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Abstract

Permanent Atrial fibrillation (pmAF) has largely remained incurable since the existing information for explaining precise
mechanisms underlying pmAF is not sufficient. Microarray analysis offers a broader and unbiased approach to identify and
predict new biological features of pmAF. By considering the unbalanced sample numbers in most microarray data of case -
control, we designed an asymmetric principal component analysis algorithm and applied it to re - analyze differential gene
expression data of pmAF patients and control samples for predicting new biological features. Finally, we identified 51
differentially expressed genes using the proposed method, in which 42 differentially expressed genes are new findings
compared with two related works on the same data and the existing studies. The enrichment analysis illustrated the
reliability of identified differentially expressed genes. Moreover, we predicted three new pmAF – related signaling pathways
using the identified differentially expressed genes via the KO-Based Annotation System. Our analysis and the existing
studies supported that the predicted signaling pathways may promote the pmAF progression. The results above are worthy
to do further experimental studies. This work provides some new insights into molecular features of pmAF. It has also the
potentially important implications for improved understanding of the molecular mechanisms of pmAF.
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Introduction

Atrial fibrillation (AF) is an extremely common cardiac rhythm

disorder in population [1,2]. The outstanding progresses have

shown that AF pathophysiology involves electrical, structural and

contractile remodeling, which is related to changes in cardiac gene

expression.

Over the last decade, several studies have characterized the

molecular basis of remodeling on a more global scale [3–7], in

which Barth et al. [5] and Censi, et al. [6] respectively analyzed

the same differential gene expression data with 10 permanent AF

(pmAF) patients and 20 controls and found different biological

features. In the atrial myocardium, Barth et al. [5] identified 1434

genes deregulated in pmAF. Besides, they found that most

ventricular – predominant genes were upregulated in pmAF.

They thought that dedifferentiation with adoption of a ventricular

– like signature is a general feature of the fibrillating atrium. In the

work of Censi, et al. [6], they applied the oblique principal

component analysis (OPCA, a PCA – based method) to mine some

new pmAF – related differentially expressed genes (DEGs) that

were different from those in the work of Barth et al. [5] and found

an attractor-like property of gene expression. Furthermore, Censi,

et al. [7] analyzed the connection relationships among the

identified DEGs. Their work showed that the connection

relationships between AF and normal patient populations have

great difference. However, any a quantitative analysis method for

gene expression data has its limitations. For example, the PCA-

based method might ignore some components that are, though

statistically unimportant, biologically meaningful. The classical

supervised approaches (such as SAM) were not able to well

characterize different pathophysiological features of AF. There-

fore, constant refinement is needed to evolve better methodologies

to find more new biological features associated with AF for

improved understanding of pathophysiological mechanisms of AF.

In this work, we designed an asymmetric principal component

analysis (APCA) algorithm by considering the unbalanced sample

numbers in most microarray data of case – control. From the data

used by Barth et al. [5] and Censi, et al. [6], we identified 51

differentially expressed genes (DEGs) using the APCA algorithm,

in which 42 DEGs are new findings compared with two related

works and the existing studies. The enrichment analysis on GO

and GAD showed that most identified DEGs are associated with

the etiological factors inducing atrial fibrillation. Moreover, we

predicted three new signaling pathways. Our analysis and the

existing studies supported that the predicted signaling pathways

may promote the pmAF progression. The obtained results in this

work are worthy to do further experimental studies.
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Materials and Methods

Data
The gene expression data used in this work were obtained from

the public functional genomics data repository of the National

Institute of Health (called Gene Expression Omnibus, GEO). The

data with record #GSE2240 consists of samples from 30 patients,

in which 10 patients had pmAF, whereas 20 patients had no

history of AF and were in SR. The data are related to two

Affymetrix platforms U133A and U133B. According to our

statistics, 20995 of the 22283 genes in U133A have been

annotated and the percentage of annotated genes is 94.2%. Only

14586 of the 22283 genes in U133B have been annotated and the

annotated percentage is less than 65%. This may result in wrong

interpretation to the final results. Therefore, our study focus on the

data in U133A, which is a gene expression data set with 22283

rows (probes) and 30 columns (samples).

