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produce dissociations in value-based 
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Abstract Recent data suggest that interactions between systems involved in higher order knowl-
edge and associative learning drive responses during value-based learning. However, it is unknown 
how these systems impact subjective responses, such as pain. We tested how instructions and 
reversal learning influence pain and pain-evoked brain activation. Healthy volunteers (n=40) were 
either instructed about contingencies between cues and aversive outcomes or learned through 
experience in a paradigm where contingencies reversed three times. We measured predictive cue 
effects on pain and heat-evoked brain responses using functional magnetic resonance imaging. 
Predictive cues dynamically modulated pain perception as contingencies changed, regardless of 
whether participants received contingency instructions. Heat-evoked responses in the insula, ante-
rior cingulate, and other regions updated as contingencies changed, and responses in the prefrontal 
cortex mediated dynamic cue effects on pain, whereas responses in the brainstem’s rostroventral 
medulla (RVM) were shaped by initial contingencies throughout the task. Quantitative modeling 
revealed that expected value was shaped purely by instructions in the Instructed Group, whereas 
expected value updated dynamically in the Uninstructed Group as a function of error-based 
learning. These differences were accompanied by dissociations in the neural correlates of value-
based learning in the rostral anterior cingulate, thalamus, and posterior insula, among other regions. 
These results show how predictions dynamically impact subjective pain. Moreover, imaging data 
delineate three types of networks involved in pain generation and value-based learning: those that 
respond to initial contingencies, those that update dynamically during feedback-driven learning as 
contingencies change, and those that are sensitive to instruction. Together, these findings provide 
multiple points of entry for therapies designs to impact pain.
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This fundamental paper advances our understanding of the commonalities and differences in the 
neural basis of directly experienced and instructed aversive learning in humans. The study uses 
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(fMRI) to inform neuro-computational models of how explicitly informed vs experientially acquired 
information influences learning about cues predicting painful stimuli. This work will be of broad 
interest to neuroscientists interested in pain and aversive learning and memory.

Introduction
Predictions and expectations shape perception across many domains, through processes such as 
predictive coding. This is particularly apparent in the context of pain as evidenced by data on placebo 
analgesia and expectancy-based pain modulation (Büchel et al., 2014; Ongaro and Kaptchuk, 2018; 
Kaptchuk et al., 2020). While most studies of predictive coding examine probabilistic error-driven 
learning, humans also use verbal instructions to shape predictions, with instructions acting either 
alone or through effects on learning (for reviews, see Koban et  al., 2017; Mertens et  al., 2018; 
Atlas, 2019). Placebo analgesia depends on expectations formed through conditioning or associa-
tive learning (e.g. prior treatment experiences) as well as verbal instruction and explicit knowledge 
(e.g. the doctor’s instruction), yet it is unknown how these factors combine dynamically to shape pain 
and pain-related brain responses. We introduced a novel pain reversal learning task to measure the 
dynamic effects of predictive cues on subjective pain and brain responses to noxious heat and isolate 
whether instructions and learning shape pain through independent mechanisms.

Most studies of placebo analgesia combine suggestion and conditioning to maximize expecta-
tions and measure downstream responses. These experiments indicate that placebos reliably reduce 
acute pain (Forsberg et al., 2017; Zunhammer et al., 2018) and alter stimulus-evoked responses in 
multiple brain regions, including the insula, dorsal anterior cingulate, and thalamus, as well as pain 
modulatory regions including the opioid-rich periaqueductal gray (PAG), the dorsolateral prefrontal 
cortex (DLPFC), and the rostral anterior cingulate cortex (rACC) (Atlas and Wager, 2014b). To what 
extent do these mechanisms depend on instructed knowledge or associative learning? Behavioral 
experiments indicate the potential for dissociations (Montgomery and Kirsch, 1996; Benedetti 
et al., 2003; Colloca et al., 2008a; Colloca et al., 2008b). In one study (Benedetti et al., 2003), 
participants underwent several days of conditioning with active treatments for pain, motor perfor-
mance in Parkinson’s disease, or drugs that affect hormonal responses (cortisol or growth hormone). 
Participants subsequently received verbal instructions that they would receive a drug that leads to 
the opposite effect of conditioning. All participants actually received placebo. Placebo effects on 
outcomes that could be consciously monitored (pain and motor responding) reversed with instruction, 
while hormonal responses continued to mimic conditioning. Other studies indicate that instructions 
only reverse placebo analgesia after brief conditioning (Schafer et al., 2015). Thus, placebo effects 
on specific outcomes manifest unique sensitivities to instructed knowledge alone or through effects 
on learning, suggesting the two processes may act through distinct mechanisms.

These behavioral studies also highlight the use of instructed reversals to distinguish between purely 
associative processes and those that are sensitive to higher order knowledge. This connects placebo 
with an established literature on how instructions influence appetitive and aversive learning (Grings, 
1973; McNally, 1981; Costa et al., 2015; Mertens and De Houwer, 2016; Atlas, 2019). Neuroim-
aging studies of reinforcement learning indicate that instructions can shape reward learning, and that 
this occurs through interactions between the DLPFC and striatum (Doll et al., 2009; Doll et al., 2011; 
Li et al., 2011a). We previously showed that corticostriatal interactions also support the effect of 
instructed reversals on aversive learning, but that the amygdala learned from aversive outcomes irre-
spective of instruction (Atlas et al., 2016; Atlas, 2019). This provides a potential mechanism by which 
some outcomes may continue to respond to associative learning in spite of instructions, while others 
may update with instruction, consistent with behavioral dissociations (Benedetti et al., 2003). Impor-
tantly, most previous work on how instructions shape learning has measured autonomic responses 
during classical conditioning or binary choices in instrumental learning tasks. Acute pain tasks provide 
a unique opportunity to measure how learning and instructions shape conscious, subjective decisions, 
which are likely to be distinct from autonomic responses or instrumental choice.

We asked how instructions and learning combine to dynamically shape pain and pain-related brain 
responses. Participants underwent a pain reversal learning task and were assigned to an Instructed 
Group, who was informed about contingencies and reversals, or an Uninstructed Group, who learned 
purely through experience (Figure 1). We used multilevel mediation analysis to identify brain regions 
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that are modulated by instructions or learning and modulate subjective pain. We also fit computa-
tional models of instructed learning (Atlas et al., 2016; Atlas et al., 2019) to pain ratings to deter-
mine how instructions and associative learning dynamically shape pain, and to isolate brain regions 
that track expected value during pain reversal learning. We were most interested in understanding 
how instructions and learning affect brain responses within brain networks involved in pain and value-
based learning. We hypothesized that instructions and learning would both dynamically shape pain, 
and that instructed reversals would lead to immediate reversals of pain reports and heat-evoked brain 
responses in the DLPFC and pain processing network.

Results
Heat intensity effects on pain, autonomic responses, and brain 
responses to noxious heat are similar across groups 

Prior to the fMRI experiment, all participants underwent an adaptive pain calibration procedure (Atlas 
et al., 2010; Mischkowski et al., 2019; Dildine et al., 2020; Amir et al., 2021) to identify each partic-
ipant’s pain threshold, tolerance, and the reliability of the temperature-pain association (i.e. r2; see 
Materials and methods). Consistent with our IRB protocol, four participants were dismissed prior to 
the fMRI portion of the experiment due to low reliability (n=3) or pain tolerance above 50℃ (n=1). For 

Figure 1. Experimental design. (A) Experimental design. Participants underwent a pain calibration that identified temperatures corresponding to 
maximum tolerable pain (high pain; 8), pain threshold (low pain; 2), or medium pain (5). They were then positioned in the fMRI scanner and randomly 
assigned to group. Participants in the Instructed Group were informed about contingencies, while participants in the Uninstructed Group were told 
to pay attention to the associations between auditory cues and heat but were not informed about the specific cue-outcome contingencies. (B) Trial 
structure. On each trial, a 2 s auditory cue preceded heat delivered to the participants left forearm. Participants rated perceived pain following offset 
using an 8-point continuous visual analogue scale. Trials were 48 s long. (C) Instructed and experience-based reversals. Participants first underwent a 
brief conditioning phase of 5–6 trials in which Original Low Cues (gray) were followed by heat calibrated to elicit low pain (level 2) and Original High 
Cues (black) were followed by heat calibrated to elicit high pain (level 8). Conditioning was immediately followed by intermittent test trials, in which we 
delivered medium heat following each cue to test the effects of predictive cues on perceived pain. Following the initial test phase, participants in the 
Instructed Group were informed about reversals and we delivered medium stimuli to test the effects of instructions. We then paired high heat with the 
Original Low cue and low heat with the Original High cue, which should act as an experiential reversal, and again administered medium heat to test 
whether pain reverses upon experience. (D) Example trial order. There were three reversals across the entire task. We used two trial orders that were 
counterbalanced across participants.
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each participant who continued to the fMRI phase, we used linear regression to identify temperatures 
associated with ratings of low pain (M=42.04 °C, SE = 0.43), medium pain (M=44.71 °C, SE = 0.37), 
and high pain (M=47.30 °C, SE = 0.30). There were no differences between groups in the reliability of 
the association between temperature and pain, as measured by r2 (M=0.803, SE = 0.022; p>0.2), or in 
temperatures applied during the task (all p’s>0.1).

We next examined pain as a function of heat intensity (i.e. temperature level: low, medium, or high) 
during the fMRI experiment (see Figure  2A). Bayesian model comparison indicated that the best 
model included fixed effects of Heat Intensity, Cue, Phase, and Group and all possible interactions, 
along with random intercepts and slopes for all factors. All models revealed significant effects of Heat 
Intensity, Cue, Phase, Cue x Phase, and Heat Intensity x Cue x Phase interactions across participants 
(see Table 1). We also observed a significant Group x Cue x Phase interaction and a significant Group 
x Heat Intensity x Cue x Phase interaction, which were likely to be driven by the critical medium heat 
trials, as reported below. Bayesian posterior estimates indicated that the effects of Heat Intensity, Cue 
x Phase interactions, and Heat Intensity x Cue x Phase interactions were practically significant with 
enough evidence to reject the null (<1% in ROPE), while the main effect of Phase supported the null 
(i.e. no effect of Phase; 99.8% in ROPE), despite being statistically significant. All other effects were 
of undecided significance (i.e. not enough evidence to accept or reject the null); complete results are 

Figure 2. Effects of heat intensity on pain, autonomic responses, and brain responses to noxious heat. (A-D) There were no differences between groups 
in the effect of heat intensity on pain (A), skin conductance responses (SCR; B), or pattern expression in the neurologic pain signature (NPS; C) or 
stimulus-intensity independent pain signature (SIIPS; D). All outcomes showed robust effects of heat intensity (see Tables 1–2 and Figure 2—source 
data 1). Data were visualized using the R toolboxes ggplot2 (Wickham, 2016) and Raincloud plots (Allen et al., 2021). (E-H): Whole-brain voxel-wise 
analyses revealed robust effects of variations in stimulus intensity on heat-evoked activation within brain regions involved in pain, controlling for group 
(E), which were confirmed with separate analyses within the Instructed Group (F) and the Uninstructed Group (G). FDR-corrected p-values for contrasts 
E-G exceeded P<.005 and therefore we used maps thresholded at P<.001 for inference. Only the left hippocampus and right S1 showed significant 
group differences at corrected levels (H). Differences were driven by temperature-induced deactivation in the Uninstructed Group, as depicted in G. For 
additional regions identified in voxelwise results, see Figure 2—figure supplement 1 and Figure 2—source data 2 and 3.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Heat intensity effects on heat-evoked autonomic responses.

Source data 2. Heat intensity effects: Small-volumes corrected results.

Source data 3. Heat intensity effects: Uncorrected results.

Figure supplement 1. Heat intensity effects: Whole-brain uncorrected results.
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reported in Table 1. We observed similar results when we restricted analyses to pain ratings from the 
36 participants with useable fMRI data; see Supplementary file 1.

Next, we analyzed heat-evoked autonomic responses during the experiment. SCR and pupil dila-
tion were both significantly influenced by Heat Intensity and exhibited Heat Intensity x Cue X Phase 
interactions (see Figure 2—source data 1). Both factors had practically significant effects on SCR 
(<1% in ROPE), whereas Bayesian analyses of pupillary outcomes indicated that evidence was not 
sufficient to reject the null hypothesis (100% in ROPE). Because there was no meaningful effect of 
temperature on pupil dilation and the number of subjects with useable pupil data was substantially 
less than those with useable skin conductance, we focused on SCR in subsequent analyses of cue 
effects on physiological arousal. There was no main effect of Group on pupil dilation or SCR, nor 
any interactions between Group and Heat Intensity for either outcome, suggesting that temperature 
effects on physiological arousal were similar regardless of whether individuals were instructed about 
contingencies (see Figure 2B and Figure 2—source data 1). For complete results, see Figure 2—
source data 1.

We also evaluated brain responses to noxious stimulation as a function of heat intensity. We note 
that FDR-corrected thresholds exceeded 0.001 for all voxelwise analyses apart from moderation by 
group; we therefore interpret main effects of heat intensity at p<0.001. We observed robust intensity-
related changes within pain modulatory regions, including bilateral insula, striatum, dorsal anterior 
cingulate, thalamus, and other regions that did not differ between groups (see Figure  2E–G and 
Figure 2—source data 2 and 3). Consistent with this, we observed robust expression of both the 
Neurologic Signature Pattern (NPS; Wager et  al., 2013) and Stimulus-Intensity Independent Pain 
Signature (SIIPS; Woo et al., 2017) as a function of temperature-related changes in both groups (all 
p’s<0.001, see Table 2) and signature pattern expression did not differ by group (all p’s>0.2; see 
Figure 2C&D and Table 2). Thus variations in heat intensity were positively associated with increases in 
pain-related activation in pain-related regions regardless of whether individuals were instructed about 
contingencies. Whole brain FDR-correction did reveal significant group differences in the left hippo-
campus and right primary somatosensory cortex driven by stronger intensity effects in the Instructed 
Group (see Figure 2H and Figure 2—source data 2 and 3). Within value-related ROIs, we observed 
positive effects of heat intensity on the bilateral striatum that did not differ by Group, whereas the 
VMPFC showed significant Group differences, driven by negative associations between temperature 
and VMPFC activation in the Uninstructed Group, but not the Instructed Group (see Table 2). There 
were no associations between heat intensity and amygdala activation.

Predictive cues modulate expectations and pain whether learned 
through instruction or experience
Analyses across all trials indicated potential influences of predictive cues and cue-based reversals 
on pain, as indicated by the Cue x Phase and Heat Intensity x Cue x Phase interactions. To measure 
cue-based expectancy effects more directly, we measured cue effects on (1) expectancy ratings and 
(2) pain reports on medium heat trials, which were crossed with predictive cues. We first examined 
expectations as a function of Cue prior to conditioning, that is immediately after instruction. Consis-
tent with our manipulation, there was a significant Group x Cue interaction on expectancy at baseline 
(F(1,38) = 8.959, p=0.005), driven by significant differences in the Instructed Group (p=0.0027) but 
not the Uninstructed Group (p>0.3), as shown in Figure 3A. There were no main effects of Group or 
Cue prior to conditioning (all p’s>0.1). Following the first acquisition block, we collected a second 
set of expectancy ratings. We again observed a significant Group x Cue interaction (F(1,38) = 7.102, 
p=0.011) as well as a main effect of Cue (F(1,38) = 31.195, p<0.001). Post-hoc comparisons indicated 
that both groups reported higher expectancy with the high pain cue (see Figure 3A), but that differ-
ences were larger in the Instructed Group (p<0.001), relative to the Uninstructed Group (p=0.003). 
Thus, instructions and learning both modulated cue-based expectations about pain.

