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Abstract: Background: Alternative splicing (AS) is a posttranscriptional process that produces dif-

ferent transcripts from the same gene and is important to produce diverse protein products in response 

to environmental stimuli. AS occurs at specific sites on the mRNA sequence, some of which have 

been defined. Multiple bioinformatics tools have been developed to detect AS from experimental data. 

Objectives: The goal of this review is to help researchers use specific tools to aid their research and to 

develop new AS detection tools based on these previously established tools. 

Method: We selected 15 AS detection tools that were recently published; we classified and delineated 

them on several aspects. Also, a performance comparison of these tools with the same starting input 

was conducted. 

Result: We reviewed the following categorized features of the tools: Publication information, working 

principles, generic and distinct workflows, running platform, input data requirement, sequencing 

depth dependency, reads mapped to multiple locations, isoform annotation basis, precise detected AS 

types, and performance benchmarks. 

Conclusion: Through comparisons of these tools, we provide a panorama of the advantages and short-

comings of each tool and their scopes of application. 

Keywords: Alternative splicing, Splice junctions detection, RNA-seq, Spliceosome, Read-split-run, Read-split-walk. 

1. INTRODUCTION 

 Alternative splicing (AS) is an important posttranscrip-

tional process that enables a single gene to produce multiple 

distinct transcripts, namely isoforms, and thereby increases 
proteome diversity [1]. These isoforms carry different bio-

logical properties that are different in catalytic ability, sub-

cellular localization, or protein interaction [2]. AS was first 
discovered in 1977 when the 5' end mRNA sequences of 

some adenovirus 2 (Ad2) were found to be various [3]. More 

than 90% of genes produce multiple isoforms in humans, and 
dysregulation of gene splicing is the cause of many diseases 

[4]. In retinitis pigmentosa, mutations in the splicing factors 

PRP8 and PRPF31/U4-61k lead to autosomal dominant 
types of this particular disease [2]. Rapid discovery of AS 

events in a clinical patient setting is conducive to deriving 

future therapeutic value of the AS events [5]. Splicing differ-
ences, when used as powerful biomarkers, can potentially 

discriminate tissues and improve stratification methods for 

the diagnosis of cancer patients as well as specific treatments 
[6]. 

 The general process of AS is to remove introns from the 
nuclear pre-mRNAs in eukaryotes by a specific mechanism 
 

*Address correspondence to this author at the Department of Biology, Indi-

ana State University, Terre Haute, IN 47809, USA; Tel/Fax: ++1-812-237-

2405/ +1-812-237-3378; E-mail: Yongsheng.Bai@indstate.edu 

involving the spliceosome. The mechanism can recognize 
short consensus sequences that are conserved within the in-
tron and at exon-intron boundaries. There are functionally 
equivalent pairs of splice site sequences immediately adja-
cent to the exon-intron boundaries. 

 The spliceosome recognizes conserved dinucleotides 
located at the last two and the first two positions of introns in 
pre-mRNAs [7]. The major U2 type spliceosome removes 
the majority of introns with a 5’ end consensus sequence GT 
and 3’ end consensus sequence AG, whereas the minor U12 
type spliceosome removes a minority of introns with a 5’ end 
consensus sequence AT and 3’ end consensus sequence AC. 
In rare cases, the pre-mRNA splicing takes place at 5’- and 
3’- ends of splice sites in the GC–AG or GT–GG pattern [8]. 
Besides the 5’ end splice sites and 3’ end splice sites, the 
splice apparatus also recognizes a poorly conserved sequence 
within the intron called the branch site [7]. 

 The splicing process, at molecular level, consists of two 
steps. Firstly, a cut at the 5’ splice site is made to generate a 
linear left exon and a right intron-exon sequence that forms a 
branched structure called lariat. The generated 5’ terminus of 
the intron end is linked to the 2’ position of a target base A at 
the branch site within the intron. Secondly, the released linear 
left exon has a free 3’-OH that attacks the 3’ splice site bond 
and cleaves the lariat at the 3’ splice site. Afterwards, an excised 
intron is produced and quickly degraded, and then the left exons 
and right exons are eventually concatenated together [7]. 
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 The regulation of AS is through a combination of cis-
factor found within sequences of the pre-mRNA, and trans-
factors binding to these cis-factors. Cis-factors include intron 
splicing silencers (ISSs), intron splicing enhancers (ISEs), 
exon splicing silencers (ESSs), and exon splicing enhancers 
(ESEs). Most of the trans-factors are RNA-binding proteins 
that regulate spliceosome activity [1a]. 

 As previously mentioned, AS reaction requires the spli-
ceosome: a large splicing apparatus consisting of a complex 
of proteins and ribonucleoproteins [7]. The core of the major 
spliceosome is formed by 5 small nuclear RNAs [1b]. Dur-
ing the AS process, the pre-mRNAs extensively and specifi-
cally interact with 5 small nuclear RNAs, namely U1, U2, 
U4, U5, and U6, via base pairing [9]. Consensus sequences 
of the splice sites in higher eukaryotes are very degenerate, 
and thereby are insufficient for genome-wide accurate rec-
ognition by only interacting with the spliceosome core [1b]. 
Accordingly, protein complexes form on the pre-mRNA and 
aid in recognizing exon-intron boundaries [2]. In these com-
plexes, the majority of these splicing regulatory proteins are 
classified into two major classes, namely serine/arginine-rich 
(SR) proteins and RNA-binding heterogeneous nuclear ribo-
nucleoproteins (hnRNPs). These proteins possess domains to 
bind to each other as well as to single-stranded pre-mRNA 
with a low specificity [1b]. For example, SR proteins tend to 
bind to ESEs, while hnRNP typically bind to ESSs or ISSs 
[1a]. Exons are then recognized with high fidelity through 
the combined multiple weak interactions between RNA to 
RNA, protein to RNA, and protein to protein [2]. 

