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Abstract: In bioelectronics, stretchable and self-healable electrodes can reliably measure electrophysi-
ological signals from the human body because they have good modulus matching with tissue and
high durability. In particular, the polymer–graphene composite has advantages when it is used as an
electrode for bioelectronic sensor devices. However, it has previously been reported that external
stimuli such as heat or light are required for the self-healing process of polymer/graphene composites.
In this study, we optimized a conducting composite by mixing a self-healing polymer (SHP) and
graphene. The composite materials can not only self-heal without external stimulation but also have
rapid electrical recovery from repeated mechanical damage such as scratches. In addition, they had
stable electrical endurance even when the cyclic test was performed over 200 cycles at 50% strain,
so they can be useful for a bioelectronic sensor device with high durability. Finally, we measured
the electromyogram signals caused by the movement of arm muscles using our composite, and the
measured data were transmitted to a microcontroller to successfully control the movement of the
robot’s hand.

Keywords: composite; graphene; self-healing; stretchability; electromyogram; human–robot interface

1. Introduction

Bioelectronic healthcare devices [1–6] such as biosensors [7–15], bio-implants [16,17],
and human–machine interface systems [18,19] that can measure human electrophysiological
signals for health monitoring and feedback have gained attention in recent years. Compared
to rigid metal-based electronic devices, flexible and stretchable bioelectronic devices are
soft and thin, so they are comfortable to wear and can improve treatment efficiency [20–23].
For this reason, although various groups have reported flexible and stretchable conductors
using different approaches [23–27], they are still susceptible to mechanical damage such
as scratches or cutting. Therefore, in addition to intrinsic stretchability and conductivity,
self-healing properties are required to restore damaged functions and extend lifespan, so
new bioelectronic devices based on self-healing materials have emerged [28–30]. Composite
materials can allow these devices to have unique properties [31–34]. For instance, composite
materials with conductivity, softness, and stretchability were easily formed by mixing
an insulating polymer matrix and conductive fillers such as metal powders or carbon
materials [35–39]. In particular, a graphene-based composite has gained much attention for
use in bioelectronic devices [40–42].

Graphene is a two-dimensional (2D) carbon nanomaterial with a honeycomb struc-
ture bonded by hybridized sp2 orbitals of C=C double bonds, and it has unique elec-
trical/structural characteristics such as a high Young’s modulus, mechanical strength,
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excellent electrical conductivity, flexibility, transparency, and biocompatibility [43–45]. Due
to these characteristics, graphene has attracted considerable attention as a conductive filler
for polymer composites [46,47], especially in soft bioelectronics. Moreover, several results
have been reported about self-healable polymer–graphene composites [48–52]. However,
most of these depend on external energy sources or stimulation such as microcapsules,
light (UV, microwave, etc.), heat, and so on. For example, Zhang et al. reported a func-
tionalized graphene–polyurethane (PU) composite that can self-heal by a photothermal
reaction using an infrared (IR) laser source [50]. However, its healing process needs very
high-temperature conditions (150 ◦C) from the focused laser source to facilitate Diels–Alder
chemistry. Valentini et al. showed self-healable silicone rubber–graphene composites, but
they also need a high-temperature oven that can raise the temperature up to 250 ◦C for
2 h [51]. Pan et al. demonstrated that graphene oxide-based polyacrylamide hydrogels
could be self-healed at room temperature, but their healing efficiency significantly dropped
(approximately from 92% to 45.6%) without water moisture conditions [52].

