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Topological States Characterized 
by Mirror Winding Numbers in 
Graphene with Bond Modulation
Toshikaze Kariyado    & Xiao Hu

Localized electrons appear at the zigzag-shaped edge of graphene due to quantum interference. Here 
we propose a way for harnessing the edge electronic states to make them mobile, by incorporating 
a topological view point. The manipulation required is to introduce a pattern of strong-weak bonds 
between neighboring carbon atoms, and to put side by side two graphene sheets with strong-weak 
alternation conjugating to each other. The electrons with up and down pseudospins propagate in 
opposite directions at the interface, similar to the prominent quantum spin Hall effect. The system is 
characterized by a topological index, the mirror winding number, with its root lying in the Su-Schrieffer-
Heeger model for polymer. Taking this point of view, one is rewarded by several ways for decorating 
graphene edge which result in similar mobile electronic states with topological protection. This work 
demonstrates that celebrated nanotechnology can be used to derive topological states.

Graphene exhibits linear dispersions in its energy spectrum originated from the honeycomb structure1, which 
encapsulates relativistic physics expected in high energy into the two-dimensional material2 and gives birth to 
many intriguing properties such as high electron mobility, heat conductance, and the chiral quantum Hall effects 
under magnetic field. For device applications, however, it is desired to turn graphene into a semiconductor by 
opening a controllable energy gap in the linear dispersion, which in a physics language is equivalent to attaching 
a mass to electron governed by the Dirac equation2–4. Noticeably, the emergent mass term has also played a key 
role in the development of the topological phases of matter. Haldane was the first to recognize that, in terms of 
complex next-nearest-neighbor (nnn) hopping integral, a valley-dependent mass can be induced in the massless 
Dirac-like dispersion in honeycomb structure, resulting in a quantum anomalous Hall effect5. Kane and Mele 
then noticed that, taking into account the spin degree of freedom of electron, the spin-orbit coupling (SOC) 
yields naturally two copies of the Haldane system in the spin-up and -down channels related to each other by 
time-reversal (TR) operation6,7, which is known as a quantum spin Hall effect (QSHE).

Nearest-neighbor (nn) hopping integral only can also open a gap in the Dirac-like linear dispersions in hon-
eycomb lattice: due to the nesting effect caused by hopping texture over hexagons8, the Dirac cones at K and K’ 
points at the corners of Brillouin zone of ambient graphene are folded to Γ point (see Fig. 1a) and meanwhile an 
energy gap is opened. It was argued that this operation yields a quantum pseudospin Hall effect, where the pseu-
dospin is associated with the orbital angular momentum accommodated on the hexagon, in contrary to other 
approaches which compose pseudospin in terms of sublattice and/or valley in honeycomb structure. Remarkably, 
because the mass induced by the hopping texture is given by m = t1−t0 (see Fig. 1), there appears an interface state 
with topological protection when two patches with opposite masses are attached to each other (Fig. 1d).

It is worthy noticing that the interface states thus derived transport unidirectional currents, in contrary to the 
immobile electronic state at the zigzag edge of graphene ribbon9 (Fig. 1b). This difference can be best captured by 
the topological index called mirror winding number. For simplicity we consider the case that the nnn hopping is 
totally absent (as well as other long-range hoppings). Exploring this sublattice symmetry (also known as chiral 
symmetry) in a graphene ribbon with zigzag edge, we can prove that electronic wave functions in the subspaces 
of the even and odd parity with respect to mirror operation along a plane normal to the zigzag edge are char-
acterized by winding numbers (n+, n−) as (1, 0)/(0, 1) for m > 0/m < 0 respectively. Bringing the two insulators 
side by side (see Fig. 1d) results in the difference in mirror winding numbers (1, −1), which renders a zero total 
winding number, and thus the in-gap interfacial states dispersive and able to transport currents. In contrast, at the 
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interface of each of the two insulators to vacuum, the two pairs of mirror winding numbers (1, 0) and (0, 1) yield 
a nonzero winding number in both cases, which is responsible for the well-known flat-band and static edge state 
at the zigzag edge of graphene ribbon.