APCA algorithm for identifying differentially expressed
genes

The existing researches have shown that the PCA-based method

on this data set succeed in discriminating patients from controls

and in offering a mechanistic view relating AF condition to both

cardiac muscle organization and inflammatory processes [6].

However, applying PCA-based method, the total covariance

matrixes does not effectively remove the unreliable dimensions if

one class is represented by its training data much better or much

worse than the other class. The asymmetric principal component

analysis (APCA) [8] and linear subspace learning-based dimen-

sionality reduction [9] alleviate this problem by asymmetrically

weighting the class conditional covariance matrices and by

considering the important weak composition. Thus, we design

an novel APCA-based method to identify the differentially

expressed genes between patients with pmAF and the control

group by combining the ideas in two works above [8,9].

Assume that a gene expression dataset is represented by X with

m rows (probes) and l columns (samples) and there is m..l. The

novel APCA – based method consists of four phases. In the phase

one, we project X into a low dimension matrix Xs. The steps are

as follows.

(1) Construct S = XTX, where T denotes the transpose. Obvi-

ously, the size of S is l6l.

(2) Apply PCA to S for obtaining the eigenvector matrix EIVS

with size l6l, where one column is one eigenvector.

(3) Compute EIVL = XEIVS. The EIVL is the eigenvector

matrix with size m6l corresponding to the nonzero eigenval-

ues of XXT.

(4) Project the X into XS through computing Xs = EIVL
TX,

which is of size l6l.

All principal components (PCs) and classification on Xs will be

exactly the same with that on X. In phase two, we construct a new

data matrix, shown as below.

(1) Suppose that there are n control samples and d disease

samples in the original data matrix X, and n + d = l. Xs is

divided into two block matrices, that is, XS = [XSn, XSd].

Thus, XSn is of size l6n and XSd l6d.

(2) Calculate the mean vectors of XSn, XSd and XS, MSn, MSd

and MS whose elements are the mean values over rows and

whose sizes are all l61.

(3) Centralize the data matrices above by subtracting the means

from XSn, XSd and XS to yield YSn, YSd and YS.

(4) Calculate the covariance matrices by CSn = (1/n)YSnYSn
T ,

CSd = (1/d)YSdYSd
T and CS = (1/l)[n(MSn-MS)(MSn-

MS)T+d(MSd-MS)(MSd-MS)T] whose size are all l6l.

(5) Construct a new matrix C = aCSn + (1-a) CSd +bCS, where the

parameter b is a large value such as 20 and the parameter a is

in the range of 0,a,1. They are determined according to the

optimal classification result of patients/control samples based

on the first two PCs.

In the third phase, we extract the principal components from C
using the PCA algorithm [9]. The ‘shared variance’ is accounted

for by the first PC and the minor PCs (from the second PC

onward) keep trace of the relevant among sample difference [6]. In

APCA, since the first two PCs could optimally classify the

patients/control samples under the selected a and b, the second PC

is used as the discriminant PC, which will be used to identify

differentially expressed genes.

The discriminant PC is a vector with dimension of 2228361, in

which the value in each row represents the score of corresponding

gene. In final phase, we identify the DEGs according to the scores

of the genes. Those genes, whose scores (in absolute value) are

higher than a given threshold (denoted by h), are identified as the

DEGs. As we all know, the selection of the threshold is very

important. Many biologically relevant DEGs could not be

identified if the threshold is too high, while lowering the

identification threshold will increase the number of potential

DEGs, including many false ones. Based on the reasons above, we

select about half of the numerical range of the score S as the

threshold.

Assuming that the score and its maximum value (in absolute

value) are respectively indicated by S and |Smax|, the numerical

range of the score S is 0#S#|Smax|, Thus, the threshold is set as

h =v|Smax|/2w.

Prediction of pmAF – related pathways
The Affymetrix IDs of all the identified DEGs are entered into

the KO-Based Annotation System (KOBAS) [10], which identifies

the statistically enriched pathways. An identified pathway is

predicted to be associated with pmAF when it satisfies the

following criterion: the value of EASE (corrected P-value) for the

pathway is less than or equal to 0.05 and meanwhile the number of

DEGs involved in the pathway is larger than or equal to 2. This

criterion ensures statistical credibility to the predicted results but

not a consequence of chance.