In this study, we present a self-healable, stretchable, and conductive nanocomposite
for an electromyogram (EMG) sensor by the drop-casting of a tough self-healing polymer
(PDMS-MPU0.4-IU0.6, SHP) [53]–graphene composite solution. The optimized composite
has low initial resistance (~40.5 Ω) and can be stretched to harsh tensile strain (~100%).
Owing to the low glass transition temperature of the SHP matrix [35,36], our SHP–graphene
composite also showed its autonomous self-boosting during mechanical deformation
(~50% strain) by the recovery of percolative electrical pathways in dynamic polymer
networks. This self-healing process did not need any external sources and was enabled at
room temperature. Additionally, our composite has stable electrical performance in cyclic
stretching tests after self-healing without the introduction of a bilayer structure. Finally, we
successfully demonstrated that the EMG signal can be monitored by coating the surface of
the SHP–graphene composite with alginate hydrogel. The signal was used by the robot to
mimic human hand motions.

2. Materials and Methods
2.1. Preparation of the Conductive SHP–Graphene Composite

All chemicals and solvents were purchased from Sigma-Aldrich (Burlington, MA,
USA). Graphene nanopowder (Grade A0–4, GRAPHENE SUPERMARKET, Ronkonkoma,
NY, USA) was used as a conductive filler on polymer composites. Octadecyltrichlorosilane
(OTS)-treated silicon oxide wafer was prepared following previous reports [54]. Firstly,
silicon wafer was cleaned with acetone and isopropyl alcohol. Its surface was treated by
oxygen plasma (100 W, 200 mTorr, 2 min) using a reactive ion etcher (Scientific engineering,
Suwon, Korea) and the wafer was immersed in a mixture solution of OTS/n-hexane (0.5%
v/v) for one hour. After the immersion, the wafer surface was cleaned by ethyl alcohol and
gently dried with pure nitrogen gas. Then, the wafer was annealed at 120 ◦C for 30 min on
a commercial hot plate. Finally, it was sonicated in chloroform for 5 min.

Following the wafer treatment, the SHP [53] was dissolved in chloroform for 1 h
(Figure 1a). After this, the SHP solution and graphene were mixed at the weight ratios of
SHP:graphene (1:0.3, 1:0.5, 1:0.7, 1:0.9) and stirred for 4 h (Figure 1b). The solution was
then poured onto the OTS-treated wafer to evaporate the solvent at room temperature
(Figure 1c) and the completed composite was peeled off from the wafer (Figure 1d).
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2.2. Electrical and Mechanical Characterizations of the Conductive Composite

All electrical properties of prepared SHP–graphene composite with each ratio were
measured using a digital multimeter (Keithley 2450 Digital Multimeter, Clackamas, OR,
USA). Stretching test and cyclic durability (0% to 50% strain over 200 cycles) tests to
characterize the electrical properties of the samples were performed using a motorized
X-conversion stage and corresponding software (Jaeil Optical Corp., Daegu, Korea). The
source meter was used to monitor real-time resistance changes and cyclic endurance during
the stretching. The initial width and length of the sample were 2 mm and 3 mm, respectively,
and the sample was loaded on the stretcher using double-sided tape (3M, Maplewood, MN,
USA). The stretching rate of both tests was 60 mm/min.

We measured the tensile stress per strain of our composite to evaluate mechanical
properties. The experiments were performed with a universal tensile machine (UTM,
Instron 34SC-1, Norwood, MA, USA) for continuous stretching at a speed rate of 5 mm/min.
The initial length and width of the composite were 30 mm and 10 mm, respectively, and
the length after loading the sample on chuck was 5 mm. Optical microscope (OM) (BX51,
Olympus, Japan) and Field Emission Scanning Electron Microscopes (FE-SEM) (JSM-IT800,
JEOL Ltd., Tokyo, Japan) were used to confirm that the optimized composite can be self-
healed even after mechanical damage.

2.3. Fabrication of Polymer–Hydrogel Hybrid Sensor

To coat the surface of the composite, 0.5 g of sodium alginate (SA; Sigma-Aldrich,
Burlington, MA, USA) was dissolved in 4.5 mL of DI water (10 wt%). After the dissolution
of sodium alginate, it was coated on the top surface of our composite.