 Splice site selection is also influenced by a number of 
other factors such as secondary structures of the pre-mRNA 
[10], small nucleolar RNAs (snoRNA)s [11], cellular signal 
transduction pathways [12], histone modifications [13], and 
DNA methylation [14]. RNA binding proteins preferentially 
interact with single-stranded RNA. Accordingly, the splicing 
regulatory sequences prefer to take the form of single-
stranded conformation [2]. snoRNA HBII-52 regulates AS 
via binding to one alternative exon in the serotonin receptor 
gene. HBII-52 is not expressed in patients suffering from 
Prader–Willi syndrome; this may be the cause of this syn-
drome [11]. Phosphorylation events in cellular signal trans-
duction pathways can target exon-recognition protein com-
plexes on pre-mRNA and influence splicing junction (SJ) 
selections [12]. Phosphorylation is reversible. For example, 
several kinases can phosphorylate SR-proteins, while protein 
phosphatase can dephosphorylate splicing regulatory pro-
teins. Phosphatase activity modulation both in vitro and in 
vivo impacts on exon usage in AS events [2]. Histone modi-
fications also play a direct role in AS. For example, histone 
modification (H3-K27m3) impacts the recruitment of splice 
regulators through a chromatin-binding protein on many 
genes in humans such as PKM2, TPM1, TPM2, and FGFR2 
[13]. The methylation of DNA is linked to splicing by 
CTCF-promoted RNA polymerase II pausing, demonstrating 
the developmental regulation of AS via heritable epigenetic 
DNA methylation [14]. 

 Based on the splicing location on the gene, some types of 
splicing events are historically defined as classical splicing, 
such as cassette exon (also called exon skipping), mutually 
exclusive exons, intron retention, alternative 5’ splicing site 
(5’ss), alternative 3’ splicing site (3’ss), etc. (see Fig. 1). 

Furthermore, different AS events could occur in a combina-
torial fashion; a single exon might even experience more 
than one AS processing at the same time [1a]. Non-canonical 
splicing events include intraexonic deletions, trans-splicing, 
and variations affecting multiple exons [8]. Short deletions 
in intron regions can also be classified as non-canonical 
splicing events [15]. A representative example of this spe-
cific splicing is IRE1α-targeted Xbp1 mRNA splicing. Un-
like U2-type and U12-dependent AS events occurring within 
the nucleus, the splicing of IRE1α-targeted Xbp1 transcript 
happens within the cytosol and involves unique recognition 
site [15]. 

 

 

Fig. (1). Examples of classical AS events: the alternatively spliced 

exons are denoted by boxes filled with various colors. Constitutive 

exons are denoted by blue boxes. Green arrows point out alternative 

3’ splice site position. Black arrows point out the 5’ splice sites 

position. The figure is adapted from [16]. (For interpretation of the 
references to color in this figure legend, the reader is referred to 
the web version of this paper.) 

 Some tools have been developed to predict AS events. 
GeneSplicer is a computational tool, which predicts canoni-
cal splice sites by analyzing genomic sequences [17]. It is 
not reliable, however, to estimate AS merely from known 
genomic regulatory motifs, because the existence of known 
AS motifs does not ensure the presence of the corresponding 
AS events [1a]. Therefore, the AS patterns are mainly deter-
mined via experimental methods and bioinformatics using 
transcript data. For a specific gene, the reverse transcription 
polymerase chain reaction (RT-PCR) can be performed on a 
cDNA library. Thereafter, high-throughput transcriptome 
technology renders genome-wide AS patterns detectable. 
Nowadays, the largest accumulations of transcriptome data 
for AS detection include expressed sequence tags (ESTs), SJ 
microarrays, and RNA sequencing (RNA-Seq) [1a]. 

 RNA-Seq is a revolutionary experimental protocol for 
sequencing messenger RNAs [4]. In a single run, RNA-Seq 
yields millions of short sequence reads [18], which facilitate 
accurate and comprehensive measurement of gene expression 
levels, discovery of novel transcribed regions, identification of 
novel and known isoforms [1a], and relative changes of iso-
form expression under different conditions [19]. The continu-
ously accumulated RNA-seq data in higher depth provide ever 
more opportunities to detect low-frequency AS events, devel-
opment-specific AS events, and tissue-specific AS events [1a]. 
However, in RNA-Seq there are also shortcomings, such as 
the relatively short read length of 50 bp or less, compared to 
the roughly 1000 bp read length in first generation sequencing. 
The relatively short reads limit the capacity of detecting AS 
events in a single transcript and need to become longer in the 
future [1a, 20]. 

cassette exon mutually exclusive exon

alternative 3’ splice sitesalternative 5’ splice sites

retained intron
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2. TOOL SELECTION AND PERFORMANCE COM-

PARISON SETUP 

2.1. Tool Selection 

 AS analysis of big data and complex information remains 

a challenging task [19]. In response, there have been many 

AS tools developed to work with RNA-Seq data. There are 

tens of AS event detection tools based on RNA-Seq data. 