Real-space textures in the hopping energy can be realized in systems of honeycomb structure in terms of 
cutting-edge technologies of material preparation. In the molecular graphene achieved on the Cu [111] sur-
face, a pattern in hopping integrals was realized by putting extra CO molecules, which induces an energy gap of 
~100 meV in the otherwise Dirac dispersion10,11, where the system geometry (including the edge shape, which 
will be important in the latter arguments) can be manipulated accurately by the advanced STM technique. Or, 
simply putting a graphene sample on an appropriate substrate possibly causes the hopping patterns12. Turning to 
metamaterials which are analogs to materials with ions replaced by periodic arrangements of dielectric constant 
and/or magnetic permeability, there are more spaces for precise real-space manipulation for achieving topological 
photonic and phononic states13–15. The SOC which are required for realization of QSHE is either very small or 
hardly conceived in these systems, whereas the topological energy (or frequency) gap induced by the texture of 
hopping integral in a tight-bind picture is considerably large.

The present theoretical approach based on mirror winding number in TRS systems reveals the relation 
between the quantum pseudospin Hall effect, which mimics the quantum anomalous Hall effect and the quan-
tum spin Hall effect and is defined in two dimensions (2D), and the Su-Schrieffer-Heeger (SSH) model16 and 
Rice-Mele model17 as the hallmark of 1D topology. This link is quite natural in the present 2D system, where the 
nontrivial topology arises from the bond alternating the same as the 1D counterpart. As a merit of this approach, 
we show that topologically protected edge states can be realized in terms of a variety of edge decorations at the 
graphene-vacuum interface in accordance to the bulk texture of hopping energy (see Fig. 1d).

Results
Model and Band Structure.  As noted above, our model is a tight-binding Hamiltonian in honeycomb lat-
tice = ∑〈 〉H t c cij ij i j

† , where ci
† (ci) is the creation (annihilation) operator at site i, and 〈ij〉 denotes summation over 

the nn sites, with the hopping integral tij modulated spatially (see also refs18,19). To be specific, we introduce two 
values of hopping energy, intra- and inter-hexagon as t0 and t1 (see Fig. 1a).

Let us begin with the numerically obtained band structures of a ribbon system with a simple zigzag edge (see 
Fig. 1c), which we name graphene-zigzag edge. Figure 2a shows the band structure as a function of the momen-
tum parallel to the edge, k||. We clearly see a flat band edge mode regardless of the sign of δ = (t1 − t0)/t0, which is 
inherited from the zigzag-edged graphene without hopping texture9. That is, the edge mode is nothing like helical 
ones, although the bulk state acquires a gap due to the hopping modulation. Remarkably, putting two regions 
with δ > 0 and δ < 0 side by side, instead of the exposing to vacuum as in the ribbon geometry, the situation is 
drastically altered. Figure 2b shows the band structure for the system having the boundary between δ = ±0.1 with 
a graphene-zigzag interface. (See Figs 1d or 2c.) Now, the interface state becomes dispersive and counterpropagat-
ing, just like the helical edge modes in QSHE.

