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Abstract: Platelets are megakaryocyte-derived acellular fragments prepped to maintain primary
hemostasis and thrombosis by preserving vascular integrity. Although they lack nuclei, platelets
harbor functional genomic mediators that bolster platelet activity in a signal-specific manner by
performing limited de novo protein synthesis. Furthermore, despite their limited protein synthesis,
platelets are equipped with multiple protein degradation mechanisms, such as the proteasome.
In nucleated cells, the functions of the proteasome are well established and primarily include
proteostasis among a myriad of other signaling processes. However, the role of proteasome-mediated
protein degradation in platelets remains elusive. In this review article, we recapitulate the developing
literature on the functions of the proteasome in platelets, discussing its emerging regulatory role in
platelet viability and function and highlighting how its functional coupling with the transcription
factor NF-κB constitutes a novel potential therapeutic target in atherothrombotic diseases.
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1. Introduction

Platelets are anucleate blood fragments originating from maturing megakaryocytes—
precursor cells derived from pluripotent hematopoietic stem cells [1,2]. With a discoid shape
at rest, a dimension of 3 µm × 0.5 µm, a lifespan of 10 days, and an average count of 250 mil-
lion/mL of adult blood, platelets circulate in blood vessels, patrolling vascular endothelial
cell lining [3,4]. Upon vascular damage or lesion, platelets adhere to exposed subendothelial
matrix components, such as collagen, fibrinogen, and von Willebrand factor (VWF), thereby
undergoing activation, secretion, spreading, and aggregation—unique platelet hemostatic
and thrombotic functions that culminate in the conversion of αIIbβ3-bound fibrinogen to
fibrin by thrombin, and the formation of a contractile fibrin-platelet plug that facilitates vas-
cular recovery [5–7]. Besides primary hemostasis and thrombosis, the functions of platelets
span inflammation, host defense, cancer, vascular tone regulation, and atherothrombotic
diseases among others [8–25]. The execution of platelet function is met with a plethora of
adhesive receptors (GPIb/IX/V complex, PSGL-1, GPVI immunoglobulin, α5β1/α2β1 inte-
grins), activation receptors (protein tyrosine kinases, G-protein coupled receptors, αIIbβ3
integrin), secreted granule reservoirs (adhesion molecules, immunologic molecules, coag-
ulation factors, chemokines, regulators of growth and angiogenesis, protease inhibitors,
digestive enzymes, platelet agonists including ADP and Thromboxane A2, and platelet
primers including epinephrine and soluble CD40L (sCD40L)), and dynamic cytoskeletal
proteins (actin, myosin, spectrin) [26–37]. Generally, platelets inherit their cytoplasmic and
membranous molecules from megakaryocytes early during platelet formation. However,
platelets can perform limited de novo protein synthesis of important hemostatic and/or
thrombo-inflammatory mediators, such as IL-1β and COX-1, in response to specific sig-
nals [27,38]. Deeper investigations into the biological intricacies of genome-devoid platelets
have also revealed the presence of multiple transcription factors like nuclear factor-κB (NF-
κB), translational machinery, microRNA, and more than 2500 mRNA transcripts [39–52].
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These genomic apparatuses were demonstrated to fulfill genomic and/or non-genomic
intra-platelet and/or extra-platelet functions [53–61]. Another functional paradox is that
platelets are equipped with distinct and collaborative protein degradation mechanisms even
though their protein synthesis capacity is limited. Their pool of degradative machinery
groups calpain, caspases, matrix metalloproteinases, surface proteases, lysosomal proteases,
and the proteasome [62]. In nucleated cells, proteasomal roles are well defined and primar-
ily include the degradation of unneeded/misfolded proteins to maintain proteostasis, the
regulation of signal transduction cascades, and the modulation of transcriptional activity
(e.g., NF-κB activation) [63–69]. On the other hand, the role of the proteasome in platelets
is less characterized. Herein, we orderly summarize the data generated hitherto on the
regulatory roles of the proteasome in platelets and their contribution to platelet viability
and function. We also highlight the importance of the proteasome/NF-κB dyad in platelets
and its relevant therapeutic targeting in atherothrombotic diseases.