We next asked whether cue-based expectations in turn modulate subjective pain on medium heat 
trials. We first measured effects of cues on pain ratings during the acquisition phase, that is prior to the 
first reversal, and asked whether effects vary based on whether learning is paired with verbal instruc-
tion. Bayesian model comparison indicated that the best model included fixed effects of Group, Cue, 
and Trial, with random intercepts and random slopes for Cue and Trial. Consistent with other studies 
of expectancy-based pain modulation (Atlas et al., 2010; Wiech et al., 2014; Reicherts et al., 2016; 

https://doi.org/10.7554/eLife.73353
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Table 2. Effects of heat, cues, and learning on responses in value-related regions of interest and pain-related signature patterns*.

Analysis Effect Left striatum
Right 
striatum Left amygdala

Right 
amygdala VMPFC NPS SIIPS

Effect of heat intensity

All participants, 
controlling for 
Group

b=0.19, 
p<0.001

b=0.14, 
p<0.001 - -

b=–0.27, 
p<0.001

b=3.74, 
p<0.001

b=439.87,
p<0.001

Instructed vs 
Uninstructed - - - -

b=0.15, 
p=0.048 - -

Instructed Group

CI = [0.08 
0.22],
t(17) = 3.05, 
p=0.007

CI = [0.14 
0.25], t(17) = 
5.37, p<0.001 - - ns

CI = [2.39 
5.49]; t(35) 
= 5.49; 
p<0.001

CI = [197.59 
572.36], t(35) = 
4.33; p<0.001

Uninstructed 
Group

CI = [0.07 
0.25], t(17) = 
3.60, p=0.002

CI = [0.12 
0.28], t(17) = 
5.34, p<0.001 - -

CI = [-0.67–
0.19],
t(17) = 
–3.81, 
p=0.001

CI = [2.28 
4.91]; t(17) 
= 5.77; 
p<0.001

CI = [317.40 
672.13]; t(17) = 
5.89; p<0.001

Mediation of current 
cue contingencies

Path a
a=0.05, 
p=0.058

a=0.05, 
p=0.079 - - ns ns n.s.

Path b
b=0.13, 
p=0.007

b=0.16, 
p<0.001 - - ns

b=0.01, 
p=0.004

b=0.00, 
p<0.001

Path a*b - - - - ns n.s. n.s.

Mediation of original 
cue contingencies

Path a - - - -
a=–0.09, 
p=0.015 n.s. n.s.

Path b
b=0.13, 
p=0.006

b=0.16, 
p=0.001 - - ns

b=0.01, 
p=0.006

b=0.00, 
p<0.001

Path a*b - - - - ns ns
a*b=0.01, 
p=0.065

Association with 
expected value based 
on fits to pain

All participants, 
controlling for 
Group - - - - - - -

Instructed vs 
Uninstructed -

b=0.24, 
p=0.03 - - - - -

Instructed Group

CI = [0.078 
0.51]; t(17) = 
2.85; p=0.011

CI = [0.03 
0.42]; t(17) = 
2.47; p=0.024 - - - - -

Uninstructed 
Group - - - - - - -

Association with 
unsigned prediction 
error

All participants, 
controlling for 
Group

b=1.02, 
p=0.003

b=0.67, 
p=0.062

b=1.61, 
p=0.004

b=1.31, 
p=0.007 - - -

Instructed vs 
Uninstructed - - - - - - -

Instructed Group -

CI = [0.17 
2.59]; t(17) = 
2.41; p=0.028

CI = [0.57 3.40]; 
t(17) = 2.96; 
p=0.009

CI = [0.88 3.77]; 
t(17) = 3.39; 
p=0.004 - - -

Uninstructed 
Group

- CI = [0.06 
1.26]; t(17) = 
2.33; p=0.033

- - - - -

Table 2 continued on next page
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Analysis Effect Left striatum
Right 
striatum Left amygdala

Right 
amygdala VMPFC NPS SIIPS

Instructed vs feedback-
driven expected value 
within Instructed 
Participants

Instruction vs 
Feedback-driven 
EV - - - - - - -

Instruction-based 
EV

CI = [0.07 
0.53]; t(17) = 
2.73; p=0.014

CI = [0.02 
0.44]; t(17) = 
2.33; p=0.03 - - - - -

Feedback-driven 
EV - - - - - - -

*This table reports results of tests within a priori regions of interest (ROIs) involved in expected value and pain-related signature patterns, the 
Neurologic Pain Signature (NPS; Wager et al., 2013) and the Stimulus Intensity Independent Pain Signature (SIIPS; Woo et al., 2017). For mediation 
analyses, trial-level responses (i.e. area-under-the-curve estimates) were extracted and averaged across each ROI or computed as the dot-product 
between trial estimates and pattern expression for NPS and SIIPS, and then multilevel mediation analyses were evaluated. For regressions with heat 
intensity, expected value, and unsigned prediction error, we used linear models and one-sample t-tests across beta estimates and contrast maps. See 
Materials and Methods for additional details and Figure 5—figure supplement 1 for ROI images.

Table 2 continued

Figure 3. Effects of instructions and learning on expected pain and pain ratings prior to reversal. (A) Expectancy ratings prior to reversal. Participants 
in the Instructed Group (Top Left) expected higher pain in response to the Original High Cue relative to the Original Low Cue at baseline (left) 
and differences in expectations grew larger following conditioning and the first test phase (right). Participants in the Uninstructed Group did not 
report differences prior to the task (left), consistent with the fact that they were not instructed about specific cue-outcome contingencies. Following 
conditioning and the first test phase, Uninstructed Group participants expected higher pain in response to the Original High Cue, relative to the 
Original Low Cue. Cue-based differences in expectancy ratings were larger in the Instructed Group. (B) Predictive cue effects on pain prior to reversal. 
We measured the effects of predictive cues on perceived pain prior to the first reversal (see Table 3). Both groups reported higher pain when medium 
heat was preceded by the high pain cue (black) relative to the low pain cue (gray) and this effect was present in nearly all participants. (C) Cue effects 
increase over time. Both groups show larger cue-based differences in perceived pain on medium heat trials as a function of experience prior to the first 
reversal, but effects of time were larger in the Instructed Group. Data were visualized using the R toolboxes ggplot2 (Wickham, 2016) and Raincloud 
plots (Allen et al., 2021). Error bars and shaded areas denote standard error of the mean (n = 20 per group).

https://doi.org/10.7554/eLife.73353
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Fazeli and Büchel, 2018; Michalska et  al., 2018; Abend et  al., 2021), all models indicated that 
participants reported higher pain when medium heat was preceded by high pain cues than low pain 
cues (main effect of Cue: see Figure 3B and Table 3), and this effect was practically significant based 
on Bayesian modeling (0% in ROPE). There was a significant Group x Cue interaction (see Table 3) 
which was of undecided significance (8% in ROPE). Importantly, post-hoc analyses within groups indi-
cated that both groups reported practically significant effects of Cue on pain prior to the first reversal 
(see Figure 3B and Table 3), although effects were larger in the Instructed Group. We also observed 
a statistically significant Group x Cue x Trial interaction, although this was of undecided significance 
(35.45% in ROPE; see Table 3). Post-hoc analyses within groups indicated that Cue effects increased 
over time in the Instructed Group (see Figure 3C and Table 3), as did pain reports overall, whereas 
there were no interactions with time in Uninstructed Group participants. Together, these results indi-
cate that instructions and learning both shape pain prior to reversal, that effects are somewhat larger 
in Instructed Group participants, and that the dynamics of expectancy effects on pain may differ as a 
function of whether individuals learn from experience or instruction. For complete results, please see 
Table 3.

Cue-based expectations and cue effects on pain and SCR update as 
contingencies reverse
We next tested whether expectations and cue effects on pain updated as contingencies reversed, and 
whether they did so differently as a function of instruction. We computed an expectancy rating differ-
ence score (Original High Pain expectancy – Original Low Pain expectancy; see Figure 4B) for each 
pre-block rating and measured effects across the entire task as a function of Group and Phase (i.e. 
Original vs. Reversed Contingencies; see vertical dashed lines in Figures 1D and 4A). We observed 
a main effect of Phase (B=–2.03, p<0.001), indicating that differential expectations varied as contin-
gencies reversed, and significant Group x Phase interaction (B=4.12, p<0.001). Post-hoc analyses 
indicated that only the Instructed Group reported differences in expectation that varied significantly 
as a function of Phase, whereas the Uninstructed Group showed weaker variations in expectations as 
contingencies reversed (see Figure 4A and B).

We next examined pain reports in response to medium heat across all trials, including reversals (see 
Figure 4). Bayesian model comparison using a normal distribution indicated the most likely model 
included fixed effects of Group, Cue, Phase, and Trial, with random intercepts and slopes. All models 
revealed significant Cue x Phase interactions on pain, indicating that cue effects on pain varied as 
contingencies reversed (see Figure 4C and D and Table 4), and this effect was sufficient to reject the 
null hypothesis of no interaction (<1% in ROPE). All models also revealed main effects of Cue, such 
that individuals reported higher pain in response to the original high pain cue than the original low 
pain cue, and main effects of Phase, such that pain was higher on original contingencies relative to 
reversals, and these effects were significant in frequentist analyses but were of undecided significance 
based on Bayesian estimates (see Table 4). Finally, frequentist analysis approaches revealed significant 
Group x Cue x Phase interactions, driven by stronger reversals of Cue effects in the Instructed Group 
(see Figure 4D). Post hoc analyses conducted separately by Group indicated nearly 100% probability 
of positive Cue x Phase interactions in each group, although evidence was only sufficient to reject the 
null hypothesis in the Instructed Group (see Table 4). We observed similar results when we restricted 
analyses to pain ratings from the 36 participants with useable fMRI data, although the Group x Cue x 
Phase interaction was marginally significant in frequentist approaches; see Supplementary file 1 for 
complete details. We also observed consistent findings when we tested the model with a beta distri-
bution, which was found to provide better fits based on posterior prediction (see Supplementary file 
2). Thus predictive cues shape pain perception even as contingencies change, whether or not partic-
ipants are instructed about contingencies. In addition, reversals may be slightly larger in participants 
who are explicitly instructed about contingencies and reversals, however group differences were not 
practically meaningful based on Bayesian statistics.

We also tested whether cues and reversals impacted physiological responses to medium heat, as 
measured by heat-evoked SCR. Heat-evoked SCRs were influenced by predictive cues on medium 
trials and reversed as contingencies changed, but the magnitude of these differences did not differ 
by Group (see Figure 4D and Figure 4—source data 1). While effects were statistically significant 
based on frequentist models, they were not sufficient to reject the null hypothesis of no difference 

https://doi.org/10.7554/eLife.73353


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Atlas et al. eLife 2022;11:e73353. DOI: https://doi.org/10.7554/eLife.73353 � 10 of 39

Ta
b

le
 3

. M
ul

ti
le

ve
l m

o
d

el
 e

va
lu

at
in

g
 e

ff
ec

ts
 o

f 
G

ro
up

, C
ue

, a
nd

 T
ri

al
 o

n 
m

ed
iu

m
 h

ea
t 

p
ai

n 
p

ri
o

r 
to

 r
ev

er
sa

l* .

P
re

d
ic

to
rs

E
st

im
at

es
C

o
nfi

d
en

ce
 in

te
rv

al
s

P
-V

al
ue

 /
 p

ro
b

ab
ili

ty
 o

f 
d

ir
ec

ti
o

n
B

ay
es

ia
n 

es
ti

m
at

es
†

LM
E

R
‡

N
LM

E
§

B
R

M
S†

LM
E

R
‡

N
LM

E
§

B
R

M
S†

LM
E

R
‡

N
LM

E
§

B
R

M
S†

%
 in

 
R

O
P

E
R

ha
t

E
SS

A
ll 

p
ar

tic
ip

an
ts

 
(n

=
40

)

(In
te

rc
ep

t)
3.

89
3.

87
5

3.
88

3
3.

55
–4

.2
3

[3
.5

3,
 4

.2
21

]
[ 3

.5
98

, 4
.1

81
]

<
0.

00
1

0.
00

0
10

0.
00

%
0

1
48

60
.2

46

G
ro

up
0.

18
0.

16
7

0.
17

8
–0

.1
6–

0.
51

[–
0.

18
3,

 0
.5

18
]

[–
0.

10
6,

 0
.4

80
]

0.
30

5
0.

33
9

83
.6

7%
45

.2
58

1
50

43
.4

95

C
ue

1.
27

1.
25

4
1.

26
1

0.
89

–1
.6

6
[0

.8
57

, 1
.6

51
]

[ 0
.9

39
, 1

.5
68

]
<

0.
00

1
0.

00
0

10
0.

00
%

0
1

11
88

2.
09

1

Tr
ia

l
0.

11
0.

10
7

0.
11

0.
02

–0
.2

1
[0

.0
11

, 0
.2

02
]

[ 0
.0

31
, 0

.1
90

]
0.

02
3

0.
02

9
98

.3
9%

88
.4

83
1

13
55

5.
29

9

G
ro

up
 *

 C
ue

0.
44

0.
42

5
0.

44
2

0.
06

–0
.8

3
[0

.0
28

, 0
.8

23
]

[ 0
.1

16
, 0

.7
58

]
0.

02
4

0.
03

6
98

.4
5%

8.
89

2
1

12
09

4.
57

G
ro

up
 *

 T
ria

l
0.

14
0.

13
3

0.
13

5
0.

04
–0

.2
3

[0
.0

35
, 0

.2
31

]
[ 0

.0
49

, 0
.2

13
]

0.
00

7
0.

00
8

99
.5

2%
75

.4
92

1
13

39
5.

88
9

C
ue

 *
 T

ria
l

0.
14

0.
13

2
0.

14
2

–0
.0

1–
0.

30
[–

0.
03

2,
 0

.2
96

]
[ 0

.0
05

, 0
.2

74
]

0.
07

1
0.

11
4

95
.0

7%
62

.7
58

1
14

33
3.

68
7

(G
ro

up
 *

C
ue

) *
Tr

ia
l

0.
2

0.
18

6
0.

20
1

0.
04

–0
.3

7
[0

.0
16

, 0
.3

57
]

[ 0
.0

60
, 0

.3
43

]
0.

01
6

0.
03

3
98

.7
0%

35
.4

5
1

16
58

5.
74

4

In
st

ru
ct

ed
 G

ro
up

 
(n

=
20

)

(In
te

rc
ep

t)
4.

07
4.

03
4

4.
07

6
3.

63
–4

.5
1

[3
.5

94
, 4

.4
75

]
[3

.6
91

, 4
.4

55
]

<
0.

00
1

0
10

0.
00

%
0

1
44

21
.8

61

C
ue

1.
73

1.
69

4
1.

72
4

1.
14

–2
.3

2
[1

.0
88

, 2
.3

]
[1

.2
04

, 2
.2

18
]

<
0.

00
1

0
10

0.
00

%
0

1
79

14
.0

74

Tr
ia

l
0.

26
0.

25
2

0.
26

0.
08

–0
.4

4
[0

.0
73

, 0
.4

3]
[0

.1
06

, 0
.4

22
]

0.
00

5
0.

00
63

99
.2

8%
17

.7
33

1
69

93
.8

32

C
ue

 *
 T

ria
l

0.
35

0.
29

4
0.

36
1

0.
04

–0
.6

6
[–

0.
03

1,
 0

.6
18

]
[0

.0
88

, 0
.6

31
]

0.
02

7
0.

07
55

97
.6

5%
13

.5
58

1
79

52
.0

78

U
ni

ns
tr

uc
te

d
 

G
ro

up
 (n

=
20

)

(In
te

rc
ep

t)
3.

74
3.

73
7

3.
74

1
3.

22
–4

.2
5

[3
.2

15
, 4

.2
59

]
[ 3

.2
61

, 4
.1

85
]

<
0.

00
1

0
10

0.
00

%
0

1.
00

1
30

62
.4

43

C
ue

0.
89

0.
88

5
0.

