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The present article reviews the literature on the functional neuroanatomy of
developmental dyslexia across languages and writing systems. This includes
comparisons of alphabetic languages differing in orthographic depth as well as
comparisons across alphabetic, syllabic, and logographic writing systems. It provides
a synthesis of the evidence for both universal and language-specific effects on
dyslexic functional brain activation abnormalities during reading and reading-related
tasks. Specifically, universal reading-related underactivation of dyslexic readers relative
to typical readers is identified in core regions of the left hemisphere reading
network including the occipito-temporal, temporo-parietal, and inferior frontal cortex.
Orthography-specific dyslexic brain abnormalities are mainly related to the degree and
spatial extent of under- and overactivation clusters. In addition, dyslexic structural
gray matter abnormalities across languages and writing systems are analyzed.
The neuroimaging findings are linked to the universal and orthography-dependent
behavioral manifestations of developmental dyslexia. Finally, the present article provides
insights into potential compensatory mechanisms that may support remediation across
languages and writing systems.
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INTRODUCTION

Developmental dyslexia is a disorder characterized by severe and persistent problems in the
acquisition of literacy. Performance in reading skills is markedly below the age-adequate norm –
in the absence of problems regarding intelligence, motivation, vision, or educational environment
(American Psychiatric Association, 2013; World Health Organization, 2016). It has become evident
from numerous studies that developmental dyslexia may not be viewed as a simple, single-trait
disorder, that is, no single behavioral phenotype can be considered as a “typical” manifestation
of dyslexia. There are problems in diverse aspects of literacy including reading fluency, accuracy,
comprehension, and/or spelling, and people affected by dyslexia often present a mixture of different
severities of these problems (e.g., Lyon et al., 2003). In addition, problems in learning to read
are often comorbid with atypical or delayed oral language development (e.g., Catts et al., 2008;
Peterson et al., 2009), writing disabilities, attention-deficit hyperactivity disorder (ADHD), and
math disabilities/dyscalculia (e.g., Landerl and Moll, 2010; Willcutt et al., 2010).
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Using neuroimaging techniques such as functional magnetic
resonance imaging (fMRI), cognitive neuroscientific research
has identified brain circuits crucially involved in typical and
dyslexic reading. These studies have converged on a coarse
functional neuroanatomical model of reading and developmental
dyslexia. The model proposes abnormal brain activation in
dyslexic readers in the left posterior temporo-parietal (TP) cortex
(middle temporal gyrus, superior temporal gyrus, supramarginal
gyrus, and angular gyrus), the left occipito-temporal (OT) cortex
(inferior temporal gyrus and fusiform gyrus), and the left frontal
cortex (inferior frontal gyrus and precentral gyrus).

As identified by meta-analyses, the most consistent finding
is dyslexic underactivation relative to typical readers in the left
TP and OT cortex. In addition, dyslexic underactivation was
identified in the left inferior frontal gyrus (IFG) and dyslexic
overactivation in the adjacent left precentral gyrus (Richlan
et al., 2009, 2011; Martin et al., 2016; Hancock et al., 2017).
Occasional reports on other bilateral cortical, subcortical, and
cerebellar dyslexic deficits are not supported by the meta-
analyses. Obviously, these dyslexic activation abnormalities
depend largely on the utilized functional activation tasks during
brain scanning, which are often targeted at providing evidence in
favor of a specific neurocognitive deficit theory of dyslexia.

Although we have convincing evidence that the functioning
of the above mentioned left TP, OT, and IFG cortical regions is
altered in developmental dyslexia during reading and reading-
related tasks, it is still an open question how the presumed
functional and gray matter (GM) structural impairments in these
regions lead to the severe and persistent reading problems of
dyslexic readers. In other words, the question is not so much
of whether and if so, where in the brain dyslexic abnormalities
exist, but rather on how these brain regions might underlie
reading- and spelling-related cognitive processes in typical and
dyslexic readers. The present review article aims at providing an
integrative overview and synopsis of the functional and structural
brain abnormalities in dyslexic readers across languages and
writing systems.