Calculation of ROC for the identified DEGs
In order to illustrate the reasonableness of threshold in our

method as well as the reliability of the results, we assess the

discrimination powers of identified DEG expression levels to

classify normal and pmAF samples by calculating their receiver

operating characteristic (ROC) curves and the areas under the

curve (AUC). In ROC calculation, we respectively define pmAF

and normal patients as positive and negative samples. Therefore,

the true positive rate indicates how many correct positive results

occur among all pmAF samples available during the test. False

positive rate, on the other hand, represents how many incorrect

positive results occur among all normal samples available during

the test.

It is well known that pmAF is a kind of polygenic and

multifactorial disease and so its occurrence and progress are

associated with the combinational work of multiple genes. Thus,

we calculate the ROCs and the AUCs of combinations among 51

identified DEGs. In order to find the combination rules of these

DEGs, we analyze the connection relationships among them using

New Features in Permanent Atrial Fibrillation
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correlation technique. Using the gene expression values of 51

DEGs across 10 samples in pmAF group of U133A, we calculate

the correlation coefficient (CC) between each DEG pair. Under

CC$0.9 [7], we construct the connection relationship among 51

identified DEGs correspondent to pmAF patients and then

combine these DEGs according to the connection relationship

for conducting the calculation of ROCs and AUCs. For

comparison, we also calculate the ROC and the AUC of each

DEG for finding the discrimination powers of these DEGs

individually.

Results

The discriminating PC
In U133A data set, there are respectively 22283 probes and 30

samples, which include 20 control samples and 10 disease samples.

The independent number of control samples is 19 since the gene

expression values of two samples in the control group are

completely same. Thus, the total independent sample number is

29. The dimension of data matrix in our experiment are

m = 22283, l = 29, n = 19 and d = 10.

We let b be an integer of 20 and then uniformly sampled a over

the interval (0, 1). Our simulation showed that two kinds of

samples can be correctly classified by the first two PCs when taking

a = 0.3 and b = 20 in the APCA algorithm, as shown in Figure 1.

Table 1 gave the proportional and cumulative variances repre-

sented by the first 10 PCs under a = 0.3 and b = 20 when our

method was applied to the U133A data set.

The results in the Table 1 show that the first PC accounts for

99.61% of total variability in both groups. With the large value of b

(here b = 20), our algorithm ensures that the first PC is caused by

the two class means and it represents the commonality between

gene expression profiles on the genome-wide scale. Hence, all

minor PCs are caused by the within-class variations of the both

classes, which mainly concentrate on the second PC as shown in

Table 1. The second PC captures the major difference between

the two within-class variations of the two classes. Further, the

pmAF patient and control samples are able to be correctly

classified using the first two PC and so we select the second PC as

the discriminating PC.

The identified DEGs
We obtained each gene’s score using the second PC in Table 1.

The maximum value of the score is 11.02. Thus, the threshold of

the score h is calculated as 5. We identified 51 DEGs

(corresponding to the 63 Affymetrix IDs) that have the scores (in

absolute value) higher than the threshold. Their symbols,

Affymetrix IDs (ID_REF), titles and scores are shown in Table 2,

in which the genes DICER1, IGFBP2, LBH and NPR3 marked

with italic are the differential expression genes previously reported

in the work of [5] on the same data. Also, the genes IGFBP2,

IGH@/IGHG1/IGHG2/IGHM/IGHV4-31, LOC100133662/

RPS4Y1, RBP4, SFRP1 and XIST marked with bold are the

DEGs previously found on the same data in the work of [6].

Compared with the results of two previous works, 42 new DEGs

are identified by our novel method, which fully considers the

important weak composition and so can identify some new genes

that cannot be found by PCA algorithm and classical supervised

approaches.

The predicted pmAF - related signaling pathways
The DEGs in Table 2 are fed into the KOBAS for predicting

the pmAF-related signaling pathways. The KOBAS identified

three signaling pathways that satisfy the criterion, as shown in

Table 3. We inferred these pathways to be associated with

development or maintenance of pmAF.