87
4

0.
40

–1
.3

8
[0

.3
78

, 1
.3

92
]

[ 0
.4

50
, 1

.2
62

]
<

0.
00

1
0.

00
08

99
.8

8%
0.

55
1.

00
1

96
45

.3
77

Tr
ia

l
0

–0
.0

05
–0

.0
05

–0
.1

1–
0.

10
[–

0.
11

3,
 0

.1
03

]
[–

0.
09

5,
 0

.0
87

]
0.

92
8

0.
93

33
53

.4
6%

99
.4

33
1

89
85

.3
22

C
ue

 *
 T

ria
l

–0
.0

3
–0

.0
35

–0
.0

35
–0

.2
0–

0.
14

[–
0.

21
1,

 0
.1

42
]

[–
0.

18
4,

 0
.1

12
]

0.
70

4
0.

69
75

65
.3

3%
90

.7
1

12
05

4.
97

3

*T
hi

s 
ta

b
le

 p
re

se
nt

s 
re

su
lts

 o
f a

 li
ne

ar
 m

ix
ed

 m
o

d
el

 p
re

d
ic

tin
g

 s
ub

je
ct

iv
e 

p
ai

n 
o

n 
m

ed
iu

m
 h

ea
t 

tr
ia

ls
 a

s 
a 

fu
nc

tio
n 

o
f G

ro
up

 (I
ns

tr
uc

te
d

 v
s 

U
ni

ns
tr

uc
te

d
), 

C
ue

 (O
rig

in
al

 H
ig

h 
vs

 O
rig

in
al

 
Lo

w
), 

an
d

 T
ria

l p
rio

r 
to

 t
he

 fi
rs

t 
re

ve
rs

al
, a

s 
w

el
l a

s 
p

o
st

-h
o

c 
te

st
s 

in
 e

ac
h 

G
ro

up
. S

ee
 T

ab
le

 1
 fo

r 
ad

d
iti

o
na

l i
nf

o
rm

at
io

n 
ab

o
ut

 m
o

d
el

 s
p

ec
ifi

ca
tio

n 
an

d
 p

re
se

nt
at

io
n.

†E
st

im
at

es
 b

as
ed

 o
n 

B
ay

es
ia

n 
m

o
d

el
 li

ne
ar

 m
ix

ed
 m

o
d

el
s 

us
in

g
 t

he
 ‘b

rm
s’

 fu
nc

tio
n 

(B
ür

kn
er

, 2
01

7)
 u

si
ng

 t
he

 fo
llo

w
in

g
 c

o
d

e:
 b

rm
Pa

in
~

G
ro

up
*C

ue
*T

ria
l+

(1
+

C
ue

*T
ria

l|S
ub

je
ct

,p
rio

r 
=

 s
et

_p
rio

r(
"n

o
rm

al
(0

,2
.5

)"
, c

la
ss

=
"b

")
, s

av
e_

al
l_

p
ar

s 
=

 T
R

U
E

, s
ile

nt
 =

 T
R

U
E

, r
ef

re
sh

 =
 0

, i
te

r 
=

 4
00

0,
, w

ar
m

up
 =

 1
00

0)
. P

o
st

er
io

r 
es

tim
at

es
 a

nd
 t

he
 R

eg
io

n 
o

f P
ar

tia
l E

q
ui

va
le

nc
e 

w
er

e 
o

b
ta

in
ed

 u
si

ng
 t

he
 “

d
es

cr
ib

e_
p

o
st

er
io

r”
 fu

nc
tio

n 
fr

o
m

 t
he

 p
ac

ka
g

e 
B

ay
es

Te
st

R
 (M

ak
ow

sk
i e

t 
al

., 
20

19
a)

 a
nd

 in
te

rp
re

te
d

 a
s 

in
 M

ak
ow

sk
i e

t 
al

., 
20

19
b

. T
he

 R
eg

io
n 

o
f P

ar
tia

l 
E

q
ui

va
le

nc
e 

(R
O

PE
) w

as
 d

efi
ne

d
 a

s 
[–

0.
17

, 0
.1

7]
 a

cr
o

ss
 a

ll 
p

ar
tic

ip
an

ts
, [

–.
17

2,
.1

72
] w

he
n 

re
st

ric
te

d
 t

o
 t

he
 In

st
ru

ct
ed

 G
ro

up
, a

nd
 [–

.1
68

,.1
68

] w
he

n 
re

st
ric

te
d

 t
o

 t
he

 U
ni

ns
tr

uc
te

d
 G

ro
up

.
‡E

st
im

at
es

 b
as

ed
 o

n 
a 

lin
ea

r 
m

ix
ed

 e
ffe

ct
s 

m
o

d
el

 im
p

le
m

en
te

d
 in

 t
he

 ‘l
m

er
’ f

un
ct

io
n 

o
f l

m
e4

 (B
at

es
 e

t 
al

., 
20

15
) u

si
ng

 t
he

 fo
llo

w
in

g
 c

o
d

e:
 

lm
er

(P
ai

n M
ed

iu
m
~

G
ro

up
*C

ue
*T

ria
l+

(1
+

C
ue

*T
ria

l||
Su

b
je

ct
)).

§E
st

im
at

es
 b

as
ed

 o
n 

a 
lin

ea
r 

m
ix

ed
 e

ffe
ct

s 
m

o
d

el
 im

p
le

m
en

te
d

 in
 t

he
 ‘l

m
e’

 fu
nc

tio
n 

o
f n

lm
e 

(P
in

he
ir

o 
et

 a
l.,

 2
02

1)
 in

cl
ud

in
g

 a
ut

o
re

g
re

ss
io

n 
us

in
g

 t
he

 fo
llo

w
in

g
 c

o
d

e:
 lm

e(
Pa

in
~

G
ro

up
 

*C
ue

*T
ria

l, 
ra

nd
o

m
 =

 ~
1 

+
 C

ue
*T

ria
l|S

ub
je

ct
, c

o
rr

el
at

io
n 

=
 c

o
rA

R
1,

 n
a.

ac
tio

n=
na

.e
xc

lu
d

e)
.

https://doi.org/10.7554/eLife.73353


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Atlas et al. eLife 2022;11:e73353. DOI: https://doi.org/10.7554/eLife.73353 � 11 of 39

based on Bayesian models (see Figure 4—source data 1). Importantly, only 13 Instructed Group 
participants had variations in heat-evoked SCR on medium heat trials and were included in analyses; 
we therefore take these results with caution and did not analyze associations between trial-by-trial 
SCR and brain responses. We also evaluated cue effects on anticipatory SCR, that is responses to the 
cue in the interval prior to heat stimulation, in exploratory analyses. In contrast to other outcomes, 
anticipatory arousal was associated with a main effect of Cue and a significant Group x Phase interac-
tion (see Figure 4—source data 1), but we did not observe any interactions between Cue and Phase, 
suggesting that anticipatory responses did not vary as contingencies change. However, analyses were 
limited to 29 participants and Bayesian analyses indicated that the data support the null hypothesis of 
no effect, and thus we do not make inference based on anticipatory arousal.

Figure 4. Expectations and pain ratings update as contingencies change. We analyzed cue-based expectations and the effects of cues on pain ratings 
in response to medium heat across the entire task, including reversals. Reversals were coded relative to instructions in the Instructed Group and 
relative to experience in the Uninstructed Group (see Figure 1C). (A) Expectancy ratings across the entire task. Both groups updated expectations 
as contingencies reversed. (B) Cue-based differences in expectancy. The Instructed Group (Red) shows larger differences in expectancy as a function 
of phase, although both groups show significant Cue x Phase interactions across the task, indicating that both instructions and experiential learning 
dynamically shape expectations. (C) Effects of current cue contingencies on subjective pain. We analyzed Cue x Phase interactions on pain to evaluate 
whether individuals report higher pain with the cue that is currently paired with high heat (Original High Cue on original contingency blocks, Original 
Low Cue on reversed blocks). Both groups reported higher pain when medium heat was paired with the current high cue relative to the current low cue. 
(D) Effects of current cue contingencies on heat-evoked SCR. Similar to pain, both groups displayed elevated heat-evoked SCR when medium heat was 
paired with the current high cue relative to the current low cue. (E) Pain reversals are larger in Instructed Group participants. As with expectancy ratings, 
both groups showed significant reversals of cue effects on subjective pain as contingencies changed, but reversals were larger in Instructed Group 
participants. Individual participants’ ratings are presented in Figure 4—figure supplement 1 and retrospective ratings are reported in Figure 4—figure 
supplement 2. Errors and shaded regions denote standard error of the mean (n = 20 per group).

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Cue effects on skin conductance responses.

Figure supplement 1. Cue and phase effects for individual participants.

Figure supplement 2. Retrospective ratings.

https://doi.org/10.7554/eLife.73353
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Cue effects on heat-evoked responses in pain-related regions reverse 
as contingencies change, irrespective of instruction, and prefrontal 
regions mediate cue effects on subjective pain 

Behavioral analyses indicated that predictive cues modulated expectations and subjective pain, and 
that cue effects on both outcomes updated as contingencies reversed. We next asked which brain 
regions mediated these effects. We were most interested in current cue effects on brain responses to 
medium heat, that is the Cue x Phase interaction (see Materials and methods and Figure 5A).

Table 4. Multilevel model evaluating effects of Group, Cue, and Phase on medium heat pain across the entire task*.

Predictors

Estimates Confidence intervals
P-Value / probability of 
direction Bayesian estimates†

LMER‡ NLME§ BRMS† LMER‡ NLME§ BRMS† LMER‡ NLME§ BRMS† % in ROPE Rhat ESS

All participants 
(n=40)

(Intercept) 3.63 3.624 3.621
3.31–
3.95

[3.301, 
3.948]

[ 3.342, 
3.889] <0.001 0.000 100.00% 0 1.001 2237.328

Group 0.11 0.100 0.103
–0.22–
0.43

[–0.233, 
0.433]

[–0.162, 
0.379] 0.52 0.546 73.12% 62.4 1.002 2181.022

Cue 0.29 0.286 0.287
0.14–
0.44

[0.146, 
0.426]

[ 0.160, 
0.413] <0.001 0.000 100.00% 8.425 1 17294.743

Phase 0.1 0.100 0.104
0.00–
0.20

[0.001, 
0.198]

[ 0.015, 
0.183] 0.046 0.047 97.38% 91.908 1 10287.406

Group * Cue 0.06 0.095 0.065
–0.09–
0.21

[–0.045, 
0.235]

[–0.062,, 
0.189] 0.401 0.182 79.30% 92.3 1 17827.085

Group * Phase –0.01 –0.002 –0.005
–0.11–
0.09

[–0.1, 
0.097]

[–0.087, 
0.079] 0.907 0.974 54.11% 99.925 1 10239.068

Cue * Phase 0.58 0.643 0.582
0.38–
0.78

[0.443, 
0.843]

[ 0.415, 
0.740] <0.001 0.000 100.00% 0.042 1 11512.539

(Group * Cue) 
* Phase 0.24 0.248 0.241

0.04–
0.44

[0.048, 
0.447]

[ 0.077, 
0.400] 0.018 0.015 98.97% 25.2 1 10802.199

Instructed Group 
(n=20)

(Intercept) 3.74 3.732 3.731
3.32–
4.16

[3.313, 
4.15]

[ 3.363, 
4.107] <0.001 0.000 100.00% 0 1.001 1614.785

Cue 0.36 0.386 0.353
0.14–
0.58

[0.182, 
0.59]

[ 0.156, 
0.530] 0.001 0.000 99.83% 5.775 1 13912.092

Phase 0.1 0.100 0.098
–0.02–
0.22

[–0.03, 
0.23]

[–0.003, 
0.194] 0.105 0.133 94.46% 88.158 1 12203.321

Cue * Phase 0.84 0.904 0.836
0.52–
1.17

[0.58, 
1.227]

[ 0.559, 
1.112] <0.001 0.000 99.99% 0.05 1 9283.385

Uninstructed Group 
(n=20)

(Intercept) 3.53 3.531 3.526
3.04–
4.02

[3.04, 
4.022]

[ 3.098, 
3.955] <0.001 0.000 100.00% 0 1.001 2390.769

Cue 0.23 0.194 0.228
0.01–
0.44

[–0.004, 
0.391]

[ 0.058, 
0.411] 0.037 0.054 98.09% 33.975 1 19966.344

Phase 0.11 0.099 0.107
–0.05–
0.27

[–0.05, 
0.248]

[–0.025, 
0.245] 0.19 0.192 90.18% 81.167 1 9498.139

Cue * Phase 0.35 0.411 0.354
0.11–
0.60

[0.169, 
0.653]

[ 0.158, 
0.555] 0.004 0.001 99.58% 8.133 1 12670.552

*This table presents results of a linear mixed model predicting subjective pain on medium heat trials as a function of Group (Instructed vs Uninstructed), Cue (Original High vs 
Original Low), and Phase (Original vs Reversed) across all participants, as well as post-hoc tests in each Group. See Table 1 for additional information about model specification and 
presentation.

†Estimates based on Bayesian model linear mixed models using the ‘brms’ function (Bürkner, 2017) using the following code: brmPain~Group 
*Cue*Phase+(1+Cue*Phase|Subject,prior = set_prior("normal(0,2.5)", class="b"), save_all_pars = TRUE, silent = TRUE, refresh = 0, iter = 4000,, warmup = 1000). Posterior estimates 
and the Region of Partial Equivalence were obtained using the “describe_posterior” function from the package BayesTestR (Makowski et al., 2019a) and interpreted as in Makowski 
et al., 2019b. The Region of Partial Equivalence (ROPE) was defined as [–0.176, 0.176] across all participants, [–.170,.170] when restricted to the Instructed Group, and [–.181,.181] when 
restricted to the Uninstructed Group.

‡Estimates based on a linear mixed effects model implemented in the ‘lmer’ function of lme4 (Bates et al., 2015) using the following code: 
lmer(PainMedium~Group*Cue*Phase+(1+Cue*Phase|Subject)).

§Estimates based on a linear mixed effects model implemented in the ‘lme’ function of nlme (Pinheiro et al., 2021) including autoregression using the following code: 
lme(Pain~Group *Cue*Phase, random = ~1 + Cue*Phase|Subject, correlation = corAR1(), na.action=na.exclude).

https://doi.org/10.7554/eLife.73353
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Figure 5. Mediation of current cue effects on medium heat pain. We examined brain mediators of current contingency effects on perceived pain on 
medium heat trials. Results are FDR-corrected within pain modulatory regions and across the whole brain. (A) Mediation model. We tested for brain 
regions that mediate the effects of current cue contingencies on subjective pain, corresponding to the reversals we observed (Figure 4). (B) Path A: 
effects of current contingencies. Path a identifies brain regions that show greater activation with the current high pain cue (e.g. Original High Cue 
during original contingencies, Original Low Cue during reversed contingencies), relative to the current low pain cue. Within pain modulatory regions 
(see Figure 5—figure supplement 1), we observed positive Path a effects (HM >LM) in the bilateral anterior insula, dorsal anterior cingulate, right 
anterior prefrontal cortex, and left dorsal posterior insula, and negative Path a effects (LM >HM) in the left subgenual ACC. We extracted trial-by-trial 
estimates from the left anterior insula and visualized average responses as a function of Group, Cue, and Phase (bottom left; Figure 2). Both groups 
showed greater left insula activation when medium heat was preceded by the Current High Cue, and cue effects did not differ by group. Differences 
were confirmed with extracted average timecourses (see Figure 5—figure supplement 3). Whole brain FDR-correction (bottom right) additionally 
identified positive Path a effects in the M1, S1, and right inferior parietal lobule (see Figure 5—figure supplement 4). (C) Mediation of current cue 
effects on pain. We observed significant negative mediation by several pain modulatory regions, including (from left to right) the subgenual ACC, the 
right VMPFC/OFC, the dorsomedial prefrontal cortex, and the left DLPFC. Extracting responses from each of these regions indicated that individuals 
who showed larger cue effects (i.e. Path a effects) showed more negative associations between brain activation and subjective pain (i.e. Path b). This 
is consistent with the fact that mediation can be driven by the covariance between paths, and is consistent with a modulatory suppression effect. 
Representative correlations are depicted for the right OFC; r=–0.40, P<.001, with Instructed Group participants in red and Uninstructed Group in blue. 
(D) Path b: associations with pain controlling for cue. Path b regions are positively associated with pain, controlling for cue (and temperature, since we 
tested only medium heat trials). We observed positive Path b effects in the VLPFC, bilateral putamen, bilateral anterior insula, and other regions within 
the pain modulatory network (top). We also observed significant Path b effects on NPS and SIIPS expression. Spaghetti plots in the lower right illustrate 
associations between trial-level pattern expression and pain, controlling for cue, for all individuals (blue) and the entire sample (95% CI illustrated in 
gray). For additional regions identified in whole brain search and uncorrected results, see Figures 3–5 and Figure 5—source data 1 (whole-brain 
corrected results) and Figure 5—source data 2 (uncorrected results).