Specifically, the goal here is to focus on functional activation
and GM structure; and on the commonalities and differences
in these measures in developmental dyslexia across languages
and writing systems. First, the functional neuroanatomy of
developmental dyslexia across alphabetic languages differing in
orthographic depth will be discussed. Second, the neurobiology
of developmental dyslexia will be compared across alphabetic,
syllabic, and logographic writing systems. Third, GM structural
brain abnormalities in developmental dyslexia will be discussed.
Finally, there will be a section on potential compensatory
mechanisms that may support remediation across languages and
writing systems.

Research on the relationship between functional activation
and GM structure and their effects on reading development
is of crucial importance but still scarce. Therefore, innovative
approaches using intervention studies and longitudinal research
will also be discussed. With respect to functional and structural
connectivity in developmental dyslexia – which is beyond the
scope of the present review – the reader is referred to other
recent studies and meta-analyses (e.g., Ben-Shachar et al., 2007;

Cao et al., 2008, 2017; van der Mark et al., 2011; Vandermosten
et al., 2012; Koyama et al., 2013; Dehaene et al., 2015; Olulade
et al., 2015; Schurz et al., 2015; Alvarez and Fiez, 2018).

THE FUNCTIONAL NEUROANATOMY OF
DEVELOPMENTAL DYSLEXIA ACROSS
ALPHABETIC LANGUAGES DIFFERING
IN ORTHOGRAPHIC DEPTH

Orthographic depth (OD) (i.e., the complexity, consistency,
or transparency of grapheme-phoneme correspondences in
written alphabetic language) (Frost et al., 1987) is a well-known
factor influencing the acquisition of fast and accurate reading
(Seymour et al., 2003; Landerl et al., 2013). Correspondingly,
the behavioral manifestations of developmental dyslexia vary
as a function of OD. Specifically, inaccurate mapping from
graphemes to the corresponding phonemes is a particular
hallmark of developmental dyslexia in irregular or deep
orthographies – especially for English. On the contrary,
persistent slow and dysfluent word recognition is a universal
characteristic of developmental dyslexia across all alphabetic
orthographies. Here we examine the question of how the different
behavioral manifestations of developmental dyslexia are reflected
in the functional neuroanatomical patterns identified by brain
imaging studies.

The predominant view proposed a “cultural diversity and
biological unity” account of developmental dyslexia, claiming a
universal neurocognitive basis of the disorder across languages.
This position was based on a seminal PET study comparing the
brain activation of Italian, French, and English adult dyslexic
readers in response to explicit and implicit reading tasks
(Paulesu et al., 2001). The universal neurobiological substrate
of developmental dyslexia across languages was reflected in
underactivation (relative to typical readers) in a large left
hemisphere cluster comprising the superior temporal gyrus
(STG), middle temporal gyrus (MTG), inferior temporal gyrus
(ITG), and middle occipital gyrus (MOG). Crucially, no
orthography-specific effects in reading-related brain activation
were identified in the direct statistical comparison of the dyslexic
readers from the three languages varying in OD.

A qualitative summary and critical discussion of the Paulesu
et al. (2001) study and more recent cross-linguistic brain imaging
studies provided additional orthography-specific predictions
regarding the degree and spatial extent of dyslexic under- and
overactivation clusters relative to typical readers (Richlan, 2014).
Together with the universal dysfunctions in core regions of the
left hemisphere reading network (Pugh et al., 2005; Richlan, 2012;
Martin et al., 2015), the presumed orthography-specific effects
were derived from different functional neuroanatomical models
of developmental dyslexia and dependent on the particular
characteristics and processing demands of the language. In
addition to differences in regional brain activation, deep
orthographies (DO) and shallow orthographies (SO) were
proposed to be associated with differences in the functional and
effective connectivity between brain regions (Schurz et al., 2015).
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Consequently, Martin et al. (2016) used coordinate-based
meta-analysis in order to investigate the universal and
orthography-specific predictions regarding dyslexic brain
activation. Specifically, commonalities and differences of dyslexic
functional brain abnormalities between alphabetic languages
varying in OD were objectively quantified by comparing foci
of under- and overactivation in dyslexic readers relative to
typical readers as reported in 14 studies in DO (English) and
in 14 studies in SO (Dutch, German, Italian, Swedish). The in-
scanner activation tasks used in these 28 studies included silent
reading, reading aloud, (phonological) lexical decision, rhyme
judgment, semantic judgment, and sentence comprehension.
Importantly, the two sets of studies in DO and SO, respectively,
were balanced regarding the number of tasks that explicitly
required phonological processing. For an in-depth discussion on
the effects of task nature and task difficulty – which are difficult
to control for in coordinate-based meta-analyses – we refer to
the original publication (Martin et al., 2016).