Figure 1.  (a) The tight-binding model on honeycomb lattice with modulated nearest-neighbor hopping 
integrals with two unit vectors a1,2 used throughout the paper. The schematic picture of the original and the 
folded Brillouin zone is also shown. (b) and (c) Schematic pictures of the edge band structure for the ribbon of 
zigzag edges without and with hopping modulation. (d) Schematic pictures for decorated edge and interface, 
and (e) the dispersive edge states.
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Interestingly, making an interface between δ positive and negative regions is not the only way to achieve 
counterpropagating topological modes. Appropriate decorations at the ribbon edge to vacuum also work well. 
Figure 3a illustrates a decoration and associated band structure for the ribbon, and clearly shows the counterprop-
agating edge mode for δ > 0 and no edge mode for δ < 0. We name the edge shape in Fig. 3a molecule-zigzag type, 
since it preserves hexagons formed by the bonds with t0, which are regarded as artificial molecules. Remarkably, 
we can think of a decoration leading to counterpropagating mode for δ < 0 instead of δ > 0. Such a decoration is 
illustrated in Fig. 3b with the corresponding band structure for the ribbon. We name the edge shape in Fig. 3b 
partially-bearded type, inspired by the structure at the top edge of the ribbon. In this case, the edge states at the 
top and bottom edges are different, due to the absence of symmetry with respect to the middle line of the ribbon.

With the clear edge-shape dependence of the edge mode observed in Fig. 3, one might feel curious on 
possible shape dependence of the interface states between the two regions with positive and negative δ. Our 
numerical analysis reveals that even if the boundary dividing the two regions is changed to molecule-zigzag or 
partially-bearded from the plain graphene-zigzag, the band structure remains almost unchanged from Fig. 2b. The 
wave functions for the interface state associated with the different boundary shapes are similar to each other (see 
Fig. 2c and d), signaling a weak influence of the interface shape on the topological interface states. (See also ref.20).

Mirror Winding Number.  So far, we have established that the topological modes at the ribbon edge depends 
on the edge shape, while the one at the interface between δ > 0 and δ < 0 regions does not. In the following, we 
provide a unified way of understanding this variety in terms of a topological invariant. Because the present system 

Figure 2.  (a) The band structures for a ribbon of graphene-zigzag edge with masses of opposite signs. The edge 
modes are highlighted by the brown color. In calculations, the ribbon is long and periodic along a1 and contains 
40 unit cells along a2. The mirror winding numbers (n+, n−) are also indicated. (b) The band structure for the 
interface between two regions δ = ±0.1 with graphene-zigzag type boundary. Calculations are performed using 
a system periodic along a1 and consisting of repetition of 30 units of δ > 0 and δ < 0 cells in the perpendicular 
direction. (c) and (d) show a part of the system. For the black bonds, t0 = 1 is assigned throughout the system. 
For the red bonds, t1 = 0.9 (1.1) is assigned if a bond is in the white (gray) region. The hoppings across the two 
regions are set to the geometric mean of the corresponding hoppings in the two regions. (c) The weight of the 
interface state wave-function with graphene-zigzag type boundary shape. (d) The same for molecule-zigzag type 
boundary shape.

Figure 3.  The band structures of ribbon systems for (a) molecule-zigzag and (b) partially-bearded edges. In (a) 
the counterpropagating edge states are highlighted by the brown dispersions for δ = 0.1 with double degeneracy, 
whereas in (b) the blue (red) dispersions are for the counterpropagating edge states localized at the top (bottom) 
edge. The weight of the wave function |ψi|2 for the edge modes are displayed in the right most panels. The black 
lines in (b) for δ = 0.1 represent edge states whose origin is not topology. The computational setup is the same as 
Fig. 2a. The mirror winding numbers (n+, n−) are also indicated.
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exhibits a bipartite nature, the Hamiltonian in k-space, which is obtained by the Fourier transformation from ci 
to ck, can be written as

†=










H
Q

Q

0

0
,

(1)
k

k

k

with a basis where the upper (lower) half is for A (B) sublattice and Qk is a 3 × 3 matrix. The Hamiltonian (1) 
anticommutes with the chiral operator γ = diag(1, −1), manifesting the chiral symmetry (or sublattice symme-
try) of the present system. Then, regarding the momentum k parallel to the unit vector a1 defined in Fig. 1a as a 
free parameter, the system can be viewed as an effective 1D model, to which one can assign the winding number 
supported by the chiral symmetry as21,

n k d
dk

Q dk( ) 1
2

arg (det )
(2)k k

0

2
,∫π

= − .
π

||
⊥
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For k|| = 0, we can do further. That is, the mirror symmetry with the mirror plane perpendicular to a1 enables 
us to decompose the Hamiltonian (1) into even and odd sectors ±