After examining literature, we found that some tools had 

already been reviewed or compared to other tools. For ex-

ample, NCBI Magic, r-make (which uses STAR), and 

Subread were compared by the SEQC consortium [21]; 

GSNAP, TopHat2, STAR, OLego, and SOAP were com-

pared by Alberto, et al. [22]. Furthermore, some tools that 

we reviewed are based on prior famous tools, like the Fine-

Splice based on TopHat2 [22]. Due to the rapid development 

of the next generation sequencing, we did not review tools 

that use microarray technology. Therefore, we selected 15 

tools to review, which had not been systematically reviewed 

or compared before. Their common and/or different features, 

when categorized, will render the AS detection algorithms 

conceptually straightforward, thereby facilitating the evalua-

tion and comparison of these tools for their advantages and 

shortcomings [22]. 

2.2. Tools’ Publication Information 

 The latest released version and date are summarized in 
Table 1. If the program can still be downloaded, we then 
define this tool as being supported. Most of the citations 
were collected from the Web of Science database. RSR has 
only 1 citation, based on a search query of the Google 
Scholar, as it is relatively new. It was just formally published 
on 2016-08-23. By comparing the latest released date and the 
publication date, users can know whether the programs are 
still being developed. 

2.3. Running Platform 

 The reviewed tools are free command-line tools for 
GNU/ Linux systems, R package, or commercial MatLab 
package, which are listed in Table 2. All the tools are flexi-
ble in parameter settings to different extents. In addition, 
RSW and RSR provide web interfaces that allow users to use 
the web form to upload their data to the server and graphi-
cally input their own parameter combinations on the server 
[15]. 

2.4. Input Data Requirement 

 Based on the different working mechanisms and aligners, 
different tools have different requirements of input files and

Table 1. Publication information of the published tools. 

Tools 
Publication 

Date 

Latest 

Released Date 

Latest 

Ver-

sion 

Support 
Citation 

Number 
Reference Website for Download 

Alt Event 

Finder 
2012-12-17 2013-01-22 0.1 yes 6 [4] http://compbio.iupui.edu/group/6/pages/alteventfinder 

SpliceMap 2010-04-05 2010-10-23 3.3.5.2 yes 125 [23] https://web.stanford.edu/group/wonglab/SpliceMap/ 

FineSplice 2014-02-25 2014-04-01 0.2.2 yes 6 [22] http://sourceforge.net/projects/finesplice/ 

RSW 2014-07-03 2014-01-22 N/A yes 2 [15] http://isu.indstate.edu/ybai2/RSW/index.html 

RSR 2016-08-23 2016-01-06 N/A yes 1 [5] https://github.com/xuric/read-split-run 

PASTA 2013-04-04 2012-05-07 0.95 yes 10 [24] 
http://www.biotech.ufl.edu/cores/bioinformatics/dibig/ 

dibig-software/pasta/ 

rMATS 2014-12-05 2016-08-18 3.25 yes 22 [25] http://rnaseq-mats.sourceforge.net/ 

SOAPsplice 2011-07-07 2013-04-24 1.1 yes 44 [26] http://soap.genomics.org.cn/soapsplice.html 

SplicePie 2015-03-23 2014-08-27 N/A yes 3 [27] https://github.com/pulyakhina/splicing_analysis_pipeline 

SplicingCom-

pass 
2013-02-28 undownloadable N/A no 21 [6] http://www.ichip.de/software/SplicingCompass.html 

TopHat 2009-03-06 2016-02-23 2.1.1 yes 3307 [18] https://github.com/infphilo/tophat 

TrueSight 2012-12-18 2012-09-15 0.06 yes 12 [28] http://bioen-compbio.bioen.illinois.edu/TrueSight/ 

NSMAP 2011-05-16 December, 2010 0.1.0 yes 14 [29] https://sites.google.com/site/nsmapforrnaseq/ 

rSeqDiff 2013-11-18 2013-09-10 0.1 yes 4 [30] http://www-personal.umich.edu/~jianghui/rseqdiff/ 

rSeqNP 2015-02-24 2015-01-01 1 yes 0 [31] http://www-personal.umich.edu/~jianghui/rseqnp/ 
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Table 2. Working principles, aligners, prior separately running tools, and running platform of reviewed tools. 

Tool Working Principle 
Running 

Platform 

Prior Separately  

Running Tools 
Aligner 

Alt Event 

Finder 

Combines read alignment tool and transcript isoform reconstruction tool 

to produce transcript isoform annotations. 
Linux 

BFAST/TopHat + Cuff-

links/Scripture 

BFAST/ 

TopHat 

SpliceMap 

Pins down one end of the SJ by matching the read spanning a junction 

longer than its half-length and then uses the matched part as a seeding to 

locate the other end. 

Linux no need 

Bowtie/ 

Eland/ Seq 

Map 

FineSplice 
Uses a semi-supervised anomaly detection approach of a logistic regres-

sion model to estimate the SJs from the TopHat2 alignment results. 
Linux TopHat2 TopHat2 

RSW 

Uses Bowtie to do initial read alignment, splits IUM reads into halves, 

and then uses Bowtie to align the split read halves back to the reference 

genome. 

Linux no need Bowtie 

RSR 
Similar to RSW, but improved via a linear regression equation in the 

Generalized Linear Model. 
Linux no need Bowtie 

PASTA 
Uses heuristic patterned alignments and a logistic regression statistical 

model to detect exon-intron junctions. 
Linux no need Bowtie 

rMATS 

Utilizes the hierarchical framework to simultaneously calculate variabil-

ity among replicates and estimate uncertainty of isoform fraction within 

individual replicates. 