2. The Proteasome
2.1. Structures

The standard proteasome is a 26S multi-catalytic protease complex (2.4 MDa) compris-
ing two 19S regulatory caps (750 kDa each) and a central 20S proteolytic subunit (around
750 kDa) found within the core. The 19S complex is an arrangement of 2 multimers, the lid,
and the base. The lid comprises up to 10 non-ATPase subunits. The base comprises 2 non-
ATPase subunits and 6 homologous hexamer ring-forming ATPases (PSMC2/1/4/6/3/5)
and is responsible for the assembly of the 19S regulatory particles with the 20S core particle,
allowing the formation and activation of the ATP-dependent 26S proteasome. The 20S core
particle is composed of 28 heterogeneous subunits arranged in 4 rings: 2 beta rings on the
inner side and 2 pore-forming non-catalytic alpha rings on the outer side. Each ring thus
groups 7 subunits (β1–7 and α1–7). Among the beta subunits, 3 perform caspase-, trypsin-,
and chymotrypsin-like proteolytic activities (β1/PSMB6, β2/PSMB7, and β5/PSMB5, re-
spectively) by cleaving peptide bonds following acidic, basic, and hydrophobic amino acids,
respectively. Alone, the proteolytic 20S core performs ubiquitin-independent degradation.
Assembled with the 19S regulatory particles to form the 26S proteasome, it specifically
degrades ubiquitin-conjugated proteins in an ATP-dependent manner (Figure 1).

Ubiquitin is a eukaryotic sequence of 76 amino acids weighing approximately 8 kDa.
Its coupling to proteins is catalyzed sequentially by the ubiquitin-activating (E1) enzyme,
the ubiquitin conjugation (E2) enzyme, and the ubiquitin ligase (E3). First, in the reac-
tion, the E1 enzyme binds and activates ubiquitin by consuming ATP. Then E2 forms an
intermediate complex with activated ubiquitin. Lastly, E3 acts as a scaffold that interacts
with both the E2-ubiquitin complex and the protein substrate, facilitating the transfer of
ubiquitin from E2 to the substrate. An iso-peptide bond thus forms between the c-terminal
glycine residue of ubiquitin and the consensus lysine residues in the substrate. Noteworthy,
a specific E3 subtype called E4 ligase can further elongate linear ubiquitin chains at internal
lysine residues to create several polyubiquitin chain conformations. This internal ubiquitin
linkage serves as a code that determines the protein’s fate. For instance, internal ubiquitin
linkage at lysine 11, 29, and 48 residues is a protein tag for proteasomal degradation.
Linkages at the other 4 residues (K6, K27, K33, K63) modulate protein activity, localization,
or interaction/scaffolding. Along with the proteasome, ubiquitin and its enzymes form the
ubiquitin-proteasome system (UPS) (Figure 1) [70–75].
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Figure 1. Components of the ubiquitin proteasome system (UPS). Protein ubiquitination is cata-
lyzed sequentially by the ubiquitin-activating enzyme (E1), ubiquitin conjugation (E2) enzyme, 
and ubiquitin ligase (E3). First, the E1 enzyme binds and activates ubiquitin by consuming ATP. 
Then E2 forms an intermediate complex with activated ubiquitin. Lastly, E3 acts as a scaffold that 
interacts with both the E2-ubiquitin complex and the protein substrate, facilitating the transfer of 
ubiquitin from E2 to the substrate. An iso-peptide bond, thus, forms between the c-terminal gly-
cine residue of ubiquitin and consensus lysine residues (7 total) of the substrate. Internal ubiquitin 
linkage at K11, 29, and 48 residues constitutes a tag for proteasomal trafficking. E4 ligase, a spe-
cific E3 subtype, can further elongate linear ubiquitin chains to create several polyubiquitin chain 
conformations. In this example, NF-κB is the protein substrate. Following its phosphorylation by 
IKK, IκB (inhibitory subunit of NF-κB) is polyubiquitinated for proteasomal trafficking. The stand-
ard proteasome 26S groups two regulatory subunits (19S each) comprising 2 multimers each, the 
lid and the base, in addition to a catalytic core (20S) whose β rings harbor caspase-, trypsin-, and 
chymotrypsin-like proteolytic activities (β1, β2, and β5, respectively). Upon substrate entry into 
the proteasome lid, the base facilitates the opening of the entry pore of 20S α rings, enabling pro-
tein translocation and degradation in the core by β rings. Furthermore, the base, due to the chaper-
one-like activity of its highly specific ubiquitin receptor subunits, ensures the selectivity of degra-
dation, as it permits the entry of ubiquitinated proteins only, by forming covalent bonds with 
monomeric or polymeric ubiquitin chains. The 19S subunit also contains deubiquitinating en-
zymes (DUBs) that facilitate protein unfolding, translocation, and degradation within the core. In 
the given scenario, IκB is deubiquitinated and degraded within the proteasome so that activated 
NF-κB becomes free to function. 