⊥
Hk , where k is replaced by k⊥, since our focus is 

now on k|| = 0. In this case, the mirror operation commutes with γ, and thus, Qk can be decomposed into even and 
odd sectors Qk

±
⊥
. Then, just as first pointed out in ref.22 (and also discussed in the following papers23–26), we can 

assign winding numbers for the even and odd sectors separately by plugging Qk
±
⊥
 into equation (2), which consti-

tutes the mirror winding number (n+, n−). Note that even though we also have a mirror plane parallel to a1, which 
is related to armchair type edge, another important class of graphene edge, that mirror operation does not com-
mute with γ, leading to no mirror winding number for armchair edge. Note also that in a general context, the 
approach intertwining topology and crystal symmetry was first considered in the work on topological crystalline 
insulator27,28.

In general, a winding number depends on the choice of unit cell29,30. Although the choice of unit cell is 
merely a unitary transformation of Hk, it does not necessarily correspond to a unitary transformation of Qk. 
Consequently, the unit cell choice can modify the winding number through equation (2). It is known that in 
order to make one-to-one correspondence between edge modes and the winding number, we must obey a rule 
such that a chosen unit cell is not chopped by the considered edge30. Namely, if the edge shape is changed, the 
unit cell should be changed correspondingly. In the present case, three kinds of unit cells obeying this rule for 
graphene-zigzag, molecule-zigzag, and partially-bearded edges are given in Fig. 4.

Equipped with the appropriate unit cell, Qk for graphene-zigzag edge becomes

=






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where X e k ai 1= ⋅  and Y e k ai 2= ⋅ . At k|| = 0 (X = 1), Qk is decomposed into

=

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




= −+ −

⊥ ⊥
Q

t Y t
t t t Y

Q t t Y
2

2
, ,

(4)
k k

1 0

0 1 0
1 0

which leads to (n+, n−) = (1, 0) for δ > 0 and (0,1) for δ < 0. On the other hand, for molecule-zigzag edge, we have

Q
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t t X Y t
t t t Y (5)
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and

Figure 4.  Unit cells leading to (a) graphene-zigzag, (b) molecule-zigzag, and (c) partially-bearded edges.
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leading to (n+, n−) = (1, −1) for δ > 0 and (0, 0) for δ < 0. The same prescription applies to partially-bearded edge, 
giving us

=
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which leads to (n+, n−) = (0, 0) for δ > 0 and (−1, 1) for δ < 0. The results are summarized in Table 1. With the 
mirror winding numbers one can easily obtain the total winding number as ntot = n+ + n−. While the mirror 
winding number is only defined at k|| = 0, the total winding number ntot is well defined for any momentum, and is 
conserved as far as the bulk gap is not closed. It is worthy noticing that, as can be read from Table 1, the states for 
δ > 0 and δ < 0 can be distinguished topologically in terms of the mirror winding numbers, but indistinguishable 
by the total winding number.

Now let us see the correspondence between the mirror winding number (Table 1) and the edge modes (Figs 2 
and 3). For graphene-zigzag edge, ntot = 1 for any k|| regardless of the sign of δ. Because vacuum is topologically 
trivial with zero mirror winding number, we expect the flat-band edge mode associated with the the nonzero 
total winding number16,17,29 for the ribbon geometry, which is in accordance with Fig. 2a. On the other hand, for 
molecule-zigzag and partially-bearded edges, we observe the counterpropagating edge modes with n± ≠ 0 and 
ntot = 0. This can be understood as follows: for k|| = 0, one has two zero-energy edge modes, one from the even 
sector and the other from the odd sector; for k|| ≠ 0, there is no reason to have any zero-energy edge mode since 
ntot = 0. As the consequence, we end up with two edge modes with finite dispersions and crossing linearly at 
k|| = 0. Remarkably, the counterpropagating modes at the graphene-zigzag interface between two domains with 
opposite values of δ (Fig. 2b) admits exactly the same explanation, where one takes the differences of mirror 
winding numbers between the two domains. In this way, all the results in Figs 2 and 3 are explained in a unified 
manner by means of the mirror winding number.