Linux no need STAR 

SOAPsplice 
Reports SJ candidates from both spliced and intact alignment and filters 

out false positives 
Linux no need BWT 

SplicePie 
Detects AS events by capturing pre-mRNAs at different splicing stages: 

pre-, intermediate-, and post-splicing stages. 
Linux GSNAP + SAMtools GSNAP 

SplicingCom-

pass 

Calculates geometric angles between the multiple- dimension exon read 

counts vectors to detect differential AS events. 
R package TopHat + BEDTools TopHat 

TopHat 
Mapped regions are computed to yield initial consensus. Initially un-

mapped reads are indexed and mapped to the potential SJs. 
Linux no need 

Bowtie/ 

Bowtie2 

TrueSight 
Forms a unified model that uses adaptive training of iterative logistic 

regression to identify novel SJs and rule out unreliable SJs. 
Linux no need Bowtie 

NSMAP 
Identifies the structures of expressed isoforms and estimates the expres-

sion levels of known and novel expressed isoforms at the same time 

MatLab 

package 
TopHat TopHat 

rSeqDiff 

Uses an extended linear Poisson model to identify differential isoform 

expressions in multiple RNA-seq samples 
R package rSeq 

SeqMap/ 

Eland/ BWA/ 

Bowtie/ 

bowtie2 

rSeqNP 

Executes a non-parametric approach to test the differential expression 

(DE) and differential splicing (DS) using RNA-seq data. 
R package rSeq/RSEM 

SeqMap/ 

Eland/ BWA/ 

Bowtie/ 

bowtie2 

 
corresponding annotation files. Most of the tools can start 
from the fastq files of the RNA-seq data. These tools always 
required the aligner index files and specific annotation files. 
By comparison, some tools rely on other upstream tools to 
produce the input files. In other words, these tools cannot 
start from the fastq files, so users have to separately run 
other tools to generate the input files, while learning other 
tools is time-consuming. All the reviewed tools’ aligners and 
the prior separately running tools are listed in Table 2.  

2.5. Performance Comparison Setup 

 The best way to compare the performance of the tools is 
to start the tools with the same input and then benchmark 
their features with regard to the availability, speed, sensitiv-
ity, and so on. We run the tools using their default parame-
ters, except for changes when necessary, to compare them on 
the same page. 

 The tools were first classified based on their main func-
tions. One class of tools can detect splice junctions, whereas 
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some other tools could quantify differential isoforms within 
one condition or between two conditions. There is one tool, 
NSMAP, which could do both. 

 For the tools that detect splice junctions, we start with an 
ENCODE data sample [32]. Its experiment accession identi-
fier is ENCSR368QPC and the file accession is 
ENCFF002EZM. The fastq file has 1 million reads of 100 bp 
segments, is 266 MB, and contains only single-ended data. 

 For the tools that can quantify differential isoforms, in-
cluding NSMAP, we used two fastq files representing differ-
ent conditions: Dtt_Het.txt and Dtt_KO.txt. These two 
mouse RNA-seq were used in the RSW study [15]. 
Dtt_Het.txt has 23.4 million reads and is 4.8G. Dtt_KO.txt 
has 23.6 million reads and is 4.8 G. Both files are single-
ended and contain 79 bp reads. 

 Out of the 15 tools that we reviewed, we did not run 
RSW, SplicePie, SplicingCompass, NSMAP, or rSeqNP. 
RSW is the precursor of RSR. Since we ran RSR, there is no 
need to run the RSW. SplicePie has a lot of bugs in its source 
code, which rendered us unable to properly run it. The 
authors of SpicePie don’t respond to the query about the 
bugs. SplicingCompass is no longer supported. NSMAP de-
pends on a commercial license of MatLab, which we did not 
have access to. rSeqNP requires at least 4-5 replicates for 
each condition, which we did not have for any available 
datasets. 

3. TOOLS’ MECHANISMS AND FEATURES 

3.1. Generic Workflows 

 All of the selected AS event detection tools utilize algo-
rithms to initially map the relatively short RNA-seq reads to 
a reference genome or reference transcriptome. Then they 
predict spliced junctions (SJs) based on the mapping results 
[26]. Reads entirely located within exons can be correctly 
aligned, whereas reads overlapping the junctions between 
two exons generally cannot be mapped to the reference ge-
nome and thereby are regarded as initially unmapped reads 
(IUM reads) [24]. In other words, some of the reads that 
span the exon boundary won’t be contiguously mapped [18]. 
Hence, most of AS detection tools use IUM reads to deduce 
the exact location of exon boundaries [24]. As a whole, the 
differences between tools lie in the mapping process, the 
mapping result reliability determination, the algorithm to 
predict the SJ locations, and the criteria to estimate the posi-
tive and negative false rates, etc. [26]. 

3.2. Detailed Differences of Workflows 

 Alt Event finder first takes mixed RNA isoforms identi-
fied from Cufflinks or Scripture, from which the tool pulls 
out “minimum non-overlapping exon regions”. It then calcu-
lates the expression units by splitting exon region unions into 
the smallest units that do not overlap genomically with each 
other. Second, Alt Event Finder projects the input individual 
transcript isoforms to non-overlapping exon expression units 
and then counts the number of isoforms that contain each 
expression unit. Special strings of counts patterns are then 
used to output a GFF3 format list of appropriate cassette 
exon events [4]. 