2.4. Measurement and Processing of Human Skin EMG Signals

The alginate-coated SHP–graphene composite was fixed to the skin using Tegaderm
film (3M, Maplewood, MN, USA) for EMG measurement. The signals were recorded
using a bio-signal amplifier (Bio Amp FE231, AD Instruments, Dunedin, New Zealand)
and data acquisition device (PowerLab 8/35, AD Instruments). Action potential signals
were filtered on the authority of the ISEK (International Society of Electrophysiology and
Kinesiology) standard (1500-Hz low-pass filter). We used LabChart 8 Pro (AD Instruments,
Bella Vista, New South Wales, Australia) software to obtain all data. The obtained data
were transferred to a conventional microcontroller (Arduino Mega 2560) that moves the
robot’s hand (DFRobut, Shanghai, China). The authors obtained Institutional Review Board
(IRB) approval (NO. SKKU 2022-07-035) from Sungkyunkwan University for measuring
EMG signals.

2.5. Impedance−Frequency Measurement of the Composite

To analyze the electrochemical impedance (EIS) of our composite, a potentiostat (ZIVE
SP1, WonATech, Seoul, Korea) was used. For EIS measurement, a commercial Ag/AgCl



Polymers 2022, 14, 3766 4 of 10

electrode as a reference, Pt wire as a counter electrode, and our composite as a working
electrode were placed in phosphate-buffered saline 1 × (PBS) solution (pH 7.2, Biosesang,
Seongnam-si, Gyeonggi-do, Korea). The SHP–graphene composite and alginate-coated
composite were prepared as the samples to be analyzed. The area of the samples was
1 cm × 1 cm and the frequency range of this EIS measurement was from 0.1 Hz to 10 kHz
with an amplitude of 10 mV. In addition, The EIS spectroscopy with an equivalent circuit
model was performed to confirm the change in the impedance spectrum depending on the
strain. The Randles equivalent circuit model could be adapted for modeling the impedance
transformation of the composite. We observed the impedance spectra of the composite
after the applied strain was maintained for 10 min. The composite was gradually stretched
to 20% strain each time.

3. Results and Discussion
3.1. Electrical and Mechanical Characteristics of SHP–Graphene Composite to Optimize
Weight Ratio

Figure 2 shows the optimized process of the SHP–graphene composite. The initial
sheet resistance (Figure 2a) was measured to investigate the saturation point of the elec-
trical characteristics on the composite according to the weight ratio. When the weight
ratio of graphene in the composite exceeded a certain level, the maintenance of the initial
resistance was discovered regardless of the weight ratio. When the low graphene con-
tents were applied to the composite (SHP:graphene = 1:0.3), high resistance was shown
(119.1 Ω). However, the composites with higher graphene contents (SHP:graphene = 1:0.5
and SHP:graphene = 1:0.7) had similar resistance values. This suggests that the conduc-
tivity of the composite was saturated at a certain ratio of graphene. Next, the mechanical
properties were confirmed by stretching the composites with various weight ratios (from
1:0.3 to 1:0.7) at a speed of 5 mm/min (Figure 2b). When the strain was applied, the SHP
graphene = 1:0.5 showed better stretchability (~100% strain) than SHP:graphene = 1:0.7
(~30% strain). It is noted that the former composite also showed a lower modulus (softness)
than that of the latter one. Thus, we hypothesized that the SHP:graphene = 1:0.5 is best to
use as an electrophysiology sensor on human skin. Not only that but it also maintained
electrical properties with 100% strain (Figure 2c). In summary, the maximum elongation
length of the sample decreased, and electrical conductivity was improved (resistance was
sharply decreased) as the relative amount of graphene increased in the composite. There
was also an optimum saturation point of the electrical characteristics on our composite.
Therefore, the composite with a medium ratio (SHP:graphene = 1:0.5) was adopted to mea-
sure EMG signals because of its saturated initial resistance (~40.5 Ω) and lower graphene
ratio compared with other saturated ratios.
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Figure 2. Electrical and mechanical characterizations of a stretchable conductive composite. (a) Sheet
resistance, (b) stress–strain curve, and (c) changes in strain-dependent resistance of SHP–graphene
composites with different weight ratios of graphene.