Discrimination powers of identified DEGs
The connection relationships among 51 DEGs correspondent to

pmAF patients and the calculation of corresponding ROCs and

AUCs are respectively shown in Figure S1, Table S1 and S2. The

connection network among 51 DEGs (Figure S1) consisted of two

subnetworks, four DEG connection pairs and 29 individual DEGs.

In two subnetworks, all the DEGs were found to give an AUC of

less than 0.7 or more than 0.3 individually (Table S1), which

illustrated single DEG had poor discrimination power. When the

DEGs in each subnetwork are combined, we calculated the ROC

and AUC of each combinational DEGs and found that two AUCs

were elevated to 1 (P = 0) (Table S2). In 8 DEGs of four pairs, only

DICER1 (No. 8) were found to have an AUC of more than 0.7.

When these 8 DEGs combined, the AUC was equal to 1 (P = 0). 10

Figure 1. The classification results for the 29 samples by the
first two PCs, where AF and N respectively indicate the pmAF
and normal patients; The factor loading (FL) of a PC is defined
as the correlation coefficients between original sample vari-
ables and this PC. FL1 and FL2 respectively denote the factor
loadings of the first PC and the second PC on the 29 samples.
doi:10.1371/journal.pone.0076166.g001

Table 1. Proportional and cumulative variances for the first
10 PCs.

Eigenvalue Proportion Cumulative

1 0.9961 0.9961

2 0.0020 0.9981

3 0.0006 0.9986

4 0.0003 0.9990

5 0.0002 0.9992

6 0.0001 0.9994

7 0.0001 0.9995

8 0.0001 0.9996

9 0.0001 0.9996

10 0.0001 0.9997

doi:10.1371/journal.pone.0076166.t001
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Table 2. Identified differential expression genes using the APCA algorithm.

No. Gene symbol ID_REF Gene Title Score

1 ADIPOQ 207175_at adiponectin, C1Q and collagen domain 10.7946

containing

2 AMY1A /// AMY1B 208498_s_at amylase, alpha 1A (salivary) /// amylase, alpha 5.5792

/// AMY1C /// 1B (salivary) /// amylase, alpha 1C (salivary) ///

AMY2A /// AMY2B amylase, alpha 2A (pancreatic) /// amylase, alpha

2B (pancreatic)

