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Abstract. Intracranial aneurysm (IA) is a localized dilation of 
the blood vessel. The present study was designed to explore the 
mechanisms of rupture of IA. GSE13353 (including 11 ruptured 
and 8 unruptured IA samples) and GSE15629 (including 8 
ruptured and 6 unruptured IA samples) were downloaded from 
the Gene Expression Omnibus database. The differentially 
expressed genes (DEGs) identified using limma and MetaDE 
packages were merged, and a protein‑protein interaction (PPI) 
network analysis was performed using Cytoscape software. 
Pathway enrichment analysis was performed for the nodes 
of the PPI network using the fisher algorithm. The 100 most 
prominent genes in the network were designated candidate 
genes and a hierarchical clustering analysis was performed. 
The tune.svm function of e1071 package was used to construct 
a support vector machine (SVM) classifier, and the Candidate 
Cancer Gene Database was applied to analyze the charac-
terization of gene‑associated cancer. Furthermore, the genes 
involved in the SVM classifier were assessed via principal 
component analysis (PCA). In the ruptured samples, 1,292 
DEGs and 1,029 DEGs separately were identified by limma 
and MetaDE packages. The 100 most prominent genes in the 
network included fibronectin 1 (FN1), amyloid β (A4) precursor 
protein (APP), nuclear RNA export factor 1 (NXF1) and signal 

transducer and activator of transcription 3 (STAT3). Pathway 
enrichment analysis identified that toll‑like receptor 3 (TLR3) 
was enriched in the Toll‑like receptor signaling pathway. A 
total of 15 genes (including FN1) were used to construct the 
SVM classifier. NXF1 was identified to be associated with 
Nervous System Cancer. PCA revealed that APP, NXF1 and 
STAT3 were the 3 principal components. TLR3, FN1, APP, 
NXF1 and STAT3 may affect the rupture of IA.

Introduction

As a cerebrovascular disorder, intracranial aneurysm (IA; also 
designated brain or cerebral aneurysm) is a ballooning or 
localized dilation of the blood vessel induced by weakness 
of the artery wall (1). IA cases are divided according to size 
into small (diameter, <15 mm) and large aneurysms [including 
large (15‑25 mm), giant (25‑50 mm) and super‑giant (>50 mm) 
aneurysms] (2). Based on the shape, IA may be classified into 
saccular aneurysms, fusiform aneurysms and microaneu-
rysms (2). IA may not only be a result of genetic conditions, 
but also lifestyle factors, including smoking, hypertension, 
obesity and excess alcohol consumption (3,4). Individuals who 
are between 30 and 60 years old experience the highest inci-
dence of IA, and women experience an increased incidence 
compared with men with a ratio of 3:2 (1,5).

The genes implicated in the pathogenesis of the rupture 
of IA have been evaluated previously. Through reverse 
transcription‑quantitative polymerase chain reaction, 
Guo et al (6) identified that the mRNA levels of caspase‑3 in 
IA and abdominal aortic aneurysm are 8.94‑fold and 6.73‑fold 
compared with that of normal vessels, which improves the 
understanding of apoptosis in ruptured intracranial aneurysm. 
Nuclear factor‑κB (NF‑κB) functions as an essential regu-
lator during the initiation of IA development via mediation 
of several inflammatory genes associated with macrophage 
activation and recruitment, thus, NF‑κB may function as a 
therapeutic target for IA (7). Increased tumor necrosis factor α 
and Fas‑associated death domain protein may have deleterious 
effects on cerebral arteries through facilitation of inflamma-
tion and apoptosis in immune and vascular cells, consequently 
weakening vessel walls (8,9). Decreased tissue inhibitor of 
matrix metalloproteinases and increased matrix metallopro-
teinases in the late stage of IA formation may be the reason for 
extracellular matrix degradation resulting in the progression, 
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and rupture of IA (10). As a main chemoattractant for mono-
cytes and macrophages, NF‑κB activation‑induced monocyte 
chemoattractant protein‑1 (MCP‑1) acts in IA formation 
and may serve as a potential target for therapy inhibiting IA 
progression (11). Nevertheless, the molecular mechanisms of 
rupture of IA have not been fully revealed.