3.2. Self-Healability of the Optimized Conductive Composite

Figure 3 describes the self-healing characteristics of our optimized composite. We
confirmed that the composite showed uniform electrical resistance values on every po-
sition (Supplementary Figure S1). The optimized SHP–graphene composite maintained
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its electrical performance (1.44 kΩ) despite the harsh strain (~100%) (Figure 2c, blue line
and Figure 3a). In previous reports, it was demonstrated that the low crosslink density
of the polymer matrix allows for dynamic movement of the graphene nanosheets as a
response to deformation in a time-dependent manner [40]. In addition, it was reported that
when the nanocomposite conductor is stretched, the conductive fillers are rearranged in
the SHP matrix over time due to stress relaxation in the dynamically crosslinked polymer
matrix [35]. Through this rearrangement, self-recovery of conductivity under tensile strain,
which is called electrical self-boosting phenomenon, occurred. Similarly, we tested the
electrical self-boosting phenomenon under a stretched condition when graphene rearranges
and electrical recovery occurs in the SHP matrix (Figure 3b and Supplementary Figure S2).
We observed that the resistance drops from 150 Ω to 80 Ω at 50% strain. Moreover, the
composite has a rapid recovery of electrical properties even when scratches are repeatedly
applied (Figure 3c). These results show that the SHP–graphene composite not only has
conductivity and stretchability but also has a particular characteristic of recovering elec-
trical property to a certain extent despite mechanical damage. Next, we cut the surface
of our composite with a razor blade to evaluate the mechanical and electrical self-healing
properties of the optimized composite. Dissected samples of two pieces (Figure 3d, top)
verified that the graphene network was reconstructed (Figure 3d, bottom) after 24 h at
room temperature by OM and SEM images. Figure 3e shows that both mechanical and
electrical recovery were achieved. Even after mechanical damage, the initial resistance was
similar and the change in resistance due to deformation was not significantly different.
Additionally, the composite exhibited high initial ∆R/R0 values under harsh conditions
but exhibited excellent durability over time (Supplementary Figure S3). More surprisingly,
the self-healable composite conductor had a stable electrical performance both as new and
after self-healing for 200 cycles at 50% strain (Figure 3f). We were able to confirm that the
optimized SHP–graphene composite recovered not only mechanical properties but also
electrical properties after damage through self-healing.
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Figure 3. Characteristics of optimized conductive composites: (a) Photographs of optimized SHP–
graphene composite conductor stretched up to 100% strain. (b) Resistance–strain data of the compos-
ite showing electrical self-boosting properties at 50% strain. (c) Electrical recovery phenomenon of
the composite after several times of cutting. (d) OM images of SHP–graphene composite before and
after self-healing (24 h). (Inset: SEM image of the composite after self-healing.) (e) Resistance–strain
graphs of the composites before cutting and after self-healing. (f) Repetitive stretching (strain of 50%,
over 200 cycles) and releasing test of the composites before cutting and after self-healing.
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3.3. Robust Interactive Human–Robot Interface Based on Stretchable and Self-Healable
Conductive Composite

Through biometric monitoring of the human body, medical information related to the
patient’s health condition can be obtained [55]. In particular, EMG signals are becoming
increasingly important in wearable bioelectronics as they are useful in many applications,
including prosthetic or rehabilitation devices, and human–machine interfaces [56–59]. In
particular, in this area, stretchable and self-healable electrodes are practical because they
can enhance the durability and quality of the device without discomfort while wearing [35].
To match these advantages, our SHP–graphene composite also showed excellent electri-
cal durability under harsh conditions as mentioned above. Additionally, we measured
impedance to find the electrochemical properties of our composite to be used when record-
ing the EMG signals (Supplementary Figure S4). In addition, Randles equivalent circuit was
modeled using the Nyquist plot to analyze our electrode characteristics (Supplementary
Figure S5). Although the impedance value slightly increased as the strain was applied,
it maintained a stable degree without an electrical breakdown. The modeled Randall
equivalent circuit also showed a similar trend in the bulk resistance (Rb), electric double
layer capacitance (Cdl), and charge transfer resistance (Rct) values [60]. Through these
characteristics, it can be seen that our composite is appropriate to be used as an EMG
electrode. Figure 4a depicts a flowchart of our system.
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have read and agreed to the published version of the manuscript. 