As predicted from the cross-language literature (Paulesu
et al., 2001), universal reading-related dyslexic underactivation
was identified in the left OT cortex including the fusiform
gyrus (FFG), inferior occipital gyrus (IOG), ITG, and MTG.
Specifically, eight of 14 and nine of 14 studies contributed
one or more activation foci in this region for DO and SO,
respectively. The large left posterior cluster of overlapping
underactivation in both DO and SO relative to typical readers
also included the posterior-to-anterior gradient of the visual
word form system (Dehaene and Cohen, 2011; Taylor et al.,
2019). These regions can be regarded as the most consistently
reported regions of dyslexic underactivation relative to typical
readers in alphabetic orthographies – irrespective of OD, in-
scanner activation task, and age of participants (the mean
age of the participants in the 28 included studies ranged
from 8 to 30 years).

The direct statistical comparison between the two sets of fMRI
studies revealed higher convergence of dyslexic underactivation
relative to typical readers for DO compared with SO in the
bilateral inferior parietal cortex. Interestingly, this abnormality
was no longer found when foci reported with stronger dyslexic
task-negative activation (i.e., task-related deactivation relative to
the resting baseline) were not included in the meta-analysis.
Furthermore, higher convergence of dyslexic underactivation
relative to typical readers for DO compared with SO was found
in the triangular part of the left inferior frontal gyrus (IFG), the
left precuneus, and the right STG. Higher convergence of dyslexic
overactivation relative to typical readers was identified in the left
anterior insula.

Higher convergence of dyslexic underactivation for SO
compared with DO was identified in the left FFG, left TP cortex,
the orbital part of the left IFG, and left frontal operculum. On the
contrary, higher convergence of dyslexic overactivation relative
to typical readers was found in the left precentral gyrus. In
sum, the findings are in line with the view of a biological unity
of developmental dyslexia – with a core deficit in the left OT
cortex and additional orthography-specific variations. Different
patterns of reading-related dyslexic overactivation are assumed
to reflect different compensatory mechanisms across languages.

The results of the meta-analysis by Martin et al. (2016) are
summarized in Table 1.

Importantly, common dyslexic underactivation in alphabetic
orthographies was found in the left OT cortex, including
the visual word form system. The universal left OT cortex
dysfunction, most probably reflecting the phonological speed
deficit characteristic of developmental dyslexia, is in line with
evidence showing that in typical readers this area subserves both
lexical whole-word recognition and sublexical serial decoding
(e.g., Richlan et al., 2010; Schurz et al., 2010; Wimmer
et al., 2010; Schuster et al., 2016) – at least in the studied
alphabetic orthographies.

THE NEUROBIOLOGY OF
DEVELOPMENTAL DYSLEXIA IN
ALPHABETIC, SYLLABIC, AND
LOGOGRAPHIC WRITING SYSTEMS

In addition to the functional neuroimaging studies on reading
and dyslexia in alphabetic orthographies, there have been studies
on reading in syllabic (e.g., Japanese Kana), morpho-syllabic (e.g.,
Japanese Kanji), and logographic (e.g., Chinese) writing systems.
In their meta-analysis of these studies on typical readers, Bolger
et al. (2005) identified convergent reading-related activation
in all of the above writing systems in a core network of the
left STG, IFG, and OT cortex. A similar network of brain
regions was found to show common activation across reading
in Spanish, English, Hebrew, and Chinese (Rueckl et al., 2015).
Accordingly, the brain activation abnormalities exhibited by
dyslexic readers can probably be expected in similar regions
across all writing systems. Direct evidence for this expectation,
however, is still scarce.