More in-depth, during 26S proteasome formation and activation, PSMC1 facilitates 
the opening of the entry pore of 20S α subunits, enabling protein translocation and deg-
radation in the core. Meanwhile, the base, with the chaperone-like activity of its highly 
specific ubiquitin receptor subunits, further ensures the selectivity of the process, permit-
ting the entry of ubiquitinated proteins only, by forming covalent bonds with monomeric 

Figure 1. Components of the ubiquitin proteasome system (UPS). Protein ubiquitination is catalyzed
sequentially by the ubiquitin-activating enzyme (E1), ubiquitin conjugation (E2) enzyme, and ubiq-
uitin ligase (E3). First, the E1 enzyme binds and activates ubiquitin by consuming ATP. Then E2
forms an intermediate complex with activated ubiquitin. Lastly, E3 acts as a scaffold that interacts
with both the E2-ubiquitin complex and the protein substrate, facilitating the transfer of ubiquitin
from E2 to the substrate. An iso-peptide bond, thus, forms between the c-terminal glycine residue
of ubiquitin and consensus lysine residues (7 total) of the substrate. Internal ubiquitin linkage at
K11, 29, and 48 residues constitutes a tag for proteasomal trafficking. E4 ligase, a specific E3 subtype,
can further elongate linear ubiquitin chains to create several polyubiquitin chain conformations. In
this example, NF-κB is the protein substrate. Following its phosphorylation by IKK, IκB (inhibitory
subunit of NF-κB) is polyubiquitinated for proteasomal trafficking. The standard proteasome 26S
groups two regulatory subunits (19S each) comprising 2 multimers each, the lid and the base, in
addition to a catalytic core (20S) whose β rings harbor caspase-, trypsin-, and chymotrypsin-like
proteolytic activities (β1, β2, and β5, respectively). Upon substrate entry into the proteasome lid, the
base facilitates the opening of the entry pore of 20S α rings, enabling protein translocation and degra-
dation in the core by β rings. Furthermore, the base, due to the chaperone-like activity of its highly
specific ubiquitin receptor subunits, ensures the selectivity of degradation, as it permits the entry
of ubiquitinated proteins only, by forming covalent bonds with monomeric or polymeric ubiquitin
chains. The 19S subunit also contains deubiquitinating enzymes (DUBs) that facilitate protein unfold-
ing, translocation, and degradation within the core. In the given scenario, IκB is deubiquitinated and
degraded within the proteasome so that activated NF-κB becomes free to function.

More in-depth, during 26S proteasome formation and activation, PSMC1 facilitates the
opening of the entry pore of 20S α subunits, enabling protein translocation and degradation
in the core. Meanwhile, the base, with the chaperone-like activity of its highly specific
ubiquitin receptor subunits, further ensures the selectivity of the process, permitting
the entry of ubiquitinated proteins only, by forming covalent bonds with monomeric or
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polymeric ubiquitin chains. In addition to its substrate recognition, unfolding, and protein
translocation properties, the 19S regulatory subunit conducts deubiquitination [63,67,76,77].
In general, deubiquitination is carried by deubiquitinating enzymes (DUBs) and can be
UPS-independent; therein, DUBs alter protein trafficking or enhance protein stability.
Around 80 DUBs have been identified and grouped into 6 families based on the homology
of their catalytic domain sequences. They exist either as free enzymes or are associated with
large enzyme complexes, such as the proteasome. In UPS, deubiquitination is mediated
by three 19S-associated DUBs (USP14, UCHL5, and Rpn11) and facilitates the unfolding,
translocation, and degradation of proteins within the 20S core [78,79].

