left 

to right (denoted by the number of receptive field contours). Input1 (‘+’) and Input2 (‘×’) 

were presented in the center of the receptive fields. (B) Responses as a function of intensity 

are shown for Input1 (red), Input2 (blue), and both inputs together (black). Format as in Fig. 

3B. (C) Additivity Index is plotted as a function of intensity for the four model neurons; 

format as in Fig. 3C. (D) Summary of multisensory integration properties for a population of 

neurons from area VIP (black symbols), re-plotted from ref 30. The ordinate shows a 

measure of response additivity: (Bi – (U1 + U2)) / (Bi + (U1 + U2)) × 100, for which 

positive and negative values indicate superadditive and sub-additive interactions, 

respectively. Bi: bimodal response; U1, U2: unimodal responses. The abscissa represents a 

measure of response enhancement: (Bi – max (U1, U2)) / (Bi + max (U1, U2)) × 100, for 

which positive and negative values denote cross-modal enhancement and cross-modal 

suppression, respectively. Colored symbols represent predictions of the normalization model 

for units that vary in the ratio of dominance weights (d2/d1, ranging from 0 to 1) and the 

semi-saturation constant, α, ranging from 1 to 16. The exponent, n, was 2.5. Numbered 

symbols correspond to model neurons for which responses are shown as bar graphs (right).
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Figure 5. Interactions among within-modality inputs
(A) The stimulus configuration was similar to that of Fig. 3A except that two stimuli of the 

same sensory modality, Input1a (‘+’) and Input1b (‘×’) were presented, and one was 

systematically offset relative to the receptive field of modality 1 (red contours). No stimulus 

was presented to the receptive field of modality 2 (blue contours) (B) Responses of a model 

neuron are shown for Input1a alone (solid red curve), Input1b alone (dashed red curve) and 

both inputs together (black curve). (C) Additivity Index as a function of stimulus intensity 

shows that model responses to pairs of within-modality inputs are additive or sub-additive 

with no super-additivity.

Ohshiro et al. Page 24

Nat Neurosci. Author manuscript; available in PMC 2011 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Normalization accounts for apparent changes in the multisensory combination rule 
with cue reliability
(A) Responses of a model MSTd neuron to visual and vestibular heading stimuli (100% 

visual motion coherence). The bimodal response, Rbimodal (ϕvest,ϕvis), to many combinations 

of visual (ϕvis) and vestibular (ϕvest) headings is shown as a color contour plot. Curves along 

the bottom and left margins represent unimodal responses, Rvest (ϕvest) and Rvis(ϕvis). This 

model neuron prefers forward motion (90°). (B) Reponses of the same model neuron when 

visual stimulus intensity is reduced to 50% coherence. (C) Responses to 25% coherence. 

Vestibular stimulus amplitude is constant in panels A–C at the equivalent of 50% coherence. 

(D) Bimodal responses were fit with a weighted linear sum of unimodal responses. This 

panel shows the vestibular mixing weight, wvest, as a function of motion coherence. Red, 

blue and black points denote model neurons with congruent, opposite and intermediate 

visual and vestibular heading preferences, respectively. Different symbol shapes denote 

groups of neurons with different ratios of modality dominance weights: dvest/dvis <= 0.5, 0.5 

< dvest/dvis < 2.0, or 2.0 <= dvest/dvis. Note that wvest decreases with coherence. (E) The 

visual mixing weight, wvis, increases with coherence. Format as in panel D (F) The ratio of 

vestibular and visual mixing weights, wvis/wvest, normalized to unity at 100% coherence, is 

plotted as a function of motion coherence. Model predictions are qualitatively consistent 

with data from area MSTd, replotted from ref 11 as large open symbols.
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