The separate reading-related activation patterns of the
different writing systems also varied to a certain extent,
particularly regarding the spatial configuration of the activation
clusters. Specifically, the meta-analysis by Bolger et al. (2005)
identified divergence in the left STG (with more consistent
activation for alphabetic and syllabic writing systems), and in the
left IFG and right OT cortex (with more consistent activation for
Chinese). The stronger activation for the alphabetic and syllabic
writing systems in the left STG was ascribed to the fact that the
written symbols are mapped to more fine-grained speech sounds
(phonemes and syllables), as opposed to whole-word phonology
in Japanese Kanji and Chinese. The stronger activation for
Chinese in the left IFG was associated with higher demands on
integrated processing of semantic and phonological information,
which is required for unambiguous word recognition due to the
high number of homophones in Chinese.

The first evidence for a specific brain dysfunction in Chinese
dyslexic reading that was previously not reported for alphabetic
writing systems was put forward by Siok et al. (2004). Their
fMRI study found significant dyslexic underactivation in the left
middle frontal gyrus (MFG) in Chinese children during both
homophone judgment and lexical decision tasks. Accordingly, it
was argued by the authors that fluent Chinese reading relies on
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TABLE 1 | Brain abnormalities in developmental dyslexia identified in representative studies.

Region Functional abnormalities in alphabetic
orthographies (Martin et al., 2016)

Functional abnormalities in syllabic/
logographic writing systems

Structural abnormalities

L occipitotemporal cortex Underactivation in both deep and shallow
orthographies

Underactivation in Chinese
(Siok et al., 2004; Hu et al., 2010)

B inferior parietal lobule Higher underactivation in deep (due to
stronger deactivation)

L inferior frontal gyrus,
triangular

Higher underactivation in deep Overactivation in Chinese
(Siok et al., 2004)

L precuneus Higher underactivation in deep

R superior temporal gyrus Higher underactivation in deep Reduced gray matter volume in
alphabetic (Richlan et al., 2013)

L anterior insula Higher overactivation in deep

L fusiform gyrus Higher underactivation in shallow Underactivation in Chinese (Siok et al.,
2004; Hu et al., 2010)

L temporoparietal cortex Higher underactivation in shallow Underactivation in Chinese
(Hu et al., 2010)

Reduced gray matter volume in
alphabetic (Richlan et al., 2013;
Eckert et al., 2016)

L inferior frontal gyrus, orbital Higher underactivation in shallow Reduced gray matter volume in
alphabetic (Eckert et al., 2016)

L frontal operculum Higher underactivation in shallow Underactivation in Chinese
(Siok et al., 2004)

L precentral gyrus Higher overactivation in shallow

L middle frontal gyrus Underactivation in Chinese (Siok et al.,
2004; Hu et al., 2010)

Reduced gray matter volume in
Chinese (Siok et al., 2008)

L dorsal inferior frontal gyrus Underactivation in Chinese
(Cao et al., 2017)

R cerebellum Reduced gray matter volume in
alphabetic (Eckert et al., 2016)

the integrity of the left MFG as a main hub for the coordination
and integration of information in verbal and spatial working
memory and that developmental dyslexia results from a failure
of this brain region (Perfetti et al., 2006).