In addition to its standard form, the proteasome exists in other forms, such as the
thymoproteasome (TPr), intermediate proteasomes, hybrid proteasomes, and the immuno-
proteasome (IP) [80,81]. For example, the IP is responsible for MHC class I-mediated
antigen presentation through generating antigenic peptides. While the IP is constitutively
expressed in immune cells of myeloid or lymphoid origins, it is synthesized in response to
interferons or lipopolysaccharides in nucleated cells. IP assembly occurs through the sub-
stitution of proteolytic β1, β2, and β5 subunits of the 20S core with their IP counterparts:
β1i/PSMB9, β2i/PSMB10, and β5i/PSMB8. In contrast to the 26S proteasome, which
harbors 19S regulatory subunits, the immunoproteasome is regulated by two heptameric
11S subunits, which consist of PA28 α/PSME1 and β/PSME2 subunits and are induced by
interferon-γ [82,83] to facilitate substrate access into the proteasomal core [84,85].

2.2. Functions

The functional importance of proteasome-mediated protein degradation was initially
delineated through in vivo examination of UPS characteristics in pathological conditions.
In neurodegenerative diseases, for instance, UPS was found to be impaired [86] with a
widespread accumulation of ubiquitinated proteins [87]. In a subclass of Parkinson’s disease,
E3 ligase was reported to be mutated [88]. In age-related disorders, a decline in proteasomal
activity and an accumulation of misfolded proteins were also recorded [89]. In humans,
PSMB8 mutations cause a rare genetic disorder (chronic atypical neutrophilic dermatosis
with lipodystrophy and elevated temperature, or CANDLE) that presents with accumulated
ubiquitinated proteins, high levels of type I interferon, and thrombocytopenia [90].

To better assess the roles of the proteasome in cellular functions, genetic and phar-
macological methodologies were approached. A study by Bedford et al. [77] showed
that PSMC1 deletion in vivo is embryonically lethal, and neuronal 26S proteasome de-
pletion leads to neurodegeneration. Disrupting the ubiquitin gene also causes neuronal
death and impairs energy expenditure systems, exposing the organism to obesity [86].
The extensive use of multiple natural or synthesized proteasome inhibitors (Table 1) in-
cluding epoxomicin, lactacystin, DCI, HgCl2, bortezomib (PS-341), carfilzomib, MG132,
PCMB, PSI (benzyloxycarbonyl-Ile-Glu(O-tert.-butyl)-Ala-leucinal), and Mersalyl acid has
ascribed to the proteasome multiple cellular roles [91–97]. Therefrom, it was found that
proteasome-mediated protein degradation/processing not only removes aberrant proteins
but also regulates (1) signal transduction cascades, (2) receptor turnover/desensitization,
(3) enzymatic activity, (4) cell cycle progression, (5) cell growth/differentiation, (6) sur-
vival/apoptosis, (7) gene transcription/repair, (8) antigen presentation (IP-specific), (9)
oxidative stress-induced cellular damage (IP-specific), and (10) cellular maturation (TPr-
specific) [63–69,98–100].
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Table 1. Some proteasome antagonists and their characteristics.

Inhibitor Properties Proteasomal Binding and
Targeted Activities Other Cellular Effects

Bortezomib
First-class; FDA-approved

(Velcade®) for first-line treatment
of multiple myeloma

Reversibly binds 26S proteasome
and immunoproteasome;

chymotrypsin -> caspase ->
trypsin-like activity

NF-κB inhibition; cell
apoptosis due to

accumulation of proteins,
stress induction, and

disruption of cell cycle

Carfilzomib

New generation; FDA-approved
(Kyprolis®) against relapsing
multiple myeloma; less toxic

than Bortezomib

Irreversibly binds 20S proteasome
and immunoproteasome;

chymotrypsin-like activity
Cell apoptosis

Lactacystin

Isolated from soil Actinomycetes;
Prodrug, metabolized into a
β-lactone (Omuralide) in vivo;

inhibits non-proteasome
proteases like cathepsin

Irreversibly binds 20S proteasome
and immunoproteasome; all
activities, with preference to
chymotrypsin-like activity