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Mediation of current cue contingencies: Small-volumes corrected results.

Source data 2. Mediation of current cue contingencies: Uncorrected results.

Figure supplement 1. A priori regions of interest.

Figure supplement 2. Current contingency mediation: Effects of cue and phase within pain modulatory network.

Figure supplement 3. Raw timecourses in Path A regions.

Figure supplement 4. Current contingency mediation: Whole-brain FDR correction.

Figure supplement 5. Raw timecourses in value-related regions of interest.

Figure supplement 6. Current contingency mediation: Whole-brain uncorrected.

Figure supplement 7. Current contingency mediation including Group as a moderator: Whole-brain uncorrected.

https://doi.org/10.7554/eLife.73353
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Path a identified regions that showed stronger activation in response to medium heat following 
current high pain cues relative to current low pain cues. Within pain modulatory regions, we observed 
significant positive Path a effects (current high cue >current low cue) in the bilateral anterior insula, 
left dorsal posterior insula, dACC, and right anterior prefrontal cortex, and negative associations in 
the left subgenual ACC (sgACC; see Figure 5B and Figure 5—source data 1). Extracting trial-level 
responses confirmed that regions with positive Path a activation showed greater activation when 
medium heat was preceded by the initial high pain cue relative to the initial low pain cue during the 
original contingences, whereas they showed greater activation when medium heat was paired with 
the initial low pain cue when contingencies were reversed, and these reversals were observed for 
both groups (see Figure 5B and Figure 5—figure supplements 2 and 3). Whole brain FDR correc-
tion additionally indicated positive Path a effects in left M1, S1, and right inferior parietal lobule (see 
Figure 5B, Figure 5—figure supplement 4, and Figure 5—source data 1). We observed marginal 
Path a effects on the bilateral striatum (see Table 2 and Figure 5—figure supplement 5); no other 
ROIs were modulated by current cue contingencies and there were no effects of current cues on the 
NPS or SIIPS (see Table 2).

Path b identified voxels that were associated with subjective pain while controlling for cue (see 
Materials and Methods). We observed positive Path b effects within pain-related regions including 
bilateral anterior insula, pregenual ACC, bilateral putamen, bilateral amygdala, left thalamus, right 
ventrolateral prefrontal cortex (VLPFC), and right middle insula (see Figure 5D and Figure 5—source 
data 1). Whole brain FDR-correction also revealed positive Path b effects in the bilateral cerebellum, 
right S1, bilateral superior parietal lobule, and other regions (see Figure 5D, Figure 5—figure supple-
ment 4, and Figure 5—source data 1). No negative Path b effects survived correction within the 
pain modulatory mask or whole brain search. We observed significant Path b effects on responses to 
medium heat in the bilateral striatum, as well as both signature patterns (see Figure 5D and Table 2).

Finally, we tested for voxelwise mediation of current cue effects on pain. Within regions previously 
implicated in studies of pain and placebo, we observed significant negative mediation by the right 
VMPFC/OFC, left dorsolateral prefrontal cortex (DLPFC), the dorsomedial prefrontal cortex (DMPFC), 
and the sgACC (see Figure 5C and Figure 5—source data 1). Whole brain FDR correction addition-
ally identified negative mediation in the left inferior parietal lobule (IPL; see Figure 5—figure supple-
ment 4). There were no positive mediators of cue effects in pain in voxel-wise analyses. Negative 
mediation is consistent with suppression; indeed, extracting responses within mediators indicated 
that individuals with the strongest positive Path a effects (i.e. HM >LM) in these regions showed large 
negative associations between activation and pain (see Figure 5C). This suppression may be consis-
tent with down-regulation in modulatory regions. We did not observe mediation by any value-related 
ROI or signature pattern (see Table 2). See Figure 5—figure supplement 6 and Figure 5—source 
data 2 for whole-brain uncorrected results.

Notably, we did not observe significant moderation by Group in any of the paths at FDR-corrected 
thresholds or in any of our a priori regions of interest (i.e. correction within pain modulatory regions 
or whole brain, ROI-wise analyses, or pain signature patterns). This suggests that the dynamic effects 
of predictive cues and reversals on pain-related brain responses are similar whether individuals learn 
through instruction or experience, despite stronger influences of cues on subjective pain within the 
Instructed Group. Uncorrected results, which do point to potential group differences in Path a effects 
in the rostral ACC, left hippocampus, and left thalamus, are presented in Figure 5—figure supple-
ment 7 and Figure 5—source data 2.

Responses in brainstem, orbitofrontal cortex, and right prefrontal 
cortex maintain initial contingencies despite reversals, particularly in 
uninstructed participants
While the main mediation analysis isolated brain regions whose responses to cues on medium heat 
trials updated upon reversal, some regions may show sustained responses to initial contingencies. 
We therefore conducted a second mediation analysis to identify regions that responded to original 
contingencies and did not reverse as contingencies changed. We were most interested in Path a, 
which identified regions that showed stronger activation in response to cues that were originally 
paired with high pain relative to cues that were originally paired with low pain (see Figure 6), while 
controlling for current contingencies. No regions survived FDR correction within pain modulatory 
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regions, and there were no effects of original cues on the NPS or SIIPS (all p’s>0.2). Whole brain 
correction revealed significant positive Path a effects (original high cue >original low cue) in a brain-
stem cluster overlapping with the rostroventral medulla (RVM; consistent with the pontine reticular 
nucleus based on the Brainstem Navigator; Singh et al., 2021), as well as the left medial OFC (area 
Fo3), right lateral prefrontal cortex, right DLPFC, medial cerebellum, and right occipital cortex (see 

Figure 6. Original cue effects on medium heat pain. We conducted a second mediation analysis to isolate effects of original contingencies, controlling 
for current contingencies. (A) Effects of original contingencies. The goal of our second mediation analysis was to specifically identify regions that 
continued to respond to the original contingencies across the entire task, regardless of reversals. (B) Path a: Regions that show greater activation 
to original high pain contingencies despite reversals. Path a identified regions that showed greater activation to the Original High Cue (dark gray) 
relative to the Original Low Cue (light gray) across the entire task, while controlling for current contingencies. No voxels survived correction within pain 
modulatory regions. However, whole brain correction revealed that a number of regions including the brainstem’s rostroventral medulla (RVM), right 
DLPFC, left medial OFC (mOFC), and other regions (see Figure 6—figure supplement 2 and Figure 6—source data 1) continued to show higher 
activation when medium heat was paired with the original high pain cue regardless of Phase. Extracting trial-by-trial responses from the RVM (top) 
confirmed that this region showed greater heat-evoked activation with the Original High Cue during both original and reversed contingencies and 
that effects were present in both the Instructed Group and the Uninstructed Group. In the mOFC, however, responses did reverse within the Instructed 
Group (bottom), suggesting that failure to reverse was driven by Uninstructed Group participants. Similar effects were observed in the VMPFC region 
of interest (See Figure 5—figure supplement 5). See Figure 6—figure supplements 2 and 3 for means within other Path a regions. (B) Associations 
between original contingencies and pain were statistically mediated by a cluster in the right superior frontal gyrus, in which individuals who had larger 
effects of original cues on brain responses (controlling for current contingencies; i.e. Path a, x-axis) also had stronger negative associations between 
brain activation and subjective pain (Path b, y-axis). There were no additional mediators of original cue effects on pain based on whole brain correction 
identified additional effects in the right DLPFC, precuneus, and cerebellum (see Figure 6—figure supplement 1 and Figure 6—source data 1). Whole 
brain uncorrected results are presented in Figure 6—figure supplements 4 and 5 and Figure 6—source data 2.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Mediation of original cue contingencies: Small-volumes corrected results.

Source data 2. Mediation of original cue contingencies: Uncorrected results.

Figure supplement 1. Original contingency mediation: Whole-brain FDR correction.

Figure supplement 2. Original contingency mediation: Effects of cue and phase.

Figure supplement 3. Raw timecourses in Path A regions.

Figure supplement 4. Original contingency mediation: Whole-brain uncorrected results.

Figure supplement 5. Original contingency mediation, including Group as a moderator: Whole-brain uncorrected results.
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Figure 6B, Figure 6—figure supplement 1, and Figure 6—source data 1) there were no negative 
Path a effects. Extracting trial-level responses from Path a regions (see Figure 6B and Figure 6—
figure supplements 2 and 3) indicated that effects in most regions were driven primarily by lack of 
reversal in the Uninstructed Group, although we did not observe significant moderation by Group in 
any regions at FDR-corrected thresholds (see Figure 6—figure supplement 5 and Figure 6—source 
data 1), and that only the RVM maintained original contingencies in both groups. ROI-wise analyses 
within value-related regions indicated the VMPFC was significantly modulated by initial contingen-
cies (see Table 2) driven by greater activation in responses to the original low pain cue. Extracting 
timecourses suggests that these differences were driven by the Uninstructed Group (see Figure 5—
figure supplement 5) and an adjacent region of VMPFC showed significant moderation by Group 
in uncorrected voxelwise analyses (see Figure 6—figure supplement 4 and Figure 6—source data 
2), although we did not observe significant group differences in ROI-wise analyses when we included 
Group as a potential moderator (p>0.6), and Path a effects remained significant when controlling for 
Group (a=–0.09, p=0.019).

Path b effects were similar to those observed when controlling for current cues; see Figure 6—
figure supplement 1, Figure 6—source data 1, and Table 2. Whole brain correction revealed signif-
icant negative mediation of original cue effects on pain in the right superior temporal gyrus (see 
Figure 6B, Figure 6—figure supplement 1, and Figure 6—source data 1). Extracting responses 
from this region indicated that, similar to mediators of current cues on pain, mediation was driven 
by the covariance between Paths a and b, such that individuals who showed stronger original cue 
effects on right superior temporal gyrus responses to heat also showed stronger negative associ-
ations between activation and subjective pain (see Figure  6B and Figure  6—figure supplement 
2). Additional regions identified in uncorrected voxelwise analyses are reported in Figure 6—figure 
supplement 3 and Figure 6—source data 2. Finally, consistent with mediation of current contingen-
cies, Group did not moderate Path b or mediation effects even at uncorrected thresholds, indicating 
associations between brain activation and pain were similar regardless of instruction (see Figure 6B 
and Figure 6—figure supplement 4).

Quantitative models reveal that instructed participants reverse 
expectations upon instructions and learning is faster in uninstructed 
participants
We observed no group differences in the effects of cues and reversals on brain responses to noxious 
stimuli in pain-related regions, suggesting that pain-related responses are mediated similarly whether 
or not participants are instructed about contingencies. However, we did observe possible group differ-
ences in the VMPFC and other regions that maintained original contingencies in the Uninstructed 
Group, but not the Instructed Group, although group differences were only evident in uncorrected 
voxelwise analyses. Our mediation models and behavioral analyses that include effects of Phase 
assume that expectations and responses update completely upon reversal, either through instruction 
in the Instructed Group or when contingencies reverse in the Uninstructed Group. However, these 
models may not capture differences if dynamic learning proceeds more gradually (i.e. continuously 
as a function of pairings between cues and temperatures), and it is possible that groups differ in the 
dynamics of learning and associations between learning and brain activation, consistent with previous 
work (Atlas et al., 2016).

To formally examine these dynamics, we applied a quantitative model of instructed reversal 
learning (Atlas et al., 2016; Atlas and Phelps, 2018) which accounts for how expectations update 
dynamically as a function of both experience and instruction. The model includes two parameters: ɑ, 
a standard learning rate that captures the extent to which expected value (EV) updates in response 
to prediction errors, and ρ, which guides whether and how EV reverses upon instruction (see Mate-
rials and methods). Here, we extended this model to predict subjective pain on medium heat trials. 
This model accounted for variations in pain reports better than other plausible models, including a 
standard Rescorla-Wagner model without the ρ parameter and a hybrid model of adaptive learning 
modified to reverse upon instruction (Atlas et al., 2019).

Consistent with our task manipulation, instructed reversal parameters (i.e. ρ) varied as a function 
of Group (fit to individuals: t(38) = 3.013, p=0.005; see Figure  7A), such that participants in the 
Instructed Group showed larger reversals at the time of verbal instruction (fit to individuals: Instructed: 
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M=0.62, SD = 0.35; Uninstructed: M=0.31, SD = 0.31). This confirms our task manipulation (instructed 
reversals should only be seen in the group that was exposed to instructions) and validates the model’s 
application to subjective pain. Consistent with our previous work on instructed threat learning (Atlas 
et al., 2016), learning rates (i.e. ɑ) were close to zero in the Instructed Group (M=0.065, SD = 0.22), 
indicating that there was little additional learning as a function of experience between instructed 
reversals, as might be expected given that feedback was entirely consistent with instructions. Learning 
rates were indeed higher in the Uninstructed Group (M=0.28, SD = 0.34), and differed significantly 
between groups (fit to individuals: t(38) = –2.32, p=0.026). Differences in ρ and ɑ were observed when 
models were fit to individuals, and when they were fit across the group using a jack-knife model fitting 
procedure. Jack-knife estimates revealed a significant group difference in the learning rate ɑ (t(1,38) 
= 33.07, p<0.001, CI = [0.69, 0.78]), driven by higher ɑ values in the Uninstructed Group (M=0.264, 
SE = 0.028) relative to the Instructed Group (M=0, SE = 0), and a significant group difference in 
the instructed reversal parameter ρ (t(1,38) = –9.41, p<0.001, CI = [–0.32, –0.21]) driven by higher 
ρ parameters in the Instructed Group (M=0.875, SE = 0.003), relative to the Uninstructed Group 
(M=0.139, SE = 0.022). Thus expected value updates primarily upon instruction in the Instructed 
Group with very little additional learning between reversals (consistent with the Cue x Phase interac-
tions we modeled behaviorally and that formed the foundation of our mediation models), whereas 
individuals in the Uninstructed Group update expected value over time as a function of experience, 
that is pairings between cues and heat, as depicted in Figure 7B.