The left MFG was also identified in a direct cross-linguistic
comparison between dyslexic and typical readers of Chinese
and English using a semantic word matching task (Hu et al.,
2010). Despite brain activation differences between Chinese and
English typical readers, the dyslexic readers of both writing
systems showed a similar pattern of underactivation compared
with the typical readers in the left MFG, left TP cortex, and
left OT cortex. That is, in contrast to previous studies (see
Table 1), even the English dyslexic readers were identified
as exhibiting underactivation in the left MFG. Therefore, the
functional neuroanatomical signature of developmental dyslexia
in Chinese and English seems to be more similar than originally
proposed by Siok et al. (2004) and reflected in underactivation
of a common network including left (middle) frontal, TP, and
OT regions – at least when a semantic processing task is used
during brain scanning.

A remarkably similar brain network was identified by Cao
et al. (2017) using an auditory rhyme judgment task. Specifically,
they found that Chinese children with developmental dyslexia
exhibited underactivation of a left dorsal IFG region relative
to both age-matched and reading performance-matched control
participants. Although anatomically labeled as left IFG, the
maximum of the activation cluster was in close proximity to
the left MFG with an Euclidean distance of only 16 mm and

8 mm to the peaks reported by Hu et al. (2010) and Siok et al.
(2004), respectively. This left IFG dysfunction was associated
with a phonological processing deficit of dyslexic readers that
correlated with the severity of reading problems. Furthermore,
analyses of functional connectivity identified weaker connections
between the left IFG and left FFG and between the left STG
and left FFG in dyslexic readers compared with the control
participants. These findings were interpreted as reflecting a
problem in the connection of orthography and phonology in
Chinese developmental dyslexia.

STRUCTURAL BRAIN ABNORMALITIES
IN DEVELOPMENTAL DYSLEXIA
ACROSS LANGUAGES

Seminal neurological examinations on the neural basis of
acquired reading problems were already conducted in the
nineteenth century (Dejerine, 1891, 1892). In the case of
developmental reading problems, neurological studies in the
1970s and 1980s were based on histological brain examinations.
For example, Galaburda and Kemper (1979) identified reduced
left-right asymmetry of the planum temporale in a post-mortem
brain examination of a dyslexic reader. Further studies by
Galaburda et al. (1985) and Humphreys et al. (1990) reported
additional structural abnormalities such as neuronal ectopias
and architectural dysplasias in the left TP cortex of four
more dyslexia cases.
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The advent of modern-day neuroimaging technology and the
development of Voxel-Based Morphometry (VBM; Ashburner
and Friston, 2000), enabled the automatic and objective analysis
of brain structure in vivo. In short, VBM provides a measure of
local GM volume or density of a voxel. It is an established method
in cognitive neuroscience and has been used to investigate pre-
reading children with a familial risk for dyslexia (e.g., Raschle
et al., 2011, 2015; Black et al., 2012), dyslexic children (e.g.,
Eckert et al., 2005; Hoeft et al., 2007; Kronbichler et al., 2008;
Krafnick et al., 2014; Jednoróg et al., 2015), and dyslexic adults
(e.g., Brown et al., 2001; Brambati et al., 2004; Silani et al., 2005;
Steinbrink et al., 2008; Pernet et al., 2009).

Regarding structural abnormalities in the brain of Chinese
dyslexic readers, first evidence was again reported by Siok
et al. (2008). Similar to the region identified with dyslexic
underactivation in their previous functional MRI study (Siok
et al., 2004), they found reduced GM volume in the left MFG
of dyslexic children. Crucially, no other cortical or subcortical
regions exhibited differences in GM volume between dyslexic and
typical readers of Chinese, even in a sensitive regions-of-interest
analysis focused on the left MTG, TP, and OT cortex.

A recent study (Qi et al., 2016) examined large-scale brain
networks in Chinese dyslexic children. In their analysis of
structural T1-weighted MRI data they distinguished between
two complementary measurements of neuroanatomy in order
to disentangle early congenital effects from later developed
effects. Specifically, whereas the measurement of cortical surface
area is thought to be sensitive to prenatal development, the
measurement of cortical thickness is thought to be more
sensitive to postnatal development. The Chinese dyslexic children
exhibited abnormalities in both measurements, in the sense that
the structural brain networks of the dyslexic children were more
bilateral (i.e., less lateralized), more distributed in anterior brain
regions, and less distributed in posterior brain regions compared
with the typically reading children.