Inhibits cellular growth; cell
apoptosis; NF-κB
downregulation

Epoxomicin Isolated from Actinomycetes
strain; specific

Irreversible binds 20S proteasome;
all activities, with preference to

chymotrypsin-like activity
Inhibits NF-κB signaling

MG132

Peptide aldehyde isolated from
Chinese medicinal herbs; first
choice to study UPS in human

cell lines

Irreversibly binds 20S proteasome;
all activities, with preference to

chymotrypsin-like activity

Cell cycle arrest and apoptosis;
inhibits NF-κB activation

3. The Platelet Proteasome

Yukawa et al. [101] were the first to purify the platelet proteasome with a chromatog-
raphy column, initially reporting the presence of several subunits with chymotrypsin- and
trypsin-like activities. Subsequent investigations corroborated that platelets express (1)
the standard proteasome (20S and 26S) and the IP [62,82,102,103], (2) functional mono and
polyubiquitination systems [104,105], (3) UPS-related mRNAs [52], and (4) DUBs [106].
Still and all, the role and modulation of proteasome-mediated protein degradation in these
anucleate cell fragments remain elusive.

3.1. Intra- and Extra-Platelet Activators and Regulators

The platelet proteasome is constitutively active, yet multiple molecules augment its
activity [69]. At relatively high concentrations, poly-lysine and SDS are considered protea-
some activators. Several other natural and synthetic lipid- and peptide-based molecules are
known to induce proteasomal activation as well, even at low concentrations [107]. Platelet
agonists including collagen and thrombin induce, respectively, a 10- and 7-fold increase in
proteasomal chymotrypsin-like activity [69]; ADP also causes the proteasomal activity to
double [108]. Platelet receptors including toll-like receptor 4 (TLR4) (lipopolysaccharides-
ligated), PAR1 (thrombin-ligated), GPIb-IX-V (thrombin- and VWF-ligated), and P2Y12
(ADP-ligated) communicate with the proteasome [104]. In terms of intraplatelet regulation,
the activation of the proteolytic machinery proceeds through cAMP production and is PKA-
dependent [109]. ATP, Mg2+, PLCγ pathway, and calcium-dependent effectors like calpain
and PKC also regulate proteasomal enzymatic activity [69,101,110–112]. Yukawa et al. [101]
purified form platelets an endogenous polypeptide complex (170 kDa) that potentiates and
dose-dependently enhances proteasomal chymotrypsin- and trypsin-like activities. The
same group then characterized the latter 170-kDa polypeptide complex, demonstrating that
it functions as a positive allosteric effector [113]. Ostrowska et al. [102] later discovered that
platelets also express functional PA28 (PSME1) that controls antigen processing through
stimulating proteasomal chymotryptic-like activity.
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3.2. Roles

As in nucleated cells, platelet proteasome performs chymotrypsin-, trypsin-, and
caspase-like proteolytic activities which largely ascribe to the proteasome a regulatory role
in platelet production, viability, and function [73].

3.2.1. In Platelet Production and Viability

The proteasome modulates platelet production and lifespan. This is evidenced in
that proteasome inhibition reduces platelet count and half-life by 50%. Simultaneously,
changes in apoptotic markers (e.g., phosphatidylserine (PS) exposure, pro-apoptotic BAX
protein upregulation, mitochondrial transmembrane potential decrease) and macrophage-
mediated clearance are observed [53,114]. Bortezomib, the first proteasome inhibitor to hit
clinical practice as a second-line treatment for multiple myeloma [115], also induces throm-
bocytopenia in patients by influencing the production of platelets from megakaryocytes.
Specifically, bortezomib use elevates the levels of activated small GTPase Rho, a negative
regulator of platelet formation [116–118]. In addition, after bortezomib withdrawal, drug-
associated thrombotic microangiopathy is resolved in patients [119]. These data suggest
that the proteasome is involved in physiologic and pathophysiologic platelet states, overall
regulating platelet thrombopoiesis and viability [120].

3.2.2. In Platelet Function
Pathological Findings

Examining the characteristics of the platelet proteasome in pathological settings al-
lows us to better understand its degree of contribution to platelet function. For instance,
E. coli-induced sepsis upregulates platelet PA28 on mRNA and protein levels and augments
proteasomal proteolytic activity [121]. In hemolytic conditions, the increased levels of
oxidative stress in platelets are associated with (1) reduced proteasomal activity and aug-
mented protein ubiquitination, (2) increased BAX levels, and (3) premature death [122]. In
coronary artery disease (CAD), patients present with decreased expression of PSMB8 [123].
In patients with ANKRD26 gene-related thrombocytopenia, proteasome-studded partic-
ulate cytoplasmic structures are observed in platelets, which additionally show reduced
aggregation responses [124]. However, whether these UPS characteristics are causing
factors or consequences of such pathologies requires further investigation.