Figure 7. Instructed learning model fit to pain on medium heat trials. We fit a computational model of instructed reversal learning (Atlas et al., 2016) 
to pain reports on medium heat trials to isolate the dynamics of expected value and how expected value updates with instruction. (A) Group differences 
in learning parameters. Fitting models to individuals revealed group differences in learning rate (α, left), such that participants in the Uninstructed Group 
(blue) showed stronger updates of expected value in response to prediction errors relative to the Instructed Group (red), whereas the Instructed Group 
showed stronger reversals at the time when instructions were delivered, based on the instructed reversal parameter (ρ, right). (B) Predicted timecourse 
of expected value based on jack-knife model fits. We used model parameters from a jack-knife model fitting procedure (see Materials and Methods) to 
generate predicted timecourse of expected value (EV) for each group. Here we depict model predictions for an example participant in the Instructed 
Group (left) and the Uninstructed Group (right). As shown in the second row, EV reverses immediately upon instruction in the Instructed Group and 
reverses more gradually in the Uninstructed Group. We focused on responses fit to medium pain ratings (fourth row) and modeled associations between 
heat-evoked activation and the timecourse of EV and unsigned PE on medium heat trials (bottom row).
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Expected value dynamically modulates responses to noxious 
stimulation, with differences between groups in the rostral anterior 
cortex
We next searched for neural correlates of dynamic expected value (EV) signals on medium heat trials. 
We used the learning time-course generated from fits to pain ratings in each group and searched for 
regions that correlated with EV. Figure 7B depicts example EV timecourses using the same parame-
ters that were used to evaluate associations between EV and medium heat-evoked brain responses 
in each group. We used robust regression to evaluate associations within each group, and those that 
were consistent while controlling for Group, or differed significantly between Groups.

Whole brain correction revealed significant positive associations with instruction-based EV in the 
right MPFC in the Instructed Group (see Figure 8—figure supplement 1, and Figure 8—source data 
1) and negative associations with feedback-driven EV in the left rACC in the Uninstructed Group (see 
Figure 8—figure supplement 1, and Figure 8—source data 1). Consistent with this, FDR correction 
within a priori pain modulatory regions revealed positive group differences (Instructed >Uninstructed) 
in the rACC, as well as the left anterior insula, left dorsal posterior insula, and the bilateral thalamus 
(see Figure 8A and Figure 8—source data 1). Extracting responses from these regions revealed that 
there were positive associations with EV in the Instructed Group, and negative associations in the 
Uninstructed Group. Whole brain correction additionally revealed positive differences in the DMPFC 
and left middle cingulate (see Figure 8A, Figure 8—figure supplements 1 and 2, and Figure 8—
source data 1). ROI-wise tests within a priori value related regions indicated that groups differed in 
the left striatum, driven by positive associations in the Instructed Group (see Table 2 and Figure 8B). 
Robust regression did not identify any significant associations across all participants (i.e. main effect, 
controlling for group) between EV and responses to medium heat based on corrected voxelwise anal-
yses or in regions of interest or signature patterns. However, uncorrected results indicate negative 
associations in the left lateral OFC, hippocampus, and other regions that have been implicated in 
prior studies (see Figure 8—figure supplement 3 and Figure 8—source data 2). Fitting models to 
heat-evoked autonomic responses revealed similar patterns of activation based on whole-brain and 
ROI-based correction (see Figure 8—figure supplement 4 and Figure 8—source data 3), and while 
group differences did not survive correction when we fit models to anticipatory SCR (see Figure 8—
figure supplement 5 and Figure 8—source data 4), we observed group differences in associations 
with EV in overlapping portions of the VMPFC and left putamen at uncorrected thresholds in all three 
models (see Figure 8—figure supplement 2 and Figure 8—source data 2–4). For complete results 
of models fit to SCR, see Figure 8—figure supplements 4–5 and Figure 8—source data 3 and 4.

We searched for correlates of instructed and feedback-driven EV signals within Instructed Group 
participants to test whether brain responses were preferentially related to instructed or feedback-
driven learning within participants exposed to both types of information. Controlling for uninstructed 
EV, instructed EV was positively associated with activation near the left nucleus accumbens based on 
correction within pain-related regions (see Figure 8—source data 5), and ROI-wise analyses revealed 
significant associations with instructed EV bilaterally in the striatum (see Table 2). Whole brain correc-
tion additionally identified positive associations in the left anterior insula, left rACC, and right DMPFC 
(see Figure  8—figure supplement 6 and Figure 8—source data 5). There were no regions that 
were preferentially associated with uninstructed EV within the Instructed Group in corrected voxel-
wise search or ROI-wise analyses. Finally, whole brain correction revealed significant differences 
between instructed and uninstructed EV in the bilateral middle cingulate (see Figure 8C, Figure 8—
figure supplement 6 and Figure 8—source data 5). Uncorrected voxelwise results are reported in 
Figure 8—figure supplement 7 and Figure 8—source data 5.

Associations with unsigned prediction error differ between groups
In addition to analyses of EV, we evaluated associations between brain responses to medium heat 
and unsigned prediction errors (PEs). No regions showed significant associations within pain related 
ROIs; however, whole brain correction revealed a positive association with PE, controlling for group, 
in a wide swath of contiguous activation encompassing the right anterior insula, right striatum, and 
right amygdala (see Figure 8D). Whole brain correction also revealed a significant difference between 
groups in a large contiguous cluster that included the right SII, right superior temporal gyrus, and 
right temporo-parietal cortex (see Figure 8E) driven by negative associations with PE in the Instructed 
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Figure 8. Group differences in associations with expected value and prediction error on medium heat trials. We used the timecourse of expected 
value (EV) based on fitting computational models to pain reports from each group (see Figure 7) to isolate the neural correlates of instructed and 
uninstructed expected value (EV) and prediction error (PE) during pain processing. We examined associations between brain responses to medium heat 
and the timecourse of EV and unsigned PE (i.e. absolute value of PE) and used robust regression (Wager et al., 2005) to compare groups. (A) Group 
differences in expected value within pain modulatory regions. The left dorsal posterior insula, left thalamus, and rostral anterior cingulate cortex (rACC) 
showed positive associations with EV within the Instructed Group (red) and negative associations within the Uninstructed Group (blue). Whole brain 
FDR-correction additionally identified group differences in the left middle cingulate cortex (see surface map). (B) Associations with EV in value-related 
ROIs. Extracting contrast values within a priori value-related regions of interest (ROIs) revealed significant associations in the bilateral striatum within 
the Instructed Group and significant group differences in the left striatum (see Table 4). (C) Comparing instructed and feedback-driven EV within the 
Instructed Group. Direct comparisons of the timecourse of EV within Instructed Group participants who were exposed to both types of information 
revealed significant differences in the middle cingulate cortex, driven by positive associations with instruction-based EV. (D) Main effects of unsigned PE. 
Unsigned PE was associated with activation across groups in the right insula, striatum, and right amygdala. (E) Group differences in unsigned PE. There 
were stronger associations with unsigned PE in the right SII and temporal gyrus, driven by negative associations in the Instructed Group and positive 
associations in the Uninstructed Group. (F) Associations with PE in value-related ROIs. ROI-wise analyses revealed significant associations between 
unsigned PE and activation in the right striatum and bilateral amygdala. See also Figure 8—figure supplements 1–9 and Figure 8—source data 1 
and 2. Error bars denote standard error of the mean (n = 18 per group).

The online version of this article includes the following source data and figure supplement(s) for figure 8:

Source data 1. Associations with expected value (EV): Small-volumes corrected results.

Source data 2. Associations with expected value (EV): Uncorrected results.

Source data 3. Associations with expected value (EV) based on fits to heat-evoked SCR.

Source data 4. Associations with expected value (EV) based on fits to cue-evoked SCR.

Source data 5. Comparing instructed and feedback-driven expected value (EV) within the Instructed Group.

Source data 6. Associations with unsigned prediction error (PE).

Figure supplement 1. Expected value: Whole-brain correction.

Figure supplement 2. Expected Value on medium heat trials: Moderation by group (Instructed >Uninstructed).

Figure supplement 3. Expected value based on fit to pain ratings: Whole-brain uncorrected results.

Figure supplement 4. Expected value based on fit to heat-evoked SCR: Whole-brain uncorrected results.

Figure supplement 5. Expected value based on fit to anticipatory SCR: Whole-brain uncorrected results.

Figure supplement 6. Instructed vs Feedback driven Expected Value within Instructed Group: Whole-brain corrected results.

Figure supplement 7. Instructed vs feedback driven expected value within instructed group: whole-brain uncorrected results.

Figure supplement 8. Absolute value of prediction error on medium trials: whole-brain corrected results.

Figure supplement 9. Absolute value of prediction error on medium trials: whole-brain uncorrected results.
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Group and positive associations in the Uninstructed Group (see Figure 8—figure supplement 8 and 
Figure 8—source data 6). Within value-related ROIs, unsigned PEs were positively associated with 
responses to heat in the right striatum and the bilateral amygdala (see Figure 8F and Table 2). Asso-
ciations with right striatum were observed within each group, whereas associations with amygdala 
were only observed in the Instructed Group; however, group differences were not significant in any 
region. Finally, there was no association between PE and NPS or SIIPS expression in either group (see 
Table 2). Voxelwise uncorrected results are reported in Figure 8—figure supplement 9 and Figure 
8—source data 6.

Post-task ratings
We used ANOVAs to evaluate effects of Group and Cue on post-task affect ratings, and to measure 
effects of Group, Cue, and Phase for retrospective expectancy ratings (i.e. retrospective ratings of 
expected pain at the beginning and end of the task as a function of Cue). There were no differences 
in reported affect as a function of Group or Cue (all p’s>0.09; see Figure 4—figure supplement 2). 
We observed a significant Group x Phase interaction on retrospective expectancy (F(1,36) = 4.386, 
p=0.043) and a marginal Group x Cue x Phase interaction (F(1,36) = 3.635, p=0.065). Post-hoc pair-
wise comparisons indicated that the Instructed Group reported differences in expected pain as a func-
tion of Cue at the beginning of the task (padjusted = 0.041), but not the end of the task (p>0.9), whereas 
the Uninstructed Group did not report significant differences at any point (all p’s>0.1).

Discussion
We measured whether cue-based expectancy effects on pain and brain responses to noxious heat 
update dynamically as contingencies change, and whether these relationships vary as a function of 
whether individuals learn through instruction or experience. All participants demonstrated robust cue-
based expectancy effects on pain, consistent with previous work from our group and others (Colloca 
et al., 2008a; Atlas et al., 2010; Wiech et al., 2014; Fazeli and Büchel, 2018; Jepma et al., 2018; 
Michalska et al., 2018; Koban et al., 2019; Abend et al., 2021). Here, we provide new evidence that 
predictive cues shape pain, autonomic responses, and heat-evoked brain activation even when contin-
gencies change repeatedly, whether reversals are accompanied by instructions or learned through 
experience. Reinforcement learning models indicated that these effects emerge dynamically, consis-
tent with error-driven learning. We observed dissociations in the associations between expected value 
and brain responses to heat in several brain regions, including the rostral anterior cingulate cortex 
(rACC), which was positively associated with expected value in the Instructed Group and negatively 
associated in the Uninstructed Group. Finally, cue effects on several pain-related regions including the 
bilateral anterior insula and dorsal anterior cingulate updated dynamically as contingencies changed 
regardless of group, whereas the RVM responded to original contingencies throughout the task. 
Dynamic cue effects on pain were mediated by modulatory frontal regions implicated in placebo anal-
gesia, including the VMPFC/OFC and DLPFC. Here we discuss these findings and their implications 
for future work and our understanding of pain, predictive processing, and the interaction between 
learning and instructed knowledge.

Our study presents a novel examination of expectancy-based pain modulation during reversal 
learning. Cue effects on pain reports, skin conductance, and responses to heat in several pain-related 
regions, including the bilateral anterior insula, dACC, and sgACC, reversed as contingencies changed, 
whether participants were instructed about contingencies or learned purely through experience. Thus 
pain, arousal, and brain responses to noxious stimulation are highly sensitive to changing contingen-
cies. However, we did not observe significant cue-based modulation of well-validated neural signature 
patterns that predict pain (Wager et al., 2013; Woo et al., 2017), although both patterns predicted 
pain when controlling for cue. This suggests that cue-based predictions may alter dynamic learning 
and update decision-making without changing underlying nociception, consistent with previous find-
ings in placebo analgesia (Zunhammer et al., 2018). The brain mediators of dynamic cue effects on 
pain, DLPFC, VMPFC, DMPFC and sgACC, further link our findings with placebo analgesia. Meta-
analysis indicates that these regions all play a modulatory role in placebo analgesia, with activation 
being inversely related to pain (Atlas and Wager, 2014b). The negative mediation (i.e. suppres-
sion) we observed is consistent with this modulation or down-regulation: Individuals who showed 
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greater activation of these regions in response to high pain cues showed stronger negative associa-
tions between brain activation and subjective pain, controlling for cue. Identifying factors that predict 
individual differences in brain mediators is an important direction for future research, as is testing the 
causal contributions of these modulatory regions to placebo analgesia and expectancy-based pain 
modulation through interventions such as transcranial magnetic stimulation (Krummenacher et al., 
2010) or in individuals with neurosurgical lesions (Motzkin et al., 2021).

While most regions that have been implicated in prior studies of placebo and expectancy-based 
pain modulation updated dynamically as contingencies changed, we observed sustained responses 
to initial contingencies in a portion of the brainstem consistent with the rostroventral medulla (RVM). 
RVM responses to medium heat stimuli were elevated in response to the original high pain cue rela-
tive to the original low pain cue and remained elevated throughout the task in both groups. Together 
with the periaqueductal gray (PAG), the RVM is a key component of the descending pain modulatory 
system (Fields, 2004; Fields, 2006), which regulates the release of endogenous opioids that can 
block ascending pain signals, a process thought to be critical for expectancy-based placebo analgesia 
(Levine et al., 1978; Ter Riet et al., 1998; Amanzio and Benedetti, 1999). Previous neuroimaging 
studies have demonstrated that placebo analgesia engages the RVM (Eippert et al., 2009; Crawford 
et al., 2021; Yanes and Akintola, 2022) and that placebo effects on the RVM are blocked by the opioid 
antagonist naloxone (Eippert et al., 2009). Preclinical work demonstrates that endogenous opioid 
release engages long lasting pain modulation (Watkins and Mayer, 1982a; Watkins and Mayer, 
1982b). We have hypothesized that placebo analgesia may engage endogenous opioids to lead to 
long lasting pain modulation, whereas pain-predictive cues may modulate pain dynamically through 
dopaminergic prediction errors (Atlas and Wager, 2012; Atlas, 2021). The fact that RVM responds to 
initial contingencies throughout the task might be consistent with such long-lasting effects, and may 
explain why instructions reverse placebo analgesia only after brief conditioning (Schafer et al., 2015). 
Interestingly, we did not observe cue-based modulation of the PAG in our analyses; however, an initial 
processing pipeline that used affine normalization rather than nonlinear warping (Atlas et al., 2021) 
indicated that the PAG also responded to initial contingencies throughout the task, similar to the 
RVM. Thus both opioidergic regions may be associated with long-lasting effects that do not update as 
contingencies change. Future studies should combine pain-predictive cues with opioid and dopamine 
antagonists or employ positron emission tomography to understand the contribution of endogenous 
opioids and dopamine to different forms of pain modulation.

Cue effects on pain-related brain responses did not differ between groups, i.e. as a function of 
whether individuals were instructed about contingencies, indicating that responses to contingency 
reversals and links with subjective pain are similar regardless of whether individuals learn through 
experience or instruction. Thus once an expectation or prediction is generated, it has similar effects 
on downstream responses regardless of how contingencies were established. Based on these find-
ings, one might assume that expectancy-based pain modulation and predictive coding operate simi-
larly whether predictions are generated via learning or instruction. However, quantitative learning 
models revealed differences between groups in how responses updated dynamically from trial to trial, 
which were in turn associated with differences in brain activation. Individuals who were exposed to 
instructed reversals updated pain immediately upon instruction without additional learning from inter-
mittent reinforcement, whereas individuals who learned purely from experience had higher learning 
rates, meaning they updated expectations as a function of pairings between predictive cues and heat 
outcomes. We observed similar differences when we fit models to heat-evoked skin conductance 
on medium trials in exploratory analyses. This is consistent with prior work focusing on autonomic 
arousal during threat learning (Atlas et al., 2016) and confirmation bias in reward-related decision 
making (Doll et al., 2009). Isolating the different timecourses of expected value and prediction error 
then allowed us to identify differences between groups in the brain circuitry associated with these 
computations.