In 2011, Kurki et al (12) explored the gene expression differ-
ences between ruptured and unruptured saccular intracranial 
aneurysm (sIA) wall samples, screening 686 upregulated and 
740 downregulated genes in the ruptured samples, and finding 
that hypoxia‑inducible factor‑1A, ETS transcription factors, 
toll‑like receptor signaling and NF‑κB are associated with the 
rupture of sIA walls in humans. In 2010, Pera et al (13) investi-
gated the gene expression profiles of ruptured and unruptured 
IA, as well as control intracranial arteries, and identified a 
total of 159 differentially expressed genes (DEGs) and several 
critical biological processes, including cell adhesion, muscle 
system, and the immune system, and inflammatory response. 
However, comprehensive bioinformatic analyses have not been 
performed to further screen the critical genes associated with 
the rupture of IA. Using the data gathered by Kurki et al (12) 
and Pera et al (13), the DEGs between ruptured, and unruptured 
IA samples were fully screened. Utilizing protein‑protein 
interaction (PPI) network construction, pathway enrichment 
analysis, construction and efficiency evaluation of support 
vector machine (SVM) classifier, and principal component 
analysis (PCA), the key genes implicated in the rupture of IA 
were further identified.

Materials and methods

Microarray data. Microarray data of GSE13353 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13353) and 
GSE15629 (https://www.ncbi.nlm.nih.gov/geo/query/acc. 
cgi?acc=GSE15629) were downloaded from the Gene 
Expression Omnibus database. GSE13353, which was depos-
ited by Kurki et al  (12) and sequenced on the platform of 
GPL570 (HG‑U133_Plus_2) Affymetrix Human Genome 
U133 Plus 2.0 Array, included 11 ruptured IA wall samples 
and 8 unruptured IA wall samples. Kurki et al (12) isolated 
ruptured and unruptured IA wall samples from the necks 
of Finnish individuals undergoing microsurgical clipping 
as previously described (14‑17). The IA wall samples were 
frozen in liquid nitrogen and then kept in the Helsinki 
Neurosurgery sIA Tissue Bank (12). GSE15629 was deposited 
by Pera et al (13) and sequenced on the platform of GPL6244 
(HuGene‑1_0‑st) Affymetrix Human Gene 1.0 ST Array [tran-
script (gene) version], from which 8 ruptured IA wall samples 
and 6 unruptured IA wall samples were selected for this study. 
Pera et al (13) also resected full‑thickness vessel wall samples 
from patients who underwent microsurgical clipping. Then, 
the samples were stored in RNAlater (Qiagen China Co., Ltd., 
Shanghai, China) at 80˚C.

Data preprocessing and DEGs screening. Using the oligo 
package (18) in R, background correction and normalization 
were performed on the raw data. Using the limma package 
(http://www.R‑project.org) (19) in R, the genes differentially 
expressed between ruptured and unruptured IA samples were 
selected, with P<0.05 and |fold change | >1.5 as the thresholds. 

Conversely, based on the MetaDE package (https://cran.r‑project.
org/web/packages/MetaDE/index.html) (20) in R, heterogeneity 
tests and differential expression analysis for each gene were 
conducted successively. The genes with τ2=0 and Qpval >0.05 
were homogeneous and unbiased, from which the genes with 
P<0.05 were further selected as DEGs.

Construction of PPI network. The interaction infor-
mation of human proteins was downloaded from the 
Biological General Repository for Interaction Datasets 
(http://thebiogrid.org/)  (21), Human Protein Reference 
Database (http://www.hprd.org/)  (22) and Database of 
Interacting Proteins (http://dip.doe‑mbi.ucla.edu/) (23) data-
bases. Subsequently, the identified DEGs were mapped to the 
interaction network of human proteins and the PPI network 
for the DEGs was visualized using Cytoscape software 
(version 3.1.0, http://www.cytoscape.org)  (24). In the PPI 
network, nodes and edges separately stand for proteins, and 
interactions of proteins. Additionally, the number of edges 
involving one node was the connectivity degree of the node. 
Furthermore, the candidate genes in the PPI network were 
further screened using the betweenness centrality (BC) 
method based on the following formula:

σst represents the number of the shortest path between 
s and t. σst(ν) stands for the number of paths past node v 
among the shortest paths between s and t. The value of CB 

(v) ranges from 0 to 1, a larger value indicates an increased 
importance.