 In SpliceMap, half of every read is aligned at a time us-
ing a short-read aligner like SeqMap or ELAND, followed 
by the base by base extension to the other half until the ex-
tension cannot further proceed. The remaining read part, if 
long enough, is subject to the same processing. SpliceMap 
contains four main steps: mapping of half-read, selection of 
seeding, search of junction, and filtering of paired-end. The 
step of mapping of half-read is to align with high probability 
the half-length (25 bp) of sensibly long reads (50 bp) to the 
reference genome. Then the half-read mapped hits, called 
seeding, are examined for seeding selection: excluding local 
duplicated mapped hits, and narrowing the search ranges of 
the junction. For every identified seeding, search of junction 
is used to extend base by base the alignment on the genome; 
this catches the perfectly mapped corresponding residual 
sequence of the split read at the partner splicing point within 
a customer-specified distance. Paired-end reads, if available, 
can help filter out false positives by considering the mapping 
direction as well as the positional order of the two hits on the 
reference genome [23]. 

 The FineSplice pipeline consists of seven steps. First, 
using TopHat2 [33], the reads are aligned to the reference 
genome. Non-uniquely mapped reads that straddle multiple 
SJs are provisionally put away. Second, the set of split read 
overhangs across the splice sites is calculated. Third, a sub-
set of likely false positives is then calculated to distinguish 
abnormal junctions influenced by frequent mismatches and 
systematically shorter overhangs. Forth, mismatched over-
hangs at the first mismatch position are trimmed, and feature 
vectors are created according to the difference between the 
observed counts of reads that span the specific position and 
the counts of expected reads. Fifth, a logistic regression 
model is applied to the likely false positives subset against 
all the remaining detectable SJs. Sixth, SJs that have a higher 
posterior probability of residing in the false positive subset 
are considered as spurious and discarded. Seventh, multiple 
mapped reads are rescued by being assigned to the accepted 
candidate SJs, if they have a unique location after filtering. 
Finally, a confident set of SJs and their corresponding counts 
are output by the program [22]. 

 In RSW, first, Bowtie [34] is used to align reads against 
the reference genome with known SJ boundaries. IUM reads 
are split into halves. Second, all split read halves are mapped 
to the reference genome by Bowtie with identical parame-
ters, except that no mismatch is allowed. Following the sec-
ond alignment, the split read pairs are selected if the two 
ends of the split read can both be mapped within a distance 
(e.g. the average gene length) on the same strand of the same 
chromosome. Third, all of the selected split read ends of 
every single read are merged into a uniquely spliced region, 
as long as their splice lengths are identical and within a cer-
tain threshold value of the genomic boundaries. The region 
between the minimal lower border and the maximal upper 
border is defined as the candidate spliced region of a gene, if 
the region is supported by reads with the same splice lengths. 
Fourth, a novel candidate SJ is defined as regions supported 
by at least 2 individual reads and at least one of its bounda-
ries has not been annotated in the University of California, 
Santa Cruz (UCSC) knownGene reference database. Other-
wise, a spliced region is considered as a candidate known 
canonical region [15]. RSR is an improved version of RSW; 
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in RSR, a modified General Linear Model for RSR considers 
three variables/parameters: read mapping region boundary 
buffer size (BB), maximum candidate distance (MD), and 
minimum split size (MS). RSR uses Bowtie [34] to align the 
reads. IUM reads are put aside as likely candidates of splic-
ing results. Second, each IUM read sequence is split into 
pairs in multiple ways to ensure that both parts are at least 
some MS. Bowtie is called again to map each sub-sequence 
of split IUM reads generated from the first alignment. 
Alignments of the sub-sequences are then scanned to find 
sub-sequences that are derived as the split pairs from the 
same IUM read, and that are aligned on the same chromo-
some within MD. All the found pairs of alignments satisfy-
ing the conditions are saved and named “matched pairs.” 
Third, RSR scans all the matched pairs and tries to determine 
the number of partner pairs of each mapped pair that likely 
arises from the same spliced region. The SJs with the highest 
number of matched pairs that support them are the most con-
fident [5]. 

 PASTA (Patterned Alignments for Splicing and Tran-
scriptome Analysis) aligns reads to the reference genome 
using Bowtie or Bowtie2. Then PASTA goes through three 
steps. The first step is patterned alignments, which split each 
IUM read at different cutoff points successively and pro-
duces two sets of “patterned” sub-sequences. The second 
step is using organism-specific logistic regression models, 
which are based on biological context such as canonical 
splice signals, regulatory elements, and the expected distri-
bution of intron sizes. The model assigns scores to all puta-
tive introns, whenever a set of reads engenders more than 
one putative SJ. The putative SJ that generates the intron 
with the highest scores is considered as the predicted junc-
tion. The third step is junction identification, which deter-
mines the position of the predicted junctions when there are 
several putative junctions supported by multiple reads that 
are aligned to the same general genomic region. Eventually, 
the output files list all the identified SJs as well as the posi-
tions of all matched reads [24]. 

 The rMATS (replicate MATS) hierarchical framework is 
based on the fact that the variability within a sample set can 
represent the differences of levels of exon inclusion among 
replicates. For replicates unpaired between different sample 
sets, rMATS utilizes the binomial distribution model to cal-
culate the number of reads mapped to the exon inclusion 
isoforms while considering the total read number and the 
effective lengths of the exon inclusion isoforms in every 
individual replicate; rMATS utilizes a logit-normal distribu-
tion model to calculate the variations among replicates 
within the sample set. For paired replicates between two 
sample sets, every replicate in the first sample set is paired 
with another replicate in the second sample set. rMATS util-
izes the bivariate normal distribution model to calculate the 
variations among the replicates within the sample set and 
utilizes a covariance structure to calculate the exon-specific 
correlation for each exon between paired replicates. For both 
unpaired and paired replicate models, the likelihood-ratio 
test is adopted to ensure that a user-defined threshold of dif-
ferences between the variance and mean of the levels of exon 
inclusion in the two sample sets are not exceeded [25]. 