Several regions, including the rostral anterior cingulate cortex (rACC), showed differential asso-
ciations with expected value (EV) depending on group. RACC activation was positively associated 
with EV in the Instructed Group (i.e. greater activation with high pain expectancy), and negatively 
associated with EV in the Uninstructed Group (i.e. greater activation with low pain expectancy). The 
rACC also showed preferential associations with instruction-based EV when we compared associa-
tions between instruction-based and experience-based EV within the Instructed Group. The rACC has 
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been implicated in numerous studies of placebo analgesia and expectancy-based pain modulation 
(Petrovic et al., 2002; Bingel et al., 2006; Eippert et al., 2009; Geuter et al., 2013), and is a key 
component of the opioidergic endogenous pain modulation circuit (Zubieta et  al., 2005; Wager 
et al., 2007; Navratilova et al., 2015), along with the PAG and the RVM. However, in contrast to the 
RVM, which showed stable responses over time regardless of instruction, the rACC showed different 
dynamics and different patterns of responses to threat during reversal learning depending on whether 
individuals were exposed to contingency instructions. This may be consistent with other studies that 
implicate the rACC as a key region that determines whether or not placebos engage descending 
modulation through connectivity with the PAG (Bingel et al., 2006; Eippert et al., 2009); in other 
words, rACC might act as a hub to flexibly engage downregulation depending on contextual factors. 
Future studies should examine the relationship between these regions and whether connectivity 
differs in more dynamic environments or as a function of instruction. We observed similar differences 
in value coding in the left dorsal posterior insula, a region thought to be specific for pain (Segerdahl 
et al., 2015), and in portions of the bilateral thalamus that connect with the prefrontal cortex and the 
temporal lobe (Behrens et al., 2003; Johansen-Berg et al., 2005).

In addition to regions implicated in prior studies of placebo and pain modulation, we evaluated 
the contribution of systems involved in value-based learning, namely the striatum, OFC/VMPFC, 
and the amygdala. We previously observed dissociations in these regions during aversive learning 
(Atlas et al., 2016), such that responses in the striatum and OFC/VMPFC tracked EV that updated 
with instructions, whereas the right amygdala was associated with EV based purely on experiential 
learning. The present study builds on this work by focusing on heat-evoked responses (i.e. the US in 
a fear conditioning model), rather than anticipation (i.e. responses to the CS), which allows us to test 
whether error-based learning shapes responses to noxious stimuli and whether this learning is modu-
lated by instructions. ROI-based analyses indicated that the bilateral striatum was associated with 
EV that updated based on instruction in the Instructed Group, consistent with our previous findings 
(Atlas et al., 2016). VMPFC/OFC associations with value were also sensitive to instructions, although 
we observed different patterns across the broad region and did not observe consistent findings in 
ROI-based or corrected analyses. For instance, uncorrected voxelwise analyses revealed that the asso-
ciation between EV and VMPFC activation differed between groups (positive associations with EV 
in the Instructed Group and negative associations with EV in the Uninstructed Group), regardless of 
whether models were fit to pain, heat-evoked SCR, or anticipatory SCR. In contrast, we observed 
negative associations with EV in the left lateral OFC in both groups. Both portions of the VMPFC/OFC 
have been implicated in previous studies of placebo analgesia (Lieberman et al., 2004; Wager et al., 
2004; Petrovic et al., 2010; Ellingsen et al., 2013), and we previously showed that pain-predictive 
cues modulate responses in both regions, with greater activation when medium heat is paired with 
low pain cues than high pain cue (Atlas et al., 2010). Lateral OFC is thought to evaluate value of 
independent options, whereas medial OFC and VMPFC have been linked to value-based choice for 
the purpose of comparison (Rudebeck and Murray, 2014). We recently showed that surgical lesions 
of the bilateral VMPFC enhance instructed cue effects on pain in a stable environment (Motzkin 
et al., 2021). Additional studies that use lesion symptom mapping in heterogeneous frontal samples 
or measure aversive learning in nonhuman primates can provide further insights on the contribution 
of different portions of the VMPFC/OFC to pain modulation and instructed learning. Together, these 
findings build on previous work indicating that the striatum and VMPFC update upon instruction in 
both appetitive and aversive learning (Li et al., 2011a; Atlas et al., 2016) and that OFC value signals 
are sensitive to higher order knowledge across species (Wilson et al., 2014; Lucantonio et al., 2015; 
Schuck et al., 2018).

Because we focused on responses to the US rather than the CS here, we also were able to extend 
previous work by examining the role of unsigned prediction errors (PEs), which are linked to associa-
bility, which gates attention and learning dynamically. Associability has been linked to the amygdala in 
previous studies of pain and aversive learning (Li et al., 2011a; Zhang et al., 2016; Atlas et al., 2019), 
meta-analyses indicate that unsigned PEs are associated with activation in the dorsal and ventral 
striatum, as well as other regions (Corlett et al., 2022), and one study of aversive learning showed 
responses to both associability and unsigned PE in the amygdala (Boll et al., 2013). Consistent with 
these studies, we observed associations between unsigned PE and activation in the bilateral amyg-
dala and the right striatum in both groups in ROI-based analyses. Whole brain analyses revealed 
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associations between unsigned PEs and activation in the right hemisphere encompassing the insula, 
striatum, and amygdala, and that the associations between PE and activation in the right SII and 
temporal cortex differed across groups (negative associations in the Instructed Group and positive in 
the Uninstructed Group). Thus, although cue effects on subjective pain were mediated similarly across 
groups, we still observe unique responses to PE that differed between groups.

We note that the amygdala’s association with PE within the Instructed Group indicates that instruc-
tions do have some impact on amygdala activation, seemingly in contrast to our previous work on 
instructed learning during fear conditioning (Atlas et  al., 2016; Atlas, 2019). However, because 
error-driven learning was nearly absent between instructed reversals in the Instructed Group, the PE 
regressor in this group captures a constant effect that decreases linearly over time, consistent with 
prior evidence that amygdala responses habituate during aversive learning (Büchel et al., 1998). Thus 
we did not observe evidence of amygdala sensitivity to instructions per se in the present study. The 
absence of pure experiential learning signals in the right amygdala may reflect the present study’s 
focus on BOLD responses to noxious heat (i.e. unconditioned stimuli), in contrast to our previous 
study (Atlas et al., 2016) which focused on responses to unreinforced cues (i.e. conditioned stimuli). 
In addition, our experimental design was optimized for analyses of the heat period rather than the 
cue (i.e. we used a fixed anticipation period to avoid variations in dread that might accompany jittered 
anticipatory intervals Berns et al., 2006), so we were unable to separately analyze responses to pain-
predictive cues to determine whether the amygdala showed similar responses in the present study. 
We note that raw timecourses suggest that cue-based differences in the amygdala may emerge in 
response to predictive cues, as well as during the heat period (see Figure 5—figure supplement 
5). This contrasts with the bilateral striatum and nearly all regions identified in mediation analyses, 
in which cue-based differences do not emerge until the heat period. Future work should incorporate 
longer delays between cues and aversive outcomes or utilize intermittent reinforcement (e.g. catch 
trials without heat presentation) to separately analyze responses to cues and noxious heat in the 
amgydala, VMPFC, and other key regions.

These results highlight that pain-related outcomes (e.g. subjective ratings, physiological arousal, 
learning systems, sensory circuits) may show distinct patterns of learning and sensitivity to higher 
order factors. Studies of expectancy-based pain modulation and predictive coding in other domains 
should measure parallel behavioral outcomes to capture the complexity of perceptual decision-
making, rather than focusing on a single outcome measure (e.g. choices during instrumental 
learning).

Future directions and outstanding questions
This work highlights several promising avenues of inquiry that should be addressed in future work, in 
addition to those highlighted above. Comparisons between appetitive and aversive learning would 
reveal whether the differences observed here are driven by threat-specific processes or general differ-
ences in adaptive learning and flexibility. One limitation of our design is that the two groups received 
slightly different instructions at the start of the experiment: The Instructed Group was informed about 
cue-heat contingencies, whereas the Uninstructed Group was instructed to pay attention and try to 
figure out the relationships between cues and heat outcomes. Although these differences did not 
impact brain mediators of expectancy or pain, the latter instruction would be more likely to engage 
inference and model-based learning (Doll et al., 2012; Doll et al., 2015; Dayan and Berridge, 2014). 
These differences should be resolved in future work by directly comparing instructed and model-
based learning. In addition, future studies should include a group that undergoes initial learning in the 
absence of instructions and then receives instructed reversals to determine whether learned associa-
tions can be reversed on the basis of higher order knowledge, consistent with dissociations observed 
in studies of placebo (Benedetti et al., 2003; Schafer et al., 2015). Alternatively, future studies can 
include outcomes that diverge from instructions to examine the interplay between instructed and 
experiential learning (e.g. Doll et  al., 2009). In addition, future work should manipulate not only 
instructions and learning but also the uncertainty of the expectation to understand how instructions, 
learning, uncertainty, and precision drive perception from a predictive coding framework. Prior work 
on placebo analgesia indicates that the precision of the expectation is linked to placebo responses 
in the PAG and RVM (Grahl et al., 2018); it is unknown how precision and uncertainty modulated 
responses in the present study.
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We chose to focus on within-subjects effects and did not examine how these differences vary across 
individuals as a function of factors such as anxiety, which has previously been shown to impact adap-
tive learning (Browning et al., 2015). However, we recently examined how instructed reversals impact 
pain expectations in youth with clinical anxiety and found that youth with and without anxiety showed 
similar responses to expectancy and instruction, although youth with anxiety showed greater auto-
nomic arousal during pain anticipation (Abend et al., 2021). In exploratory analyses, we measured the 
association between anticipatory responses to the cues themselves and brain responses to noxious 
heat, however we did not observe associations between anticipatory arousal and responses within a 
priori networks. We also found that quantitative models fit to heat-evoked and anticipatory SCR were 
highly similar to models fit to subjective pain. However, as the number of participants with useable 
skin conductance or pupil dilation data was extremely limited due to technical malfunctions and varia-
tions in arousal, we consider these findings exploratory and do not make strong claims based on these 
results. Future studies should continue to compare the effects of learning, instructions, and expecta-
tions on subjective pain with effects on physiological outcome measures to determine whether auto-
nomic responses to noxious stimuli are shaped by pain decision-making (Mischkowski et al., 2019) 
or whether physiological responses are shaped through independent pathways, e.g. through a dual 
process model (Ohman and Soares, 1993; Mineka and Ohman, 2002).

Conclusion
Together, these findings reveal that instructions and learning lead to both interactive and dissociable 
processes even within individuals. We view these findings in light of theories on the relationship 
between conditioning and expectancy (Rescorla, 1988; Kirsch, 1997; Kirsch et al., 2004) and long-
standing debates about whether placebo effects depend on conditioning or expectancy. We suggest 
that considering the brain mechanisms that mediate dynamic expectancy-based pain modulation 
shines new light on these distinctions. The human brain contains parallel pain modulatory circuits that 
(i) update as contingencies change (e.g. insula), (ii) continue to respond to initial contingencies regard-
less of whether they were learned through instruction or experience (e.g. RVM), or (iii) respond to 
experiential learning differentially as a function of whether or not individuals were exposed to instruc-
tions (e.g. rACC). These findings indicate that we gain new insights on clinically relevant outcomes 
from measuring how instructions and learning interact to shape outcomes, rather than assuming 
that circuits and processes are sensitive to either expectancy or conditioning. Understanding these 
processes in clinical populations may shed light directly on the mechanisms of therapeutic interven-
tions, for example the interplay between instructed and exposure-based interventions in cognitive 
behavioral therapy for chronic pain and affective disorders.

Materials and methods
Participants
Forty-nine participants (25 female, Mage = 28.04 years, SDage = 7.04) were recruited and consented to 
participate in an fMRI study designed to measure ‘how pain and emotions are processed in the human 
brain and influenced by psychological factors’. Participants provided informed consent in accordance 
with the Declaration of Helsinki, and the protocol was approved by the NIH’s Combined Neuroscience 
Institutional Review Board (Protocol 15-AT-0132, PI: Atlas). Participants were eligible to participate if 
they were between 18 and 50, fluent in English, healthy (i.e. had no medical conditions that affect pain 
or somatosensation, no psychiatric, neurological, autonomic, or cardiovascular disorders, no chronic 
systemic diseases, and no medication that can affect pain perception), right-handed, and had received 
a medical exam at NIH within the previous year. All participants underwent urine toxicology testing 
to ensure they had not used recreational drugs that alter pain. Participants were drawn from a pool of 
subjects who had completed an initial screening visit that tested whether participants reliably reported 
increased pain with increased temperatures (r2 >0.4) and exhibited pain tolerance at or below 50 °C 
(the maximum temperature we applied during the study). Nine participants who provided consent did 
not complete the experiment due to ineligibility based on calibration (n=4) technical failures (n=1), 
compliance with procedures (n=2), or anatomical abnormalities identified in a clinical scan (n=2) and 
were not included in the current analyses. The final sample included 40 participants (22 female; Mage 
= 27.00 years, SDage = 6.21). As detailed in our clinical protocol (15-AT-0132; https://clinicaltrials.gov/ 
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identifier NCT02446262), sample size was based on power analyses from our previous studies and on 
a behavioral pilot experiment conducted prior to the fMRI study. We computed the effect size of cue-
based differences in reported pain in a sample of 12 participants (6 per group) and determined that 
we need a minimum of 5–9 participants to achieve 80–95% power to detect cue-based differences 
in pain, including reversals (data available upon request). We therefore included 20 participants per 
group in the fMRI experiment. Two participants in the Uninstructed Group and two participants in 
the Instructed Group were excluded from fMRI analyses due to excessive head motion or technical 
issues during the scan (see Procedure), leaving a final sample of 36 participants for fMRI analyses (18 
Uninstructed Group, 18 Instructed Group). All 40 participants were included in behavioral analyses.

Materials and procedure
Stimuli and apparatus
We delivered thermal stimulation to the left (non-dominant) volar forearm using a 16x16 ATS contact 
heat thermode controlled with a Pathway pain and sensory evaluation system (Medoc Ltd, Ramat 
Yisha, Israel). Each heat stimulus lasted 8 s and consisted of three phases: a 1.5 s on-ramp phase in 
which the temperature of the thermode rose from 32 °C to the target temperature level, a 5 s plateau 
phase in which target temperature was maintained, and a 1.5 s off-ramp phase in which the tempera-
ture returned to 32 °C. Thermode placement was adjusted between each block of trials (i.e. every 12 
trials) to avoid sensitization, habituation, and skin damage. Temperatures ranged from 36°C to 50°C, 
in increments of 0.5 °C, and were selected based on a thermal pain calibration conducted immediately 
prior to the experiment. Thermode temperature was maintained at 32 °C between trials.

Experiment Builder (SR-Research, Ontario, Canada) was used to deliver visual and auditory stimuli, 
to trigger noxious stimulation on the Pathways computer, and to synchronize task timing with physio-
logical recording. Physiological data, including electrodermal activity (EDA), respiration, electrocardi-
ography, and peripheral pulse, were recorded from the left hand using Biopac recording equipment 
and accompanying AcqKnowledge software (Goleta, CA) at a sample rate of 500 Hz. Participants 
recorded pain ratings using a trackball with their right hand while EDA was recorded from the left 
hand and heat was applied to the left arm. EDA was collected using Biopac’s EDA100C-MRI module 
(Biopac Systems, Inc, Goleta, CA). For each participant, two pre-gelled EDA electrodes (EL509; Biopac 
Systems, Inc, Goleta, CA) were prepared and applied to the hypothenar muscles of the left hand. 
Pupillometry and gaze position was recorded with Eyelink 1000-Plus (SR-Research, Ontario, Canada).