Additionally, hierarchical clustering analysis  (25) was 
performed for the candidate genes and clustering results were 
visualized using Heatmap software (version 1.0, http://www.hiv.
lanl.gov/content/sequence/HEATMAP/heatmap.html) (26).

Pathway enrichment analysis. Pathway enrichment analysis 
was performed for the DEGs involved in the PPI network 
using the fisher algorithm (27) based on the following formula:

Among the formula, M, N and K stand for the number of 
genes enriched in pathways, the total number of genes in 
whole genome and the number of DEGs, respectively. p 
represents the probability that no less than x DEGs are 
enriched in pathways.

Construction and efficiency evaluation of SVM classifier. 
As effective classifiers, SVMs may be utilized for two‑class 
classification of microarray data and acquire high classifica-
tion accuracy (28). The DEGs involved in the PPI network 
were sorted in descending order based on their BC values. 
Starting from the last 10 genes and taking 5 genes as an 
interval, the DEGs were selected as characterization factors 
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(genes used for constructing SVM classifier) in descending 
order based on BC values. With the dataset of GSE13353 
as the training dataset, the tune.svm function of the e1071 
package (http://cran.r‑project.org/web/packages/e1071/) (29) 
in R was used to construct an optimal SVM classifier. 
Then, the dataset of GSE15629 was used as the validation 
dataset for detecting the SVM classifier. Furthermore, the 
Candidate Cancer Gene Database (http://ccgd‑starrlab.oit.
umn.edu/) (30) was used to search for the characterization 
of gene‑associated cancer.

PCA of characterization factors. As a multivariate technique, 
PCA is able to reassemble associated‑indexes into a new set 
of comprehensive indexes that exhibit no correlations with 
each other (31). To further optimize the identified character-
ization genes, the genes involved in the SVM classifier were 
performed using PCA.

Results

DEGs analysis. In the ruptured samples, a total of 636 DEGs 
(including 279 upregulated genes and 357 downregulated 
genes) in GSE13353 and 656 DEGs (including 130 upregulated 
genes and 526 downregulated genes) in GSE15629 were iden-
tified using the limma package. Using the MetaDE package, a 
total of 1,029 DEGs (including 527 upregulated genes and 502 
downregulated genes) were screened. To include the associ-
ated genes into our research, the DEGs identified by limma 
and MetaDE packages were merged and used for the following 
analyses.

PPI network analysis and pathway enrichment analysis. 
The PPI network constructed for the merged DEGs identified 
510 nodes (including 290 upregulated genes and 220 down-
regulated genes) and 907 interactions (Fig.  1). Combined 

Figure 2. Hierarchical clustering trees for (A) GSE13353 and (B) GSE15429. Red and green stand for high and low values, respectively. Rup, ruptured; un, 
unruptured.

Figure 1. Protein‑protein interaction network for the merged differentially expressed genes. Red and green nodes represent upregulated and downregulated 
genes in the ruptured samples, respectively.
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with connectivity degrees and BC scores, the top 100 genes 
[including fibronectin 1 (FN1), amyloid β (A4) precursor 
protein (APP), nuclear RNA export factor 1 (NXF1) and signal 
transducer and activator of transcription 3 (STAT3)] in the PPI 
network were selected as candidate genes. Hierarchical clus-
tering analysis revealed that the candidate genes were able to 
separate the ruptured samples from the unruptured samples 
(Fig. 2).

To further understand the biological pathways involved 
the genes in PPI network, pathway enrichment analysis was 
conducted. A total of 7 pathways were enriched, including 
the mitogen‑activated protein kinase signaling pathway 
(P=0.004304), pathways in cancer (P=0.007181) and Toll‑like 
receptor signaling pathway (P=0.040118), which involved 
toll‑like receptor 3 (TLR3) (Table I).