3 BMP10 208292_at bone morphogenetic protein 10 29.7136

4 C2 /// CFB 202357_s_at complement component 2 /// complement factor 7.3188

B

5 C3 217767_at complement component 3 7.5830

6 CEBPA 204039_at CCAAT/enhancer binding protein (C/EBP), 5.6280

alpha

7 COL21A1 208096_s_at collagen, type XXI, alpha 1 7.4379

8 DICER1 213229_at dicer 1, ribonuclease type III 25.0451

9 DIRAS3 215506_s_at DIRAS family, GTP-binding RAS-like 3 7.1738

10 EFEMP1 201843_s_at EGF-containing fibulin-like extracellular matrix 5.7128

protein 1

11 FABP4 203980_at fatty acid binding protein 4, adipocyte 11.0171

12 FHL2 202949_s_at four and a half LIM domains 2 5.2915

13 GOLGA8A 208798_x_at golgi autoantigen, golgin subfamily a, 8A 6.2200

14 HBA1 /// HBA2 204018_x_at hemoglobin, alpha 1 /// hemoglobin, alpha 2 5.1573

217414_x_at 5.2591

211745_x_at 5.7071

214414_x_at 5.7851

209458_x_at 5.2950

211699_x_at 5.3233

15 HBB 209116_x_at hemoglobin, beta 5.4556

16 HP /// HPR 208470_s_at haptoglobin /// haptoglobin-related protein 8.6784

206697_s_at 7.9905

17 IGF1 209541_at insulin-like growth factor 1 (somatomedin C) 6.1854

18 IGFBP2 202718_at insulin-like growth factor binding 5.4903

protein 2, 36 kDa

19 IGH@ /// IGHA1 /// 217022_s_at immunoglobulin heavy locus /// immunoglobulin 6.4910

IGHA2 /// heavy constant alpha 1 /// immunoglobulin

IGHV3OR16-13 /// heavy constant alpha 2 (A2m marker) ///

LOC100126583 immunoglobulin heavy variable 3/OR16-13

(non-functional) /// hypothetical LOC100126583

20 IGH@ /// IGHG1 /// 211430_s_at immunoglobulin heavy locus /// 6.2667

IGHG2 /// IGHM /// immunoglobulin heavy constant gamma 1

IGHV4-31 (G1m marker) /// immunoglobulin heavy

constant gamma 2 (G2m marker) ///

immunoglobulin heavy constant mu ///

immunoglobulin heavy variable 4–31

21 IGL@ 214677_x_at immunoglobulin lambda locus 6.3976

209138_x_at 6.2909

23 JUP /// KRT19 201650_at junction plakoglobin /// keratin 19 7.8226

LAMB1 211651_s_at laminin, beta 1 5.0672

201505_at 6.4921

24 LBH 221011_s_at imb bud and heart development homolog 5.5211

New Features in Permanent Atrial Fibrillation
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of 29 individual DEGs were found to have an AUC of more than

0.7 (Table S1). Among the remaining 19 DEGs, IGF1 (NO.17),

MYL2 (No. 31), PCK1 (No. 33) and PRKACA (No. 39) were

involved in the pmAF – related PPAR signaling pathways, focal

adhesion and dilated cardiomyopathy. When PCK1 was com-

bined with other four DEGs involved in the PPAR pathway, the

AUC was more than 0.7 (AUC = 0.926, P = 0). Similarly, two

AUCs for the combinations of DEGs respectively involved in focal

adhesion and dilated cardiomyopathy pathways are 0.826

(P = 0.004) and 0.774 (P = 0.017). The combination of other 15

individual DEGs was also found to have an AUC of more than 0.7

(AUC = 1, P = 0).

As have discussed above, different combinations among 51

DEG according to their connection relationships in pmAF samples

showed great discrimination power of classifying normal and

pmAF samples. This demonstrated that the identified DEGs are

reliable and the threshold of identifying DEGs is reasonable.

Table 2. Cont.

No. Gene symbol ID_REF Gene Title Score

(mouse)

25 LOC100133662 /// 201909_at hypothetical protein LOC100133662 /// 26.9535

RPS4Y1 ribosomal protein S4, Y-linked 1

26 LPL 203549_s_at lipoprotein lipase 6.3296

203548_s_at 6.1435

27 MEST 202016_at mesoderm specific transcript homolog (mouse) 5.5929

28 MMD 203414_at monocyte to macrophage 5.4544

differentiation-associated

29 MSLN 204885_s_at mesothelin 5.5812

30 MXRA5 209596_at matrix-remodelling associated 5 5.3933

31 MYL2 209742_s_at myosin, light chain 2, regulatory, cardiac, slow 5.8398

32 NPR3 219789_at natriuretic peptide receptor C/guanylate cyclase 25.9588

C (atrionatriuretic peptide receptor C)

33 PCK1 208383_s_at phosphoenolpyruvate carboxykinase 1 (soluble) 5.7877

34 PFKFB3 202464_s_at 6-phosphofructo-2-kinase/fructose-2,6-biphosph 6.0757

atase 3

35 PLA2G2A 203649_s_at phospholipase A2, group IIA (platelets, synovia 6.9397

l fluid)

36 PLIN 205913_at perilipin 10.0271

37 POMZP3 /// ZP3 204148_s_at POM (POM121 homolog, rat) and ZP3 fusion /// 5.0854

zona pellucida glycoprotein 3 (sperm receptor)

38 PRG4 206007_at proteoglycan 4 6.4669

39 PRKACA 216234_s_at protein kinase, cAMP-dependent, catalytic, 25.7289

alpha

40 PSD3 203354_s_at pleckstrin and Sec7 domain containing 3 25.4524

41 RBP4 219140_s_at retinol binding protein 4, plasma 10.2064

42 RGS1 216834_at regulator of G-protein signaling 1 8.3498

43 SFRP1 202037_s_at secreted frizzled-related protein 1 7.4615

44 SGK1 201739_at serum/glucocorticoid regulated kinase 1 6.3130

45 SLC16A7 207057_at solute carrier family 16, member 7 25.0912

(monocarboxylic acid transporter 2)