Participants also completed questionnaires prior to the experiment, including the State-Trait 
Anxiety Inventory (STAI Form X Gaudry et al., 1975), the Positive and Negative Affect Scale (Watson 
et al., 1988), and Behavioral Inhibition/Activation Scale (Carver and White, 1994). For the present 
manuscript, we focused on pain reports and brain responses evoked by painful heat.

Procedure
Participants underwent an adaptive staircase pain calibration prior to the experimental task (see 
Figure 1A). The adaptive staircase calibration procedure has been described in depth in previous 
work (Atlas et al., 2010; Atlas et al., 2012; Mischkowski et al., 2019; Dildine et al., 2020; Amir 
et al., 2021). Participants experience temperatures across eight skin sites on the left volar forearm 
and provide ratings on a 10-point scale, where 1 denotes warmth, 2 denotes pain threshold, 5 denotes 
moderate pain, 8 denotes maximum tolerable pain, and 10 denotes the most pain imaginable. We 
use iterative regression to isolate each participant’s threshold, tolerance, and the strength of the 
correlation between temperature and pain (i.e. r2). All participants had previously completed the task 
outside of the MRI facility to establish initial eligibility, and completed the task again on the day of the 
fMRI scan (Amir et al., 2021). Participants were eligible to continue if they reported reliable increases 
in pain as a function of temperature (r2 >0.4) and reported maximum pain tolerance at 50 degrees or 
less. Four participants were deemed ineligible based on calibration on the day of the study. The cali-
bration procedure also allowed us to identify four skin sites per individual that responded most simi-
larly across temperatures (i.e. lowest average residuals based on overall temperature-pain regression) 
and to individually calibrate temperatures associated with ratings of low pain (2 on 10-point scale), 
medium pain (5 on 10-point scale), and high pain (maximum tolerable pain; 8 on 10-point scale). These 
temperatures and skin sites were used during the main experiment, as described below.
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Following the pain calibration, each eligible participant was positioned in the fMRI scanner. They 
were then randomized (n=20 per group) to either the Instructed Group (12 female; Mage = 27.05 years, 
SDage = 6.64) or the Uninstructed Group (10 female; Mage = 26.95  years, SDage = 5.91) and given 
instructions about the experiment (see Figure 1A). Both groups were told “In this task you will hear 
two sounds, followed by heat from the thermode. The sound will last a few seconds and will be 
followed by a short variable delay period, and then heat from the thermode. You do not need to 
respond when you hear the cue.” Instructed Group participants were then told, “It is there just to let 
you know what level of heat will be next.” They then heard both cues and were informed which cue 
would be followed by high heat and which would be followed by low heat stimulation. Uninstructed 
Group participants were instead told “Your job is to pay attention to the cues and try to figure out 
the relationship between the sounds that you hear and the heat that you feel.” They then heard both 
cues but were simply told that one was the first cue and the other was the second cue. We used two 
auditory cues (a cymbal and an accordion), which were counterbalanced across participants. Following 
instructions and between each block of the task, participants provided expectancy ratings in response 
to each cue and an experimenter moved the thermode to the next inner arm location.

During the experiment, each trial began with a 2 s auditory cue, followed by a 6 s anticipation 
interval, and then heat from the thermode (see Figure 1B). After an 8–10 s temporal jitter, partici-
pants provided pain ratings using an 8-point visual analogue scale. They were instructed to use the 
same anchors as the adaptive staircase calibration (i.e. 1=non-painful warmth, 2=pain threshold, 
8=maximum tolerable pain) and we included boxes at 0 and above 8 to denote ‘no sensation’ and 
‘too hot’, respectively (see Figure 1B). Participants viewed the scale for 3 s then had 5 s to record their 
ratings. There was a 4–6 s temporal jitter before the next cue was presented. The two jitters always 
combined to 14 s within a single trial, for a total trial duration of 48 s. There were 7 blocks of trials with 
12 trials per block (i.e. 84 trials total). We used two trial orders (counterbalanced across participants 
within Group) that each included (1) a brief conditioning phase, (2) a test of cue-based expectancy 
effects, and (3) three contingency reversals (Figure 1C and D). During the conditioning phase, Orig-
inal Low cues were followed by stimulation calibrated to elicit ratings of low pain and Original High 
cues were followed by stimulation calibrated to elicit high pain (see Figure 1C and D). The condi-
tioning phase included 3 Original High cue +high heat pairings and 2–3 Original Low cue +low heat 
pairings (i.e. 5–6 trials; see Figure 1D). Following conditioning, each cue was paired intermittently 
with stimulation calibrated to elicit ratings of medium pain. This provides a test of cue-based expec-
tancy effects, consistent with our previous work (Atlas et al., 2010; Johnston et al., 2012; Michalska 
et al., 2018; Abend et al., 2021). Intermittent reinforcement continued at a 50% reinforcement rate 
until contingencies reversed.

Halfway through runs 2, 4, and 6, the screen displayed instructions to the Instructed Group indicating 
that contingencies had reversed (“The relationship between the cues and heat will now reverse”; see 
Figure 1C). Immediately following instructions, participants experienced at least one medium heat 
trial paired with each cue, which provides an immediate test of instructed reversals in the Instructed 
Group (Atlas et  al., 2016; Atlas and Phelps, 2018; Abend et  al., 2021). Following the medium 
heat trials, the new contingencies were reinforced (i.e. the high pain temperature was paired with 
the previous low pain cue and the low pain temperature was paired with the previous high pain cue), 
leading to an experience-based reversal. Medium trials were then delivered, and learning continued 
with the same reinforcement rates until the next reversal (see Figure 1D). Uninstructed Group partici-
pants experienced the same trials, but a fixation cross was displayed instead of instructions.

We used two pseudorandom trial orders with three contingency reversals, which were counter-
balanced across participants. Each trial order ensured that no condition was repeated three times 
in a row. When we visualized responses as a function of trial order, we noticed that one trial order 
presented the same cue-heat condition as the first trial on 6 out of the 7 blocks (i.e. medium heat 
paired with the original high pain cue). Because the first trial of each block is applied to a new skin site, 
the novel stimulus was rated as much higher than all other trials. We therefore omitted the first trial 
from all analyses in the main manuscript, because this novelty response contaminated the otherwise 
strong reversal behavior. Furthermore, due to a programming error, Instructed Group participants in 
one of the two trial orders received two incompatible trials following the third instructed reversal (i.e. 
they received one low stimulus with the previous low cue and one high stimulus with the previous high 
cue). Because this experience contradicted instructions and we are interested in measuring the effects 
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of veridical instructions on reversal learning, we only analyzed the trials prior to these instructions (i.e. 
two reversals instead of three) in these participants (n=10).

Following the fMRI scan, participants rated affect associated with each cue and provided retro-
spective expectancy ratings to report how much pain they expected in response to each cue at the 
beginning and the end of the task.

BOLD FMRI data acquisition and preprocessing
BOLD fMRI data were collected on a 3T Siemens Skyra scanner at the NIH’s MRI Research Facility / 
Functional Magnetic Resonance Imaging Facility. After positioning the participant in the scanner bore, 
we collected a localizer followed by a T1-MPRAGE collected in the sagittal plane (256 slices). We 
collected 7 runs of multi-echo data with a 2.5 s TR and 3 mm isotropic voxels (191 volumes collected 
anterior to posterior; flip angle = 90°; acquisition matrix = 70 x 0 x 0x64; 1st echo = 11ms; 2nd echo = 
22.72ms; 3rd echo 34.44ms).

Multi-echo data were preprocessed and combined using the ‘​afni_​proc.​py’ program in Analysis of 
Functional Images (AFNI; Cox, 1996). We used ‘@SSwarper’ to nonlinearly align the anatomical scans 
to the MNI152_T1 template (​MNI152_​2009_​template_​SSW.​nii.​gz in AFNI). These nonlinear transfor-
mations were passed to ​afni_​proc.​py for general preprocessing and quality control. We removed the 
first 4 TRs of functional data to reach magnetization steady state, leaving a total of 187 TRs of fMRI 
data per run during subsequent processing and analysis steps. We performed slice time correction 
using AFNI’s 3dTshift program then performed motion correction by aligning echo 2 volumes to a 
low-motion minimum outlier base image (MIN_OUTLIER, estimated by ‘3dToutcount’) and warped to 
align with the anatomical volume and with the template. All volumetric transformations, both linear 
and non-linear, were combined into a single transformation to avoid repeated resampling of the EPI 
volumes. Motion correction estimates were computed based on echo 2 volumes using 6 parameters 
(3 translations, 3 rotations) and we applied the same corrections to each echo. We made sure there 
was valid data for each echo and each TR prior to combining multi-echo data. We combined across 
the three echoes using AFNI’s @compute_OC_weights function to generate a weighted combination 
of the three echoes. These ‘optimally combined’ data were used for subsequent analyses. Preliminary 
analyses indicated that combining across the echoes with optimal combination led to better heat-
related activation in pain-related regions than analyses of a single echo or using other approaches to 
combine multi-echo data (e.g. TE-dependent analysis Kundu et al., 2012; Lombardo et al., 2016). 
In future analyses, we may formally compare optimal combination with other approaches for echo 
combination and denoising. Following optimal combination, data were normalized to percent signal 
change and smoothed using a 4 mm full-width half max smoothing kernel. Data were then analyzed 
using single trial estimates in MATLAB (The Mathworks, Inc, Natick, MA), as described below. Four 
participants were excluded from fMRI analyses due to technical issues with the fMRI scanner during 
data collection (n=2) or excessive head motion (motion >2 mm; n=2), leaving a final sample of 36 
participants for fMRI analyses (18 in Instructed Group).

Psychophysiological data processing
Skin conductance data was preprocessed in AcqKnowledge (Biopac Systems, Inc, Goleta, CA). During 
preprocessing, data were smoothed (1000-sample Gaussian smoothing kernel) and filtered (25 Hz FIR 
low-pass filter) in AcqKnowledge, then imported into MATLAB and downsampled to 250 Hz. Data 
were then analyzed using Ledalab’s continuous decomposition analysis (CDA), which accounts for 
phasic and tonic signals and can capture multiple responses during the 8 s heat period (Benedek and 
Kaernbach, 2010). We analyzed both (a) cue-evoked anticipatory responses that occurred within 4 s 
following cue presentation; and (b) responses that occurred between heat onset and 4 s after heat 
offset. We used the average phasic driver (‘SCR’) in trial-wise analyses. Participants were included in 
analyses if they had >4 trials with measurable SCR. Thirty-six participants were included in analyses 
across temperatures (18 in Instructed Group); 30 participants were included in analyses of responses 
to medium heat (13 in Instructed Group); and 29 participants were included in analyses of anticipatory 
responses (15 in Instructed Group).

Pupillometry data were processed in MATLAB using both publicly available software 
and custom code. Data were imported to MATLAB and blinks were interpolated using the 
‘GazeVisToolbox’ (available at https://github.com/djangraw/GazeVisToolbox, copy archived at 
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swh:1:rev:afbb6cb89e6fc494e0a578d44461af085fa5d46b; Jangraw et  al., 2014). Consistent with 
our previous work (Mischkowski et al., 2019), we interpolated from 100ms prior to each blink to 
100ms following each blink to avoid extreme values surrounding each blink. Data were aligned to 
event markers and we visualized individual trials to exclude trials that were contaminated by artifacts. 
Subjects with fewer than seven useable trials (n=20; 9 in Instructed Group) were excluded from anal-
yses of pupillary data. Useable subjects had a mean of 42.9 useable trials (M=54.4% of trials). 1000 Hz 
data was downsampled to 10 Hz and then we computed baseline-corrected mean pupil dilation and 
area-under the curve as measures of pupillary response during the heat period.

Statistical analysis of expectations, pain, autonomic responses, and heat-
evoked neural signature pattern expression
We used the statistical software R (R Development Core Team, 1996) to analyze effects of our exper-
imental manipulations on expectancy ratings, pain reports, physiological arousal, and heat-evoked 
brain signature pattern expression (see below, “Brain-based classifier analyses”). We measured effects 
across the entire task, as well as before the first reversal. We used two-way mixed ANOVAs imple-
mented through the R function ‘anova_test’ from the package “rstatix” (Kassambara, 2021) to analyze 
the effects of Group and Cue on expectancy ratings prior to the task and after conditioning, as well as 
post-task ratings. All other analyses were conducted using multilevel linear mixed effects models in R.

In each analysis, we modeled within-subjects effects of Cue (original high pain cue / CS+ versus 
original low pain cue / CS-), Phase (original versus reversed contingencies), and Cue x Phase inter-
actions (i.e. current high pain cue / CS+ versus current low pain cue / CS-) at the first level, and 
Group was modeled at the second (i.e. between-subjects) level. Consistent with our previous work 
on aversive reversal learning (Atlas et al., 2016; Atlas and Phelps, 2018), reversals (i.e. Phase 
effects) were coded relative to instructed reversals in the Instructed Group, and relative to expe-
rienced reversals in the Uninstructed Group (i.e. the first time the previous high pain cue was 
paired with low heat, or vice versa; see Figure 1C). Analyses across temperatures also included a 
first-level factor for Heat Intensity, and analyses during acquisition omitted the effect of Phase. We 
also included an effect of Time (linear effect of trial) in model comparisons to evaluate whether cue 
effects varied over time, although Bayesian model comparison indicated that including Time did 
not improve any models.

We evaluated linear mixed models using both Bayesian and frequentist statistics packages to 
ensure results were robust to analysis approaches. Bayesian linear mixed models were implemented 
using the brms package (Bürkner, 2017) in R (R Development Core Team, 1996). All coefficients 
were evaluated with a Gaussian prior centered on 0 with a 2.5 SD (i.e. a mildly informative conser-
vative prior). For each outcome measure, we evaluated all potential models ranging from intercepts 
only to a maximal model (Barr et al., 2013) with random slopes for every factor and all potential 
interactions, then used ‘bayesfactor_models’ from the bayestestR package (Makowski et al., 2019a) 
to perform model comparison and to draw inferences about acceptance and rejection of null effects. 
In most cases, Bayesian model comparisons supported maximal models (Barr et al., 2013), that is 
including all fixed factors (except Time), all interactions, and random intercepts and slopes for each 
subject. We used the ‘describe_posterior’ function (Makowski et al., 2019a) to evaluate probability 
of direction (similar to a frequentist p-value with values >95% indicating the effect is likely to exist), 
and the percentage of the posterior distribution within the region of partial equivalence (ROPE), which 
can delineate significance. Published guidelines suggest that when if <1% of the distribution is within 
the ROPE, one can reject the null hypothesis, whereas if >99% is in the ROPE, one can accept the null 
hypothesis (Makowski et al., 2019b).

We then evaluated the corresponding model using ‘lmer’ from the lme4 package (Bates et al., 
2015) to provide frequentist statistics and using ‘lme’ from the nlme package (Pinheiro et al., 2021) 
to incorporate autoregression. If frequentist models corresponding to the best Bayes model did not 
converge, we removed the covariance between random effects (i.e. specified that slopes and inter-
cepts are uncorrelated using ||), and we used optimizers to achieve convergence. Final models are 
specified in Tables 1–3. We acknowledge findings from all approaches in our Results, using guide-
lines for Bayesian modeling from Makowski et al., 2019b; Makowski et al., 2019a. Results across 
approaches were largely consistent (see Tables 1–3).

https://doi.org/10.7554/eLife.73353
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Computational modeling of pain reversal learning and modulation by 
instructions
We applied a computational model of instructed reversal learning (Atlas et  al., 2016; Atlas and 
Phelps, 2018) to predict pain reports on medium heat trials. The model is a standard reinforcement 
learning model (Rescorla and Wagner, 1972) that describes how expected value (EV) updates in 
response to prediction errors in the environment, depending on learning rate. We include an addi-
tional parameter, ρ, which guides whether cues’ expected values (EV) are exchanged when instruc-
tions are delivered. If ρ = 0, each cue’s EV remains stable (i.e. retains the same EV prior to instructions) 
whereas if ρ = 1, the EVs of the two respective cues are exchanged. Mathematically for two cues (a 
and b), this is implemented for trial (t) as:

	﻿‍ EVt+1(xb) = ρ ∗ Vt(xa) + (1 − ρ) ∗ Vt(xb)‍�

For complete details, see Atlas et al., 2016. The present model fitting procedure differed in that 
we fit models to pain ratings on medium heat trials, rather than SCR on unreinforced trials, although 
we fit models to SCR in exploratory analyses, as described below. In the present study, we assume that 
pairings between predictive stimuli and high and low intensity heat engages stimulus-based learning, 
similar to CS-US pairings in classical conditioning experiments. Fitting to medium heat trials isolates 
the timecourse of expected value, since the stimulus temperature is constant, and therefore the only 
factor likely to guide cue-based variation in pain is presumably the cue’s dynamic expected value 
based on learning and/or instructions.