Construction and efficiency evaluation of SVM classifier. 
With the dataset of GSE13353 as the training dataset, 
optimization of the SVM classifier was performed. When 
the number of characterization genes reached 15, the SVM 
classifier could completely and accurately distinguish all 
samples (Fig. 3A). Thus, the 15 genes (including FN1) were 
considered as the genes required for constructing the SVM 
classifier (parameters: γ, 0.5; cost, 4; cross, 10). To confirm 
that the SVM classifier had repeatability and portability, the 
validation dataset of GSE15629 was used to detect the SVM 
classifier. In the dataset of GSE15629, the SVM classifier 
was able to fully differentiate the ruptured samples from 
the unruptured samples (Fig. 3B). Therefore, the expression 
pattern characteristics of the 15 characterization genes in 
ruptured and unruptured samples were notable. Furthermore, 

Table I. Pathways enriched for the genes involved in the protein‑protein interaction network.

Description	 Gene number	 P‑value	 Gene symbol

hsa04010: MAPK	 18	 0.004304	� FGFR2, ZAK, BRAF, MAP2K3, RELA, MKNK2, 
signaling pathway	 		�  MAPK10, STK4, MAX, MAPK1, MAPK12, DUSP1, 

MAP3K8, SOS2, MAPK8IP2, MAPK8, PAK1, STMN1
hsa05200: Pathways	 20	 0.007181	� FGFR2, E2F3, RET, BRAF, RELA, STAT5B, ARNT2, 
in cancer 			�   EGLN1, MAPK10, STK4, BIRC2, STAT3, MAPK1, 

MAX, SOS2, RALB, JAK1, CSF3R, MAPK8, FN1
hsa04621: NOD‑like	 7	 0.013053	� MAPK1, NOD2, MAPK12, RELA, MAPK8, MAPK10, 
receptor signaling pathway 			   BIRC2
hsa04012: ErbB signaling	 8	 0.019615	� MAPK1, BRAF, ERBB3, STAT5B, SOS2, MAPK8, 
pathway 			   MAPK10, PAK1
hsa00270: Cysteine and	 5	 0.021434	� ADI1, LDHB, LDHA, SRM, TRDMT1
methionine metabolism
hsa04620: Toll‑like receptor	 8	 0.040118	� MAPK1, MAPK12, RELA, MAP2K3, MAP3K8, TLR3, 
signaling pathway 			   MAPK8, MAPK10
hsa04722: Neurotrophin	 9	 0.042021	� MAPK1, MAPK12, BRAF, RELA, SOS2, NGFRAP1, 
signaling pathway 			   MAPK8, MAPK10, ARHGDIA

Figure 3. Support vector machine classifier was able to fully differentiate the samples in (A) the training dataset of GSE13353 and (B) the validation dataset of 
GSE15629. Red and black dots represent ruptured and unruptured samples respectively. X and Y axis indicate the position vectors of samples.
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the characterization of gene‑associated cancer was assessed, 
revealing that NXF1 was associated with nervous system 
cancer (Table II).

PCA of characterization factors. To further optimize the 
identified characterization genes, PCA was conducted on 
the 15 characterization genes involved in the SVM classifier. 

APP, NXF1 and STAT3 were the 3 principal components able 
to separate the samples (Fig. 4).

Discussion

In the present study, the DEGs between ruptured and unruptured 
samples were identified using limma and MetaDE packages. In 
the ruptured samples, a total of 636 DEGs in GSE13353 and 
656 DEGs in GSE15629 were identified by the limma package. 
Using the MetaDE package, a total of 1,029 DEGs were 
screened. These DEGs were merged and a PPI network analysis 
was performed. Combined with connectivity degrees and BC 
scores, the top 100 genes (including FN1, APP, NXF1 and 
STAT3) in the PPI network were identified as candidate genes.

Pathway enrichment analysis of the genes in the PPI network 
revealed that TLR3 was enriched in the TLR signaling pathway. 
TLRs have been reported to function in vascular inflammatory 
diseases including aneurysm and atherosclerosis (32). TLR4, 
which is expressed in IA walls of humans and rats, may be 
implicated in IA formation via NF‑κB activation in endothelial 
cells (33). FN1 was one of the 15 genes used for constructing the 
SVM classifier. Alternatively spliced extra domain A (EDA) of 
fibronectin is essential for tissue repair, and decreased expres-
sion of EDA may promote susceptibility to aneurysm of patients 
with a bicuspid aortic valve (34). Wang and Astrof (35) demon-
strated that the local synthesis of FN1 serves essential functions 
in spatial regulation of Notch signaling and cardiovascular 
development. As a multi‑domain extracellular matrix glyco-
protein, fibronectin functions in blood vessel morphogenesis 
during pathological angiogenesis and embryonic development, 
and is expressed during pathological angiogenesis in multiple 
diseases, including late stage artherosclerosis, lung cancer and 
in abnormal ocular conditions (36‑39). Thus, TLR3 and FN1 
may serve functions in the rupture of IA.