Pharmacological Findings

A clearer insight into the impact of the proteasome on platelet activation was obtained
by pharmacologically targeting the UPS components, primarily the standard proteasome
and the proteasome-associated DUBs.

Proteasome Inhibitors

Dupré et al. [64] showed using PSI that the proteasome desensitizes platelets to the
platelet-activating factor (PAF), a potent phospholipid mediator associated with multiple
inflammatory diseases, via downregulating the ubiquitin-coupled PAF receptor upon lig-
and stimulation. Another negative regulatory role for the proteasome in platelet activation
was reported. Using MG132, it was shown that the proteasome can degrade platelet CD36,
a receptor for oxLDL and cell-derived microparticles [125]. Besides, platelet treatment
with bortezomib was shown to attenuate VASP phosphorylation—an inhibitory signaling
pathway that reduces P-selectin exposure and fibrinogen binding to the αIIbβ3 integrin
receptor—thereby enhancing platelet aggregation [126,127].

Contrastingly, most other reports corroborate a positive regulatory role for the
proteasome in platelet activation (Figure 2). Using PSI and MG132 in megakaryocytes,
Mitchell et al. [128] showed that the biogenesis of αIIbβ3 integrin is regulated by the
proteasome through the degradation of misfolded pro-αIIb subunits. Although contra-
vened by Koessler et al. [108,126] who used different platelet agonist doses, bortezomib
use conferred upon the proteolytic complex a role in collagen-mediated ATP release and
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ADP-induced platelet aggregation—the latter function being established by degrading
eNOS regulators and preventing the production of NO, an ADP receptor antagonist [129].
Besides ameliorating endothelial function and blocking NF-κB activation in vascular
and blood cells, this might explain the reduction of thromboembolic events in vivo upon
proteasomal antagonism [130]. Furthermore, administering MG132 to mice, or treating
their platelets with MG132 and reinjecting them, delays induced occlusive thrombosis.
In vitro, this is attributed to the inhibition of cleavage of cytoskeleton regulators, such as
Filamin A, which links GPIb-IX-V complex to cytoskeletal actin filaments, and Talin-1,
which plays a role in platelet spreading. As such, both proteins accumulate in the cy-
toplasm, ubiquitinated and in their native non-cleaved form, overall causing reduced
platelet (1) adherence and spreading, (2) surface release of PS-expressing prothrombotic
microparticles, (3) aggregation, and (4) fibrin-platelet clot retraction, as compared to a
positive control (platelets stimulated with subthreshold-dose thrombin) [104]. Likewise,
Karim et al. [131] reported decreased (1) αIIbβ3 activation, (2) P-selectin and PS exposure
(markers of platelet degranulation and procoagulant activity), (3) intracellular calcium
levels, and (4) aggregation in platelets pretreated with MG132 then stimulated with
subthreshold doses of collagen and/or thrombin. Noteworthy, both studies demonstrate
that the levels of platelet activation markers and platelet aggregation are unaffected by
proteasomal antagonism in response to higher doses of thrombin (above 0.05 U/mL).
This suggests weaker ties between the proteasome and thrombin’s high-affinity receptor
(PAR1) as compared to the other thrombin receptor GPIb-IX-V [104,131].

Few other studies argue that the inhibition of platelet aggregation using proteasome
inhibitors does not proceed through proteasome antagonism but rather and particularly
through NF-κB inhibition [135]. This observation might be explained by the fact that
collagen-mediated platelet activation through the GPVI receptor is transduced through
spleen tyrosine kinase (Syk) that phosphorylates several adaptor proteins in the pathway.
Indeed, upon GPVI ligation, Syk is ubiquitinated but not degraded; its activity becomes
5-fold higher, after which it is thought to modulate platelet function. Likewise, collagen-
related peptides were demonstrated to elevate the amount of ubiquitinated proteins in
platelets for signaling purposes [105,136]. Another study showed no effect on P-selectin
exposure upon proteasome inhibition [69].

Overall, the scarce data available so far suggest that the most potent platelet activation
pathways are either upstream or work in parallel with the proteasome. Further studies
might therefore warrant a clearer link between the proteasome and platelet activation
and aggregation.