Consistent with our previous work (Atlas et al., 2016; Atlas and Phelps, 2018), the initial EV was 
set as 0.5 for Uninstructed Group participants, while we used asymmetric initial expected values for 
Instructed Participants who were informed about contingencies (1 for high pain cue; 0 for low pain 
cue). Models were fit at the level of the individual, with two free parameters (ɑ and ρ), and we used 
20 iterations with a random starting value for each parameter for each iteration. We minimized the 
deviance between expected value and pain on medium heat trials. EV was bounded between 0 and 
1; however, we used MATLAB’s glmfit.m function to relate EV with pain on medium heat trials using 
the normal link function, which includes an intercept and therefore accounts for differences in scale 
between EV and pain reports. Consistent with other analyses, the first trial of every block was not 
included during model fitting due to novelty responses.

To evaluate goodness-of-fit, we compared the instructed Rescorla-Wagner model described above 
with three other variations of plausible learning models: (a) an instructed Rescorla-Wagner model 
with initial value, ɑ, and ρ as free parameters; (b) a traditional Rescorla-Wagner model without an 
instructed reversal parameter (initial value and ɑ as free parameters); and (c) an instructed model of 
associability (i.e. a Hybrid model; Li et al., 2011b) with ρ,η, and κ as free parameters (Atlas et al., 
2019). Models were fit to each individual’s pain ratings on medium heat trials, since the stimulus 
temperature was constant and therefore the only factor likely to guide cue-based variation in pain 
would presumably be dynamic expected value based on learned and/or instructed value. Models 
were analyzed at the level of the individual, which provides estimates that can be tested using stan-
dard statistics, and through an iterative jack-knife procedure, which is less sensitive to noise based on 
individual estimates (Wu, 1986; Miller et al., 1998; Atlas and Phelps, 2018). See Atlas and Phelps, 
2018 for complete details on jack-knife model fitting procedures. Group analyses and model compar-
isons were conducted using individual estimates. Goodness-of-fit was evaluated based on Akaike’s 
Information Criterion (Akaike, 1974), which evaluates model fit with a penalty for additional param-
eters and is appropriate for nested models, and models were compared based on Bayesian Model 
Selection, as implemented in SPM’s SPM_bms.m (Stephan et al., 2009).

The instructed Rescorla-Wagner model with pre-determined initial values and free parameters for ɑ 
and ρ (i.e. the same model used in our previous work; Atlas et al., 2016; Atlas and Phelps, 2018) fit 
the data better than any of the alternatives, as indicated by Bayesian Model Selection, which gave this 
model a posterior probability of 87.95% relative to the other alternatives (Rescorla-Wagner with initial 
free parameters: 3.61%; Rescorla-Wagner without instruction parameter: 5.1%; Hybrid model: 3.35%). 
We therefore focus on this model in the main manuscript and used this model to generate regressors 
for use in fMRI analyses. We used t-tests on subject-level fits to assess whether each parameter (ɑ and 
ρ) varied as a function of group. The mean parameters based on jack-knife estimates were used to 
generate regressors for fMRI analyses (see ‘Neural correlates of expected value’, below).

https://doi.org/10.7554/eLife.73353
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We used the same approach to fit computational models to anticipatory SCR and SCR evoked 
during medium heat simulation.

FMRI analyses
Single-trial analyses 

Following preprocessing in AFNI, we used single trial analyses to estimate heat-evoked responses 
on a trial-by-trial basis and avoid assumptions about the fixed shape of the hemodynamic response. 
We used flexible basis functions optimized to capture heat-evoked BOLD responses, consistent with 
previous work on heat-evoked fMRI (Atlas et al., 2010; Atlas et al., 2012; Atlas et al., 2014a; Wager 
et al., 2013; Woo et al., 2017). We applied principal components analysis-based spike detection 
(scn_session_spike_id.m, available at https://canlab.github.io/; Wager, 2022) to identify potential 
spikes and noise in the data which were modeled as nuisance covariates, along with the movement 
parameters from AFNI’s preprocessing pipeline. We used the function single_trial_analysis.m (https://​
canlab.github.io/) to generate trial-by-trial estimates of height, width, delay, and area-under-the-curve 
(AUC) for each heat period. Trials in which subjects failed to respond were omitted from analyses (Mall 
= 1.69, SDall = 2.38; MInstructed = 1.11, SDInstructed = 1.08, rangeInstructed = 0–3; MUninstructed = 2.28, SDUninstructed = 
3.12, rangeUninstructed = 0–11). We focused on AUC estimates in subsequent analyses, consistent with our 
previous work. We computed variance inflation factors (VIFs) using the single_trial_weights_vifthresh.m 
function to identify bad trials, that is those who coincided with spikes or motion and were therefore 
not reliable estimates. We excluded any trials with VIFs >2 from subsequent analyses (M=3.39, SD 
= 2.38), and smoothed trial estimates with a 4 mm gaussian kernel, consistent with previous work 
(Atlas et al., 2010; Atlas et al., 2012; Atlas et al., 2014c). Trial estimates were passed into voxel-
wise second level analyses across trials and across participants using the general linear model (fit_
gls_brain.m; https://canlab.github.io/) and robust regression (robfit.m; https://canlab.github.io/) to 
examine neural correlates of associative learning (see below, ‘Neural correlates of expected value’). 
Trial-level estimates were also employed in multilevel mediation analyses (see below, ‘Multilevel medi-
ation analyses’).

Multilevel mediation analyses 

We used multilevel mediation to examine whether brain activity mediated the effect of predictive cues 
on subjective pain on medium heat trials. Mediation was implemented by the MATLAB function medi-
ation.m (https://canlab.github.io/). Cue was included as the input variable (i.e. X; coded as 1 for High 
cue, –1 for Low cue), pain was included as the output variable (i.e. Y), and we searched for potential 
mediators. Voxelwise mediation, or mediation effect parametric mapping (Wager et al., 2009; Atlas 
et al., 2010) yields interpretable maps that are similar to simultaneous partial regressions, although 
implemented using mixed effects. The mediation effect (a*b) identifies regions whose activity contrib-
utes to variance in the effect of the independent variable on the dependent variable (Path c). For 
individual i, trial j:

	﻿‍ Yij = d0j + cjXij + e0ij‍.� (1)

Path a denotes the effect of the input variable on the potential mediator (M; brain activation in a given 
voxel), thereby representing cue effects on brain responses to medium heat:

	﻿‍ Mij = d1j + ajXij + e1ij‍.� (2)

Path b measures the association between the mediator and outcome, controlling for the input vari-
able. Here, this represents brain regions that predict pain, controlling for cue type:

	﻿‍ Yij = d2j + c′jXij + biMij + e2ij‍.� (3)

In multilevel mediation, the difference between the total effect (Path c: the effect of cues on subjec-
tive pain) and the direct effect (Path c`: the effect of cues on subjective pain when controlling for the 

https://doi.org/10.7554/eLife.73353
https://canlab.github.io/
https://canlab.github.io/
https://canlab.github.io/
https://canlab.github.io/
https://canlab.github.io/
https://canlab.github.io/
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mediator, see equation 3) is equivalent to the sum of the product of Path a and Path b coefficients and 
their covariance (Shrout and Bolger, 2002; Kenny et al., 2003). Our mixed models included inter-
cepts (d0-2) and error terms (e0-2) for each individual. Group level estimates are computed by treating 
person-level intercepts and slopes as random effects. For complete details, see Atlas et al., 2010.

We performed two voxel-wise multilevel mediation analyses: (1) a search for brain mediators of 
current cue effects on pain, i.e. the Cue x Phase interaction (see Figure  5), and (2) a search for 
mediators of original cue effects on pain, controlling for current contingencies (see Figure 6). For 
both models, Path a evaluates the effect of predictive cue on brain response to medium heat, Path 
b captures the association between brain response and pain, controlling for cue, and the mediation 
effect (Path a*b) tests whether brain responses contribute to variance between cues and subjective 
pain on medium heat trials. We evaluated mediation overall irrespective of group, and with Group as 
a potential moderator of all paths.

We focus in particular on effects of current contingencies (i.e. Cue x Phase interactions) on pain to 
capture the behavioral reversals we observed (Figure 5). In this main analysis, we coded the input vari-
able (X) as the contrast between current high cues (i.e. original high cues during original contingencies 
and original low cues during reversed contingencies both coded as 1) and current low cues (i.e. orig-
inal low cues during original contingencies and original high cues during reversed contingencies both 
coded as –1). Our second mediation searched for mediators of original cue effects (i.e. original high 
cue coded as 1, original low cue coded as –1) and controlled for current contingencies by including 
the X variable from the current cue contingencies mediation (i.e. the Cue x Phase interaction) as a 
covariate in all paths. These effects are thus most likely to be driven by responses during the reversed 
runs. In both mediations, Path b evaluates the link between brain activation and pain, while controlling 
for the cue (see equation 2 above).

We ran two types of mediation analyses on medium heat trials: (a) voxel-wise mediation analyses, 
which search for brain regions that mediate the effects of predictive cues on pain; (b) statistical tests 
of whether brain responses within ROIs formally mediated cue effects on subjective pain. We evalu-
ated mediation analyses irrespective of Group, and with Group as moderator. We used bootstrapping 
to estimate the significance of the mediation effect (Shrout and Bolger, 2002; Kenny et al., 2003) 
in analyses irrespective of Group, and used ordinary least squares to estimate moderated mediation 
when Group was included in the model. We omitted the first trial of each run from analyses to be 
consistent with behavioral results.

Neural correlates of expected value and prediction error 

Whereas our mediation analyses tested effects of Phase, i.e. immediate changes in response to instruc-
tion or contingency reversal, we used quantitative models to test whether expected value dynamically 
shapes responses to noxious stimulation. We used parameters from the best-fitting models for each 
group, based on jack-knife estimation, to generate the timecourse of expected value (EV) for each 
subject based on their sequence of trials. We chose to use the mean of the group-level estimates 
to avoid noise that might come from individual-level model fits. We examined the neural correlates 
of expected value on medium heat trials only, which avoids confounds due to temperature. We 
focused on how expected value influenced responses to medium intensity heat, rather than responses 
to cues themselves, as we were most interested in how pain-related responses are influenced by 
learned expectations, and we did not optimize the anticipatory period to jointly estimate cue-evoked 
responses and responses to heat. Our main manuscript focuses on the timecourse of EV based on fits 
to pain reports; we include associations based on fits to heat-evoked and anticipatory SCR in Supple-
mentary Materials.

Noxious stimulation might also be accompanied by prediction errors; for example, if an individual 
expects high pain and receives medium heat, this should generate an appetitive PE (i.e. better than 
expected) if the deviation is noticed. However, expected value and prediction error are inversely 
correlated in the standard RL model we used. We therefore measured associations with unsigned PE 
(i.e. the absolute value of PE), as signed PE is the inverse of expected value on our medium heat trials. 
We focused on responses to medium heat trials only as PE would be correlated with temperature 

https://doi.org/10.7554/eLife.73353
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if we analyzed responses across all trials (i.e. low temperatures are always expected or better than 
expected, whereas high temperatures are always expected or worse than expected).

We report three group-level analyses: (1) Analysis across all participants testing for differences by 
group; (2) Analyses within each group to isolate effects of instructed learning (Instructed Group) or 
feedback-driven learning (Uninstructed Group); (3) Comparisons of instructed and feedback-driven 
learning within the Instructed Group. Individual results were computed using the MATLAB function fit_
gls_brain (https://canlab.github.io/) and group results were computed using robust regression (Wager 
et al., 2005) using the function robfit.m (https://canlab.github.io/).

Pain modulatory regions of interest 

We tested for cue-based modulation of brain regions that have been previously implicated in studies 
of expectancy-based pain modulation by applying an a priori mask generated from our previous meta-
analysis of fMRI studies of placebo analgesia and expectancy-based modulation (Atlas and Wager, 
2014b). We included regions that showed either expectancy-related increases or decreases in activa-
tion within the mask. Figure 5—figure supplement 1A depicts the mask, which includes regions that 
show increased activation with expected pain relief (i.e. activation inversely related to subjective pain) 
such as the DLPFC, rACC, PAG, and VMPFC, and regions that show reduced activation with expected 
pain relief, including the insula, thalamus, cingulate, and secondary somatosensory cortex. We report 
results FDR-corrected within this mask to evaluate responses within pain modulatory regions.

We also tested for effects on two recently developed brain-based classifiers that have been 
shown to be sensitive and specific to acute pain, the Neurologic Pain Signature (NPS; Wager et al., 
2013) and the Stimulus Intensity Independent Pain Signature (SIIPS; Woo et al., 2017). We used the 
unthresholded NPS pattern for all analyses, and the function apply_mask.m (https://canlab.github.io/) 
to compute dot products. We computed the dot-product of each signature with beta coefficients and 
contrast maps for analyses of computational models, and trial-level images to use the brain response 
as an outcome in our multilevel mediation analyses.

Value-processing regions of interest 

In addition to pain modulatory networks, we were also interested in testing effects of predictive cues 
on brain regions involved in value-based learning. To this end, we examined responses within 5 a priori 
regions of interest (see Figure 5—figure supplement 1B): the bilateral striatum, bilateral amygdala, 
and the ventromedial prefrontal cortex (VMPFC). We used the same ROI masks that were applied in 
our prior work on instructed reversal learning (Atlas et al., 2016). While the amygdala and striatum 
masks were defined based on Atlases in MNI space (amygdala ROI available at https://canlab.github.​
io/; striatum ROI based on combining putamen and caudate masks from the Automated Anatomical 
Labeling atlas for SPM8 [http://www.gin.cnrs.fr/AAL; Tzourio-Mazoyer et  al., 2002]), the VMPFC 
ROI was functionally defined in our previous work (Atlas et al., 2016) by analyzing deactivation in 
response to shock. We used the same ROI mask here since analyses as a function of heat intensity 
elicited significant decreases in this region. We averaged trial-level AUC estimates across each ROI to 
conduct mediation analyses and averaged across beta coefficients and contrast maps to analyze ROI-
wise associations with expected value. Results are reported in Table 4.

Whole brain exploratory analyses 

In addition to the analyses in a priori networks and regions of interest involved in pain, placebo, and 
value-based processing, we also conducted exploratory voxel-wise whole brain analyses. We report 
whole brain results at FDR-corrected q<0.05 in the main manuscript, and present exploratory uncor-
rected results at p<0.001 in Source Data accompanying each figure for completeness and for use in 
future meta-analyses. In cases when FDR-corrected p-values exceeded p=0.001, we use uncorrected 
results for inference. Anatomical labels were identified using the SPM Anatomy Toolbox (Eickhoff 
et al., 2005), which includes the Thalamic Connectivity Toolbox (Behrens et al., 2003; Johansen-Berg 

https://doi.org/10.7554/eLife.73353
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et  al., 2005), and the Brainstem Navigator (http://www.nitrc.org/projects/brainstemnavig/; Singh 
et al., 2021).
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