Due to the substantial number of existing VBM studies on
dyslexia, objective coordinate-based meta-analyses were used
in order to identify and specify stable effects across studies
(e.g., Richlan et al., 2013). As shown in Table 1, consistent
GM volume reduction in developmental dyslexia in alphabetic
orthographies was identified in the right STG and in the left
superior temporal sulcus (STS). The robustness of these findings,
however, was limited as convergence across studies was relatively
weak with only about half of the studies contributing to the
meta-analytic clusters.

The limited convergence across studies was recently critically
examined in more detail by Ramus et al. (2018). They argued
that most VBM studies on developmental dyslexia are based
on relatively few and relatively heterogeneous participants,
leading to a high number of false positive rates in the
primary literature and, therefore, little replicability of results
across independent studies. This issue concerns cross-linguistic
comparisons probably even more, with additional sources of
heterogeneity including different assessment tools, educational
systems, and socio-demographic factors.

Nevertheless, the findings of our meta-analysis found plausible
support in other structural neuroanatomical studies on reading

and dyslexia. The right STG region was a focal point in a
remarkable and unique study by Carreiras et al. (2009). In
this study, the researchers investigated (ex-) illiterates who
did (or did not) learn to read as adults. The main finding
was that learning to read was accompanied by an increase
in GM volume in bilateral TP and dorsal occipital regions.
Concerning the meta-analysis on structural brain abnormalities
in developmental dyslexia, this result indicates that the right
STG GM volume reduction exhibited by dyslexic readers might
reflect their reduced reading experience. Therefore, the GM
volume reduction is a consequence rather than a cause of reading
problems in developmental dyslexia.

Two VBM studies with pre-reading children, however,
support a different interpretation of the right STG GM volume
reduction. Specifically, Raschle et al. (2011), reported that
children with a high family-risk for developmental dyslexia were
identified as having reduced GM volume in both left and right
TP cortex even before formal reading instruction. Likewise, Black
et al. (2012) found that a family history of reading disability
was related to a reduction in GM volume in the bilateral TP
cortex of five to 6-year old beginner readers. In this age group,
the structural brain abnormalities can hardly be explained by a
reduced amount of reading experience.

While the GM volume reduction in the right STG was
an unexpected finding of our meta-analysis, the GM volume
reduction in the left STS was not. The left STS GM volume
reduction is in line with a large body of evidence for left
perisylvian cortical anomalies in dyslexia, as identified in
the already mentioned post-mortem brain examinations (e.g.,
Galaburda et al., 1985) and in early brain imaging studies
(Eliez et al., 2000). Crucially, a similar left temporal region
was identified as showing GM volume reduction across Italian,
French, and English adult dyslexic readers (Silani et al., 2005).
More recently, the left STS was shown to be one of the
most reliable regions identified with reduced GM volume in
developmental dyslexia in a combined meta-analysis and multi-
center study across different laboratories from the United States
(Eckert et al., 2016).

In order to interpret the functional effect of left STS
abnormality in developmental dyslexia, it is important to
investigate its role in typical and disrupted language processing.
Classically, neurological lesions of the left STS were linked to
problems in speech comprehension (Wernicke’s aphasia). In
more up-to-date conceptions on the neurology of speech and
language (e.g., Hickok and Poeppel, 2007), the function of the
left STS is associated with the representation and processing of
multimodal phonological information. Therefore, it is recruited
by both perceptual and productive speech processes, as well as by
working memory processes involving phonological information.
These cognitive functions are particularly crucial for a successful
start at the beginning of literacy acquisition across languages.