Analytic Solutions for the Wave Functions.  A more intuitive and physical understanding of this unified 
picture is available by checking analytic solutions of the wave functions for the topological edge states. Here, we 
briefly describe the derivation of the wave functions for the zero-energy topological edge modes at k|| = 0, where 
the mirror symmetry is effective with which solutions are classified into even- and odd-parity ones. For the study 
of edge modes, one often puts the system on a cylinder, open in one direction and periodic in the other direction 
(see Fig. 5). We can obtain k|| dependence of the edge band structure in the large diameter limit. In contrast, in 
the small diameter limit, k|| = 0 is the only allowed momentum along the edge, which is regarded as an effective 
one-dimensional model for k|| = 0. Figure 5 shows those effective 1D models, where (a) and (b) correspond to the 
graphene-zigzag edge, (c) and (d) to the molecule-zigzag edge, and (e-h) to the partially-bearded edge, respectively. 
The chiral symmetry permits us to adopt the following ansatz for the wave functions of zero-energy edge modes 
ΨA = (ψA, 0) or ΨB = (0, ψB).

Let us begin with the even-parity solution for the graphene-zigzag edge (Fig. 5a). From the second site on the 
right (or left) column, one requires (s + α)t0 + t1 = 031,32 for a nontrivial zero-energy mode. From the fourth site 
on the central column, one has 2t0 + αst1 = 0. These two equations are satisfied by α β β β= − + + 1/2  and 

β β β= − − +s 1/2  with β ≡ (1 + δ)/2. The solution is physically relevant only when it decays from the edge 
into the bulk, namely when α < 1, which is achieved by δ > 0. On the other hand, for the odd-parity solution 
(Fig. 5b), the ansatz gives a solution with α = 1 + δ, which becomes physical when δ < 0. These results are in 
accordance with Table 1, namely (n+, n−) = (1, 0) for δ > 0 while (n+, n−) = (0, 1) for δ < 0 for the graphene-zigzag 
edge.

Next, we move on to the molecule-zigzag edge (Fig. 5c and d). Comparing Fig. 5a and c, we notice that the 
even-parity solution for the molecule-zigzag edge is essentially unchanged from the one for the graphene-zigzag 
edge, where one has a physical solution when δ > 0. On the other hand, for the odd-parity solution (Fig. 5d), the 

(n+, n−) δ > 0 δ > 0

molecule-zigzag (1, −1) (0, 0)

partially-bearded (0, 0) (−1, 1)

graphene-zigzag (1, 0) (0, 1)

Table 1.  Mirror winding number (n+, n−) at k|| = 0 for three edge shapes.
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ansatz gives a solution with α = 1/(1 + δ), which is physical for δ > 0. That is, the even- and odd-parity solutions 
are both physical when and only when δ > 0, in agreement with (n+, n−) in Table 1.

For the partially-bearded edge, the top and the bottom edges should be considered separately since the ribbon 
becomes asymmetric with respect to the middle line of the ribbon (see Fig. 3b). A comparison between Fig. 5b,f, and h  
tells us that the odd-parity solutions are essentially the same as those in the graphene-zigzag edge. [Note that the 
figure for the bottom edge, Fig. 5h, is upside-down.] Therefore, we have a physical solution for δ < 0. On the other 
hand, the even-parity solutions are different from those for the graphene-zigzag edge. For both of the top (Fig. 5e) 
and the bottom (Fig. 5g) edges, the parameters xi and yi satisfy the relation

β

β









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=








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
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−


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
.