 The SOAPsplice workflow consists of three steps and 
two strategies to exclude false positives. First, SOAPsplice 

uses the Burrows Wheeler Transformation to align reads to 
the genome. Secondly, SOAPsplice maps IUM reads to the 
genome by dividing IUM reads into two parts. SOAPsplice 
aligns the longest 5’ end part to the reference genome, and 
then aligns the remaining part. Third, for IUM reads longer 
than 50 nt, SOAPsplice splits them into subreads (no greater 
than 50 nt in length). Afterwards, SOAPsplice executes the 
first step and the second step to these subreads. The first 
strategy guarantees that mate-pair reads are aligned to the 
proper positions, following their paired-end relationship. The 
second strategy specifies the threshold number of reads that 
are greater than 50 nt in length and support a specific type of 
SJ. In this specific type, sub-reads are not capable of being 
mapped compatibly back to the reference genome. Finally, 
SOAPsplice outputs the identified junction sites, the strand, 
and the supporting reads numbers [26]. 

 SplicePie is based on the fact that the pre-mRNA is pre-
sent in the nucleolus and chromatin, whereas mature mRNAs 
are present in nucleoplasm, and the fact that total RNA con-
tains mostly mature mRNA, whereas nuclear RNA possesses 
(partially) spliced mRNA. Thereby, RNA-seq fastq files are 
generated from total RNA and nuclear RNA samples, re-
spectively. Then SplicePie uses GSNAP, a tool that can split 
every read end into multiple parts, to align the paired-end 
reads to the reference genome. Afterwards, reads are classi-
fied based on their mapping destinations: within intron, 
within exon, exon-exon SJ, or intron-exon boundary. Recur-
sive splicing events are addressed using a combination of 
medians of coverage of intron and exon and Splice Site In-
dex (SSI) values. SSI is calculated for both 5’ end and 3’ end 
per intron, using the reads mapped to exon-exon SJ repre-
senting post-splicing and mapped to intron-exon boundary 
representing pre-splicing. The non-sequential splicing is ad-
dressed using two approaches. The coverage-based method 
calculates the difference between the medians of the cover-
age of introni+1 and introni. The read-based approach calcu-
lates the splice-ratio representing the proportion of reads that 
support sequential splicing of two adjacent introns [27]. 

 In SplicingCompass, for every gene, a union transcript is 
defined by combining every exon in each corresponding iso-
form annotated in the UCSC Consensus CDS coding se-
quences (CCDS). Afterwards, the gene expression is repre-
sented as a vector of read counts. Each component in the 
vector corresponds to the count of reads that are mapped 
uniquely to a specific exon in that union transcript. Thereby, 
every vector combines the expression values of all isoforms 
of that gene. The geometric angles between the vectors are 
used to measure differences in AS. To identify differentially 
spliced genes with multiple samples between two different 
conditions like two specific tissues or two specific stages, all 
pairwise angles are calculated in an equation and statistically 
tested to see whether the splicing angles in each condition 
are significantly smaller than the angles between different 
conditions. If the proportions of each isoform of a gene are 
constant between conditions, that gene will have the read 
count vectors that are approximately parallel between differ-
ent conditions and there will be a low angle between the vec-
tors, even if there are differences in overall gene expression 
levels. Thereby, the method can inherently distinguish dif-
ferences between overall gene expression levels and differ-
ential AS [6]. 
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 TopHat first runs Bowtie to align all reads against the ref-
erence genome, consequentially mapping non-junction reads 
within-exons and setting aside those reads that do not map to 
the genome as IUM reads. Then a program Maq is used to 
compute an initial consensus from the mapped regions. Sec-
ond, TopHat joins sequences that flank all likely donor or ac-
ceptor splice sites that are within nearby regions to predict 
potential SJs. Then, Tophat utilizes a seeding-and-extension 
strategy to index and align those IUM reads to the joined se-
quences. Finally, the Tophat reports alignments that are sub-
sequently used to construct a set of non-redundant SJs [18]. 

 TrueSight utilizes Bowtie to map RNA-seq reads to the 
reference genome. Remaining IUM reads are passed on to a 
new algorithm for gapped alignment to identify reads span-
ning SJs, irrespective of the expression level of their corre-
sponding transcripts. Gapped alignment utilizes an anchor-
and-extension strategy that is also used in EST mapping [28]. 

 In the pipeline of NSMAP, first, the TopHat is used to 
construct the exons based on the detected SJs from the RNA-
seq data. By means of combining these detected exons, all 
the likely isoforms are enumerated. Then, NSMAP tries to 
identify authentic expressed isoforms out of the large pool of 
the candidate isoforms and calculate the expression levels of 
the isoforms using a sparsity control term to limit the amount 
of expressed isoforms, because only as few isoforms as pos-
sible are supposed to be selected to better rationalize the ob-
served counts of reads that are mapped to each exon of a 
gene. Eventually, the proper model is selected to choose the 
solution that better compromises the fitting of the counts and 
observations of the expressed isoforms [29]. 

 In the rSeqDiff, first, the linear Poisson model for one 
RNA-seq sample is extended to multiple RNA-seq samples 
to estimate the isoform abundance. Each gene is classified as 
three situations: (1) no differential expression (DE), model 0, 
(2) DE without differential splicing (DS), model 1, (3) DS, 
model 2. Then, the maximum likelihood estimation is used 
to estimate the parameters of every model. The model is then 
selected via likelihood ratio test. When there are two bio-
logical conditions to be compared, a ranking of genes that 
are differentially spliced is generated [30]. 