Figure 4. Demonstration of human−robot interface with stretchable and self-healable electrodes.
(a) Flow diagram of EMG signal recording and processing. (b) Impedance data of the composite
with and without alginate. (c) A photograph of the electrode attached on the skin. (d) Recorded
EMG signals using the electrode. (e) Demonstration of the human−robot interface (spreading
and grabbing).

Incidentally, alginate hydrogel is widely employed for biomedical sensors because of
its ionic conducting property and excellent biocompatibility [61–63]. We coated alginate
hydrogel on the surface of our composite to reduce the electrochemical impedances of
the electrode when attached to the skin. To make alginate solution, sodium alginate
was dissolved in DI water to make alginate hydrogel with a concentration of 10 wt%
(Supplementary Figure S6). If the concentration of alginate was lower than 10 wt%, it was
too thin, and if it was high, it would agglomerate and could not be coated uniformly on the
surface of the composite. Furthermore, we observed that the 10 wt% concentration of the
alginate-coated composite had lower impedance than the bare SHP–graphene composite
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(Figure 4b). In addition, we prepared sensing (SE), reference (RE), and ground electrodes
with a size of 1 cm × 1 cm for EMG measurement (Supplementary Figure S7).

An EMG electrode (i.e., SHP–graphene composite with an alginate layer) was attached
to the arm to detect the contraction and relaxation of the muscles (Figure 4c). We monitored
the EMG signal by performing two designated motions (grabbing and spreading). During
hand grabbing, the voltage of the signal was higher than the baseline. On the other hand,
the voltage was lower and stable during spreading. This means we obtained EMG signals
that were clearly distinguished according to the contraction and relaxation of the muscles
(Figure 4d). At this time, signals were collected and filtered using a bio-signal amplifier and
a data acquisition device. We also implemented robotic hand motions through the detected
EMG signal (Figure 4e). The measured data were transmitted to the microcontroller, and by
using these data, the robot’s hand could properly perform. In other words, the filtered data
are passed to the microcontroller that moves the robot, causing the robot to mimic human
hand motions (grabbing and spreading).

4. Conclusions

We prepared SHP−graphene composite electrodes for biomedical EMG sensors that
can be attached to human skin to monitor and provide feedback on human health. Our
SHP−graphene composite has many advantages for use as a soft bioelectrode: (1) It is
easily made by a simple mixing process. (2) It can autonomously self-heal itself at room
temperature. (3) It has excellent electrical recoverability even from repeated scratches. (4) It
exhibits stable durability even after cutting. (5) It shows a stable value even after stretching.
Based on these properties, the EMG signal measurement was successfully demonstrated
with alginate hydrogel. Moreover, the movements of the robot were realized using EMG
signal data from the contraction of muscles of the forearm flexor. Therefore, we believe
that our composite is a suitable candidate for soft bioelectronic devices for monitoring
physiological signals in the human body.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14183766/s1, Figure S1: Uniformity of optimized SHP–
graphene composite conductor; Figure S2: Resistance-strain data of the composite held for 20 min at
20% intervals; Figure S3: Cyclic durability of the optimized composite; Figure S4: Impedance−frequency
data of the composite according to the strain; Figure S5: Characterization of the electrode according
to the strain; Figure S6: Photographs of alginate solution according to concentration; Figure S7:
Schematic of electrode positioning for EMG monitoring.
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