DUB Inhibitors

As aforementioned, proteasome-associated DUBs are essential for proteasomal func-
tioning. Henceforth, in a similar manner to proteasome antagonists, proteasome-associated
DUB antagonists have accredited a positive regulatory role for the proteasome in platelet
activation. Gupta et al. [106] showed that treating platelets with b-AP15, a specific inhibitor
of USP14 and UCHL5, significantly reduces αIIbβ3 activation and platelet aggregation
in response to multiple platelet agonists. Interestingly, this study used high doses of
agonists (0.2 U/mL, 2 µg/mL, and 5 µM of thrombin, collagen, and ADP, respectively),
thereby opposing previous reports showing no effect with MG132 or bortezomib pre-
treatment on the aggregation of platelets also stimulated with high-dose thrombin (above
0.05 U/mL) [104,131] or collagen (5 µg/mL) [126] or on the aggregation of platelet-rich
plasma (PRP) stimulated with collagen (10 µg/mL) or ADP (10 µM) [108]. Additionally, b-
AP15 pretreatment diminished P-selectin exposure [106], another observation unreported
with PSI- [69] or MG132-treated platelets [104,131]. These discrepancies between the data
of both types of UPS antagonists might be resolved with further investigation.

Other players in UPS like E3 ligases are also reported to regulate platelet activation and
signal transduction pathways through different mechanisms that were recently reviewed,
along with data on the platelet IP, elsewhere [103].
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primes platelets, but does not induce their aggregation, by activating platelet NF-κB and inducing P-
selectin exposure and dynamic cytoskeletal shape changes [133,134]. sCD40L/NF-kB mediate platelet
activation and aggregation in response to low doses of thrombin or collagen [134]. Although further
validation is required, the sum of these data corroborates that the platelet proteasome/NF-κB dyad is
a positive regulator of platelet priming, in which P-selectin exposure and dynamic cytoskeletal shape
changes are enhanced. This intermediate platelet state eventually potentiates platelet activation and
aggregation when additional subthreshold concentrations of platelet agonists are secured.

4. NF-κB/Proteasome Coupling in Platelets

NF-κB is a family of cytoplasmic proteins that exist as dimers formed from five
DNA-binding subunits: p50 (NF-κB1), p65 (RelA), cRel, p52 (NFκB2), and Rel B. In its
canonical pathway, NF-κB is initially induced upon ligation of multiple receptors including
tumor necrosis factor receptors, toll-like receptors, and B-cell receptors, which activate
transforming growth factor β-activated kinase 1 (TAK1). In this pathway, NF-κB dimers
are found inactivated by the inhibitory subunit IκB (IκBα or IκBβ, with IκBα being the
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most prevalent). The non-canonical pathway is triggered by several receptors including
the lymphotoxin-β receptor and the B-cell activating factor receptor, which activate the
NF-κB-inducing kinase (NIK). In this pathway, NF-κB subunits associate with p100.

Generally, NF-κB activation requires the IκB kinase (IKK). In the canonical pathway,
TAK1 activates IKK, which phosphorylates IκB, causing its ubiquitination and degradation
by the proteasome (Figure 1). In the non-canonical pathway, NIK activates IKK, which
phosphorylates p100, causing its ubiquitination and processing into p52 by the protea-
some. Following their ubiquitination and proteasome-mediated activation, NF-κB dimers
translocate into the nucleus, of mostly immune cells, where they bind DNA and regulate
inflammatory, survival, proliferation, differentiation, transmigration, chemotaxis, and de-
fense genes [137–139]. In fact, the genomic roles of NF-κB transcription factors in immune
cells are well characterized since their discovery in B lymphocytes more than 30 years
ago [140–144]. Notable, almost all NF-κB subunits are ubiquitinated by E3 ligases, and
their ubiquitination serves as a tag not only for proteasomal degradation/processing to
eventually allow the control of gene expression but also for performing other proteasome-
independent functions outside the scope of this review article [145,146].

Platelets also express NF-κB, which seems to function mainly in non-genomic
ways [42,133,134,147–153]. Our recent extensive review article employs platelet NF-
κB as its primary focus, showcasing its role in positively regulating platelet survival,
priming, activation, and aggregation as well its potential extra-platelet role following
cellular endocytosis of NF-κB-engulfing platelet microparticles [53].