Across different alphabetic orthographies, the left STS is
assumed to play an important role in the integration of auditory
and visual information (e.g., van Atteveldt et al., 2004; Blomert,
2011; Holloway et al., 2013; Richlan, 2019). Therefore, during
skilled reading and especially during typical reading acquisition,
it is recruited by self-reliant learning processes based on serial
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grapheme-to-phoneme conversion. The structural GM volume
reduction in the left STS in developmental dyslexia might
be related to problems in this sublexical self-teaching reading
strategy. Specifically, it was proposed that dyslexic readers suffer
from a disruption in the development of a brain system for
efficient interactive processing of auditory and visual linguistic
inputs (Blau et al., 2010). Taken together, the existing evidence
suggests that left STS and right STG GM volume reductions
are reliable neuroanatomical signatures of adult dyslexia across
different alphabetic orthographies, which might exist even before
the onset of formal reading instruction.

LIMITATIONS AND FUTURE DIRECTIONS

Cross-linguistic comparisons have proven to provide extremely
valuable information on the neurobiology of reading and
developmental dyslexia. The focus, up to now, was largely
on the comparison of dysfunctions in the form of reading-
related dyslexic underactivation relative to typical readers. In
contrast, the patterns of dyslexic overactivation relative to
typical readers were rarely compared across languages and
writing systems. This is probably because there is larger inter-
individual variability with respect to overactivation compared
with underactivation in developmental dyslexia and, in turn,
less consistency across studies (and activation tasks). From the
results reported by Martin et al. (2016), it seems that OD plays
a role in the consistency of dyslexic overactivation patterns,
with English dyslexic readers exhibiting more heterogeneous
patterns compared with dyslexic readers from SO. This leads to
only a single meta-analytic cluster identified with overactivation
in English dyslexic readers compared with seven meta-analytic
clusters in dyslexic readers from SO.

In principle, the dyslexic overactivation patterns might be
informative on potential compensatory mechanisms supporting
language-specific or language-universal remediation strategies.
First evidence (Martin et al., 2016; Cao et al., 2017; Hancock et al.,
2017) points to an important role of the precentral gyrus possibly
subserving such neural compensation. At least in alphabetic
orthographies, this compensatory role was attributed to increased
reliance on articulatory processing in dyslexic readers (Hancock
et al., 2017), particularly for dyslexic readers from SO. Future
studies across different languages and writing systems, however,
are urgently needed to shed more light on this issue.

One way of providing this kind of evidence is via intervention
studies and longitudinal research. These longitudinal brain
imaging studies would also be helpful for a better understanding
of the relationship between brain function and brain structure
and their respective effects on reading development across
languages. Unfortunately, such cross-linguistic longitudinal
studies are extremely challenging to conduct and to analyze,

and therefore, do not exist yet. Certainly, more fundamental
research on the interplay between the developmental changes in
brain function, brain structure and literacy acquisition is required
in order to put forward comprehensive brain-based models of
typical and dyslexic reading development.

CONCLUSION

Across alphabetic writing systems, OD has an influence on the
relative importance of different underlying cognitive processes
required for fluent reading, and accordingly on the degree and
spatial extent of brain activation clusters of typical readers.
Consequently, the neuroanatomical dysfunctions of dyslexic
readers are associated with an emphasis on different elements
of the core reading network, reflected in stronger or weaker
under- and overactivation relative to typical readers depending
on OD. For example, in the case of the logographic Chinese
writing system, a crucial role is assigned to the left MFG, which
possibly subserves the working memory processes required for
the successful recognition of written characters.

The existing evidence, up to now, suggests that the functional
neuroanatomy of developmental dyslexia is similar across
languages and writing systems, with some orthography-specific
peculiarities. Specifically, underactivation (in dyslexic readers
relative to typical readers) in core regions of the left hemisphere
reading network including OT, TP, and IFG regions in response
to reading or reading-related tasks seems to be a universal
signature of developmental dyslexia. At least parts of the core
network were also identified with structural neuroanatomical
abnormalities in dyslexic readers – sometimes even before
the onset of formal reading instruction (in children with a
familial risk for developmental dyslexia). Consequently, these
core regions are language-universal prime candidates to be
targeted by intervention programs.
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