 In the pipeline of rSeqNP, expression estimates of all the 
genes and their isoforms in each sample need to be obtained 
by processing the raw RNA-seq reads using tools such as 
rSeq [35], Cuffdiff2 [36], or RSEM [37]. Then, based on the 
ranks of expression values, a non-parametric statistical ap-
proach is applied to test the DE of genes and isoforms. Then, 
the DE and DS of genes are jointly tested. Gene level differ-
ential score is then calculated and estimated via P-value and 
FDR using a permutation plug-in method [31]. 

3.3. Dealing with Reads Mapped to Multiple Locations 

 Spanning of reads over more than one SJ occurs fre-
quently when the reads are greater than 100 bp in length, 
considering that about 30 percent of humans’ exons have 
lengths shorter than 100 bp [28]. TrueSight, SpliceMap, and 
FineSplice can map such spanning reads. 

 SpliceMap can identify multiple SJs from a single long 
read by adding a filter for post-processing of long-read data 
[23]. SpliceMap predicts the alignment of split reads by sig-
nificance of tag mapping; if one side of a read is capable of 
being mapped to more locations, it has a smaller tag signifi-

cance. Nevertheless, tag significance does not aid in determin-
ing the right candidate, and thereby a read might be aligned to 
the genome in various gap sizes, which means the tag on one 
side is likely to be mapped to several homologous locations by 
the algorithm. Therefore, SpliceMap is not good at handling 
the split reads aligned to multiple homologous locations, and 
SpliceMap ignores hits that fall too close together [26]. Con-
sequently, the locations predicted by SpliceMap might be in-
correct [28]. By comparison, TrueSight can sensitively and 
specifically detect SJs based on junction-spanning reads, par-
ticularly in SJs with low coverage reads and in the situation 
that a read might be aligned to the reference genome with dif-
ferent gap size [28]. The “parent” program of FineSplice, To-
pHat2, has high sensitivity and mapping accuracy but pro-
duces a lot of false positive gapped alignments, especially 
when handling reads with low-quality ends and reads that span 
multiple splice sites. That’s why TopHat2’s downstream tool, 
FineSplice, was developed [22]. 

 

Table 3. Sequencing depth dependency and isoform annota-

tion basis of the reviewed tools. 

Tool 
Sequencing Depth 

Threshold 
Isoform Annotation 

Dependency 

Alt Event Finder N/A no 

SpliceMap 50X no 

FineSplice N/A no 

RSW N/A no 

RSR N/A no 

PASTA N/A no 

rMATS N/A yes 

SOAPsplice 10X no 

SplicePie N/A no 

SplicingCompass N/A yes 

TopHat 20X no 

TrueSight N/A no 

NSMAP N/A no 

rSeqDiff N/A yes 

rSeqNP N/A yes 

Note: Since there is no clear declaration of sequencing depth threshold values men-

tioned in some of the tool papers, the sequencing depth information in the depth 

threshold column is marked as "N/A”. 

3.4. Sequencing Depth Dependency 

 Some tools’ performances are highly dependent on the 
depth of sequencing, because if the depth of sequencing is 
low, many reads at SJs might be ignored, and low-expressed 
exons might be accidentally split or disconnected [4]. Moreo-
ver, tools that use a mapping and extension approach generally 
cannot effectively address reads that possess sequencing er-
rors, resulting in a decrease of the call rate, especially when it 
comes to low expression levels [26]. Some tools claimed to 
have high specificity and sensitivity on low sequencing depth 
RNA-seq data. However, only some of them provide their 
sequencing depth threshold values in their publications, which 
are summarized in Table 3. The sequencing depth dependency 
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values arise from the corresponding publications of the tools. 
If the sequencing depth is lower than the proposed thresholds, 
the sensitivities of the tools drop significantly. 

3.5. Isoform Annotation Basis and AS Types Detected 

 Some tools align reads relying on known splice junctions 
of exons or putative exons. Therefore, they cannot discover 
de novo AS events. By contrast, other tools for de novo 
splice junction detection are independent of isoform annota-
tions [26]. All the reviewed tools are summarized in (Table 
3). As an efficient downstream pipeline of TopHat2, Fine-
Splice can align the unmapped or the potentially misaligned 
reads to the reference genome. FineSplice thereby can detect 
de novo AS events, utilizing the known isoform annotations 
but not exclusively relying on them [33]. 

3.6. Precise Detected AS Events by Tools 

 Most of the reviewed tools are designed to detect AS 

events, although some have a different focus on differentially 

spliced isoforms within one condition or between two condi-

tions, which are summarized in Table 4. Some tools have 

unique features worth mentioning. SOAPsplice requires the 

intron boundaries to possess the pattern of “GT-AG”, “GC-

AG”, or “AT-AC”. Thereby, SOAPsplice can not detect novel 

AS patterns, though it can detect novel splice junctions pos-

sessing these patterns [26]. By analysis of pre-mRNA process-

ing mechanisms, SplicePie can detect AS events such as exon 

skipping, intron retention, and novel exons. Besides resolving 

the splicing order and recursive splicing events, SplicePie can 

detect non-sequentially spliced introns [27]. 

3.7. Approaches to Improve Accuracy and Specificity 

 Certain tools adopt their unique approaches to improve 
accuracy and specificity. For example, SOAPsplice improves 
the mapping process by trimming reads exhibiting higher 
sequencing errors at the 3’ terminus. Afterwards, 
SOAPsplice repeats the complete mapping procedure for 
remaining segments of unaligned reads. To achieve more 
accurate alignments of IUM reads, TrueSight considers the 
genomic motifs, like the canonical GT-AG pattern, and uses 
an expectation maximization algorithm to do the logistic 
regression. rMATS utilizes paired replicate data between 

Table 4. Detected AS types or differentially spliced isoforms of these tools. If the tools can detect the splice junctions, the precise 

AS events are listed in the right column. 