+

+

x
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x
y A,

0
1 2 (9)

j

j

j

j

1

1 2

The solution becomes physical when the absolute values of the two eigenvalues of A get smaller than unity, 
which is achieved by δ < 0. Again, these results are in accordance with Table 1, i.e., two physical solutions (even 
and odd) for δ < 0 at the partially-bearded edge.

Now, let us interpret the results starting from the graphene-zigzag ribbon. Noting that molecule-zigzag and 
partially-bearded edges are obtained by some appropriate decoration, i.e., adding or subtracting a few sites at the 
edge. Then, by examining the wave functions in ribbons given in Fig. 5, it turns out that the decoration leading 
to molecule-zigzag edge affects only the mirror-odd sector, while the decoration leading to partially-bearded edge 
affects only the mirror-even sector. As we have discussed, the unit cell must be adapted when the edge shape 
is modified (Fig. 4), influencing the winding number. In our case, the change from the graphene-zigzag to the 
molecule-zigzag (partially-bearded) reduces the mirror winding number for the odd (even) sector by 1, which 
explains Table 1. To summarize, the selective action on either of mirror-even or odd sector is the key to observe 
interesting evolutions of the topological edge modes.

Discussions
In the previous work8, the parameter regime t1 < t0 was regarded as topologically trivial. However, as summarized 
in Table I this parameter regime supports a state characterized by nonzero mirror winding numbers when the 
rhombic unit cell is chosen (see Fig. 4), instead of the circular one presumed in the previous work. This is a unique 
feature of the present approach for achieving topological states in terms of real-space modulation. On one hand, a 
relation between the unit cell and the underlying hopping texture determines the explicit form of the Hamiltonian 
[see equations (3–8)]. As a result, the unit cell choice affects the winding number. On the other hand, the unit cell 
determines the edge shape in our approach. In this sense, topology (winding number), real-space textures, and 
edge shapes are related, which is useful for designing topological edge states. Such a designability possibly leads 
to switch and diode33,34 utilizing topological edge states by dynamically controlling edge location and shape with 
local gate voltages.

In our theory, the edge shape plays an essential role. For any kinds of artificial realization of the textured 
honeycomb model11,13–15, the edge shape is also likely to be artificially modified, and our theory is immediately in 

Figure 5.  Schematics of the ansatz for the effective 1D model at k|| = 0: (a,b) for graphene-zigzag edge, (c,d) for 
molecule-zigzag edge, (e,f)/(g,h) for the top/bottom edge of partially-bearded edge. (a,c,e,g)/(b,d,f,h) are for the 
solutions of even/odd parity with respect to the mirror operation. The shaded regions for graphene-zigzag and 
partially-bearded edges can be regarded as decorations to graphene-zigzag edge. (i) The 1D effective model can 
be considered as a model on a cylinder with the smallest diameter, where k|| = 0 is the only allowed momentum.
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effect. In addition, we would like to point out that the atomically precise control over the edge shape of a graphene 
ribbon is a developing experimental technique35–37.

To summarize, topological phases in honeycomb lattice induced by texture in hopping energy between 
nearest-neighboring sites are characterized in terms of the mirror winding number. Analytic wave functions 
are provided for zero-energy edge modes at the Γ point, which evolve into the dispersive counterpropagating 
edge states at finite momenta. Explicitly, when the intra-hexagon hopping energy is stronger (weaker) than the 
inter-hexagon one, molecule-zigzag (partially-bearded) edge yields gapless counterpropagating edge modes. The 
present work provides a new designing guideline for topological edge states adaptive to the bulk hopping texture, 
which may pave a way to tailoring graphene and related materials in the topological point of view.

Data availability statement.  The datasets generated during the current study are available from the cor-
responding author on reasonable request.
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