In platelet function, proteasome/NF-κB coupling is important—a realization evident
in that NF-κB activation necessitates the proteasome and that proteasome inhibitors are
also NF-κB inhibitors (Table 1, Figures 1 and 2). For instance, PSI was demonstrated to in-
hibit collagen-induced platelet aggregation not necessarily due to inhibiting all proteasome
functions [135] but specifically NF-κB activity [132]. Additionally, epoxomicin treatment of
PRP was shown to mitigate the aggregation of collagen-stimulated platelets in an NF-κB
dependent manner [132]. Our previous data on the functions of the platelet primer, sCD40L,
show that sCD40L activates platelet NF-κB, inducing granular secretion and so P-selectin
translocation to the platelet surface [133]. We have also shown that in presence of low doses
of platelet agonists, such as thrombin and collagen, sCD40L potentiates platelet aggrega-
tion through NF-κB activation [134]. Our most recent data validate the involvement of
the proteasome/NF-κB dyad in the platelet priming functions of sCD40L (potentiation of
platelet aggregation and fibrin-platelet clot formation) in presence of subthreshold doses of
collagen and thrombin [154]. Taken together with various other reports showing that protea-
some inhibition reduces platelet aggregation and/or secretion only in presence of low doses
of platelet agonists [69,104,108,126,131,149], it can be speculated that the proteasome/NF-κB
dyad does not regulate platelet activation but rather platelet priming, in which platelets are
not fully activated to aggregate (no Ca2+ influx or strong αIIbβ3 activation) but present
with activation markers including P-selectin exposure and dynamic cytoskeletal shape
changes [155–157]. Eventually, platelet priming potentiates platelet activation and aggrega-
tion when low doses of platelet agonists are secured [53,133,134,156,158,159].

In a pathological context, high plasma levels of platelet primers are associated with
atherothrombotic disorders, such as CAD and cerebrovascular disease, which entail the
highest mortality rate among the 2nd runner in death causes in Canada—cardiovascular
diseases [160,161]. Additionally, platelet primers correlate with resistance to antiplatelet
therapy like aspirin (ASA) [157,162–166]. Indeed, we have recently shown that ASA does
not affect platelet NF-κB signaling induced by sCD40L alone [159]. On a similar note, the
NF-κB/proteasome dyad orchestrates chronic inflammatory diseases, such as atherothrom-
bosis, by targeting various genes (cytokines, chemokines, immune receptors, coagulation
regulators, anti-apoptotic molecules, adhesion molecules, cell cycle regulators, etc.) in
thrombo-inflammatory mediators including endothelial cells, monocytes, neutrophils,
lymphocytes, and platelets [53,167,168]. Platelets are, indeed, among the principal me-
diators of atherothrombotic diseases due to their adherence to atherosclerotic plaques
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and subsequent hyperactivation and secretion of multiple pro-inflammatory molecules
including adhesive factors (fibrinogen, fibronectin, VWF, P-selectin), coagulation factors
(factor V, factor XI, plasminogen, protein S), growth factors (platelet-derived growth factor,
epidermal growth factor, basic fibroblast growth factor), and chemokines/cytokines (IL-1β,
sCD40L) [15–17,169–179]. Therefore, the NF-κB/proteasome dyad might maneuver the
transition of platelet phenotype into chronic pro-inflammatory blood entities. Henceforth,
targeting the NF-κB/proteasome dyad in platelets by proteasome inhibition might be ther-
apeutically beneficial in atherothrombotic diseases, given the protective effects reported
upon targeting the same dyad in other settings including myocardial infarction [180,181],
stroke [182], cancer [183], hypertensive injury [184], and organ transplantation [185,186].

5. Conclusions

Despite their anucleate nature and hand-me-down proteins from megakaryocyte
precursors, platelets comprise genomic mediators like NF-κB and protein degradation
machinery like the proteasome. The few studies available thus far on platelet proteasome
show that it regulates platelet lifespan and viability yet only partially enhances platelet
activation and aggregation by activating NF-κB. In this context, the NF-κB/proteasome
dyad could be more pertinent in platelet priming, an intermediate state that predisposes
platelets to pronounced activation and aggregation and correlates with atherothrombotic
diseases and resistance to antiplatelet therapy. Therefore, targeting the NF-κB/proteasome
axis in platelets might assist in contriving novel pharmacological compounds for the
treatment of atherothrombosis.
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