Can Quantify Differential 

Expression of Isoforms 
Tools 

Within One 

Condition 

Between Two 

Conditions 

Can 

Detect 

Splice 

Junctions 

SE MXE RI A5SS A3SS AFE ALE NSS&RS CS DNSJ 

Alt Event 

Finder 
no no yes yes no no no no no no no no yes 

SpliceMap no no yes yes yes yes yes yes yes yes no no yes 

FineSplice no no yes yes yes yes yes yes yes yes no no yes 

RSW no no yes yes yes yes yes yes yes yes no yes yes 

RSR no no yes yes yes yes yes yes yes yes no yes yes 

PASTA no no yes yes yes yes yes yes yes yes no no yes 

rMATS no yes yes yes yes yes yes yes no no no no no 

SOAPsplice no no yes yes yes yes yes yes yes yes no no yes 

SplicePie no no yes yes no yes no no no no yes no yes 

Splicing-

Compass 
no yes no no no no no no no no no no no 

TopHat no no yes yes yes yes yes yes yes yes no no yes 

TrueSight no no yes yes yes yes yes yes yes yes no no yes 

NSMAP yes no yes yes yes yes yes yes yes yes no no yes 

rSeqDiff no yes no no no no no no no no no no no 

rSeqNP no yes no no no no no no no no no no no 

The abbreviations are as follows: cassette exon (also called exon skipping or skipped exon): SE; mutually exclusive exons: MXE; retention of intron: RI; alternative 5’ splicing site 

(5’ss): A5SS; alternative 3’ splicing site (3’ss): A3SS; alternative first exon: AFE; alternative last exon: ALE; non-sequential splicing and recursive splicing: NSS&RS; cytosol 

splicing: CS; de novel splice junction: DNSJ. 
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sample sets and thus can diminish individual specific varia-
tion and increase the statistical power. RSW and RSR use 
different parameter settings for Bowtie to achieve better sen-
sitivity for detection of the 26 bp non-canonical spliced re-
gion in Xbp1 mRNA. Out of the 15 reviewed tools, only 
SpliceMap was geared towards the mammal genomes; all 
other tools work with all the eukaryotic organisms. 

 Huang, Zhang et al., based on the literature and actual 
running of the tools, showed that many junctions can be 
identified by only one tool but not by the other tools. This 
suggests room for improvement in AS detection algorithms 
[26].  

4. PERFORMANCE COMPARISON RESULTS 

 Based on the foregoing performance comparison setup, 
we ran the tools and listed results in Table 5. Of the tools 
that detect splice junctions, we have demonstrated that To-
pHat and its downstream tool, FineSplice, are the fastest 
tools, whereas PASTA is the slowest program. We find that 
AltEventFinder detects the highest number of junctions, and 
RSR detects the lowest number of junctions; splice junctions 
detected by other tools (e.g., TopHat) are likely to be false 
positive ones [5]. Of the two tools that detect differentially 
spliced isoforms, rMATS is faster than the rSeqDiff but de-
tects less differentially spliced isoforms than rSeqDiff. 

CONCLUSION 

 In this paper, we summarized the achievements, draw-
backs, and scopes of application of these AS detection tools 
developed in recent years. We reviewed the outstanding fea-
tures of these tools by categories, including their publication 
information, working principle, generic and distinct 
workflows, running platform, input data requirement, se-
quencing depth dependency, reads mapped to multiple loca-
tions, isoform annotation basis, precise detected AS types, 
and performance benchmarks. 

 Our categorization and performance comparison will be 
conducive to the development of new AS detection tools and 
selection of these tools by various researchers according to their 
need in speed or precise detected alternative splicing events. 
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Table 5. Running speed, accuracy, and specificity of AS detection tools. 

Tool Data Source 
Running Time 

(Minutes) 

Maximum  

Memory (GB) 

Maximum CPU 

(%) 
Number of SJs 

Number of  

Differentially 

Spliced Isoforms 

Alt Event Finder ENCODE 12 1.364 100 30569 N/A 

SpliceMap ENCODE 42 3.1 99.9 11882 N/A 

FineSplice ENCODE 2 1.364 100 8577 N/A 

RSW N/A N/A N/A N/A N/A N/A 

RSR ENCODE 24 3.968 100 3143 N/A 

PASTA ENCODE 350 2.17 101 14675 N/A 

rMATS 
mouse used in 

RSW study 
44 26.536 274 N/A 17 

SOAPsplice ENCODE 123 5.332 99.7 10381 N/A 

SplicePie N/A N/A N/A N/A N/A N/A 

SplicingCompass N/A N/A N/A N/A N/A N/A 

TopHat ENCODE 1.75 1.364 100 9619 N/A 

TrueSight ENCODE 229 2.914 571 12360 N/A 

NSMAP N/A N/A N/A N/A N/A N/A 

rSeqDiff 
mouse used in 

RSW study 
115 0.186 119 N/A 203 

rSeqNP N/A N/A N/A N/A N/A N/A 

As for the tools that require prior separately running programs, the running time, maximum memory, and maximum CPU of the prior separately running programs and their own 

performance results are added together. These tools include AltEventFinder (prior running of TopHat and Cufflinks), FineSplice (prior running of TopHat2), rSeqDiff (prior running 

of rSeq), and rSeqNP (prior running of rSeq). 
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