Figure 4. Three‑dimensional diagram identifying that the three principal 
components may be able to separate the samples. Red and green circles repre-
sent ruptured and unruptured intracranial aneurysm samples, respectively 
NXF1, nuclear RNA export factor 1; STAT3, signal transducer and activator of 
transcription 3; APP, amyloid β (A4) precursor protein.

Table II. The 15 characterization genes involved in the support vector machine classifier and the types of cancer associated with 
them.

Gene	 BC_score	 Degree	 P‑value	 logFC	 Pubmed ID	 Cancer type

APP	 0.9309 	 113	 0.022006	‑ 1.40543	 22057237	 Colorectal cancer
BMI1	 0.5413 	 19	 0.000794	‑ 1.21654		
CCDC8	 0.5700 	 26	 0.003424	‑ 1.04234		
CFL1	 0.5344 	 14	 0.049459	 0.817437		
FBL	 0.5457 	 17	 0.032831	‑ 0.77802		
FBXW7	 0.5380 	 19	 0.024609	‑ 1.45185	 22370638	 Blood cancer
FN1	 0.6292 	 42	 0.01076	 1.299781		
HNRNPU	 0.5447 	 24	 0.049798	 0.906204	 27006499	 Gastric cancer
NDEL1	 0.5339 	 10	 0.036456	 0.840461	 24316982	 Liver cancer
NXF1	 0.7250 	 57	 0.004859	 1.123627	 23685747	 Nervous system cancer
RELA	 0.5382 	 18	 0.037826	 0.860905		
STAT3	 0.5487 	 15	 0.00697	 1.266099	 22699621	 Pancreatic cancer
TAGLN2	 0.5337 	 12	 0.000581	 1.101816		
TCF4	 0.5357 	 12	 0.045941	‑ 0.95848	 23045694	 Nervous system cancer
UBQLN1	 0.5464 	 16	 0.016495	 0.942896	 24316982	 Liver cancer

BC, betweenness centrality; FC, fold change; ID, identification.
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PCA identified that APP, NXF1 and STAT3 were the three 
principal components that were able to separate the samples. 
Duplication of the APP locus, which leads to the increase of 
amyloid‑β peptides, is able to induce autosomal dominant 
early‑onset Alzheimer’s disease with cerebral amyloid angi-
opathy (40). As a result of assessing the characterization of 
gene‑associated cancer, NXF1 was identified to be associated 
with nervous system cancer. NXF1, which belongs to a family 
of evolutionarily conserved proteins, includes an NTF2‑like 
domain, a noncanonical RNP‑type RNA binding domain, a 
ubiquitin‑associated domain and four leucine‑rich repeats (41). 
In vivo blockade of STAT3 signaling or inhibition of inter-
leukin‑17A (IL‑17A) lead to an apparent increase in fatal rupture 
and aneurysm severity in mouse models, and the prevalence 
of vascular abnormalities are high in patients with STAT3 
deficiency (42). Romain et al (43) identified that T cell‑specific 
STAT3 signaling serves a central function in promoting vascular 
aneurysm and IL‑17 serves a protective function in the process. 
Phosphorylated STAT3 is associated with TLR4‑dependent 
abdominal aortic aneurysm (AAA) formation, and STAT3 
and/or TLR4 may be utilized for therapy of AAA (44,45). The 
level of phosphorylated STAT1 increases during aneurysmal 
degeneration, and the loss of STAT1 is associated with aneurysm 
formation and an increased rate of aortic rupture in a model of 
aortic dissection (46). These findings indicate that APP, NXF1 
and STAT3 may be involved in the rupture of IA.

In conclusion, the DEGs between ruptured and unruptured 
samples were identified using limma, and MetaDE packages. 
Additionally, TLR3, FN1, APP, NXF1 and STAT3 may function 
in the rupture of IA. However, a further validation of the roles of 
these genes in the rupture of IA is required.
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