46 SLPI 203021_at secretory leukocyte peptidase inhibitor 9.6451

47 SPP1 209875_s_at secreted phosphoprotein 1 9.1800

48 SULF1 212353_at sulfatase 1 6.0712

212354_at 5.7653

49 TF 203400_s_at transferrin 10.0283

214063_s_at 6.0445

50 UPK3B 206658_at uroplakin 3B 6.7799

51 XIST 221728_x_at X (inactive)-specific transcript (non-protein 8.1499

214218_s_at coding) 6.1087

doi:10.1371/journal.pone.0076166.t002
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Discussion

The enrichment analysis of identified DEGs
The results for the enrichment analysis of biological process and

cellular component on Gene Ontology (GO) and the diseases on

Genetic Association Database (GAD) are respectively shown in

Table S3, S4 and S5. The existing experimental studies showed

that the etiological factors inducing AF mainly include cardiac

muscle or organ [1,11], cardiovascular [2], inflammation [12,13],

proliferation or differentiation [14], fiber/fibrosis [15,16], exter-

nal/hormone stimulation [17,18], extracellular region/matrix

[19,20] and metabolism [5]. 32 of 51 DEGs are included in the

statistically enriched GO terms of biological processes, in which 11

are relevant to the cardiac muscle, muscle cell or muscle organ,

such as BMP10, RBP4 and MYL2 and other seven DEGs are

related to the inflammation, for instance, ADIPOQ, FABP4 and

C3; 38 of 51 DEGs are included in the statistically enriched GO

terms of cellular component, in which 24 DEGs are located in

extracellular region or extracellular matrix (ECM) at the levels of

subcellular structures and macromolecular complexes, such as

ADIPOQ, BMP10 and IGF1, while others are located in

sarcomere, myofibril, contractile fiber and adherens junction; 22

of 51 DEGs are included in the statistically enriched GAD terms of

disease, most of which are associated with metabolism and

cardiovascular diseases. For example, the ADIPOQ, AMY1A,

CFB, HP and HBB are associated with the metabolic diseases,

while the FBP4, HP, LPL and MYL2 are related to the

cardiovascular diseases.

In order to further illustrate the reliability of identified DEGs,

we established the association between the AF-related etiological

factors and all the identified DEGs. We firstly connected the

factors and the ‘‘terms’’ according to the biological meaning of

each term and then established the relationships between the

identified DEGs and the etiological factors via the terms in the

enrichment analysis results. The 51 DEGs and their association

with the AF - related etiological factors are shown in Table S6.

The results showed that 37 of 51 DEGs are closely related to the

etiological factors inducing AF and so our results have high

reliability. Since the pathophysiological mechanisms of AF have

not completely been explained, the known factors causing pmAF

are not comprehensive. Thus, those genes, such as DIRAS3,

HBA1/HBA2, IGH@/IGHA1/IGHA2/IGHV3OR16-13/

LOC100126583, MMD, PRKACA and SLC16A7, which do

not correlated with any a known etiological factor of AF, may

provide new insights for understanding pathophysiological mech-

anisms of pmAF.

Analysis of association between the predicted pathways
and pmAF

There are respectively 5, 4, and 3 DEGs in the PPAR, focal

adhesion and dilated cardiomyopathy signaling pathways (Table 3).

Our previous analysis illustrated that these DEGs are closely

associated with pmAF. The abnormal expressions of the DEGs in

three predicted signaling pathways are probably one of the reasons

that these signaling pathways promote the pmAF progression.

Further, using gene expression data in U133A, we analyzed the

connections among the DEGs involved in each predicted pathway

in AF patients and controls respectively [7]. The connection

relationships among five DEGs involved in the PPAR signaling

pathway are shown in Figure 2. We found that the connections

between ADIPOQ and FABP45 and between ADIPOQ and LPL

disappear in pmAF patients (Figure 2(A)), while there are strong

pairwise connections among ADIPOQ, FABP4, LPL and PLIN in

the controls (Figure 2(B)). The ACK1 is isolated in both cases. The

similar results are obtained for the focal adhesion and dilated

cardiomyopathy pathways (the data are not given). For instance, in

the focal adhesion pathway, the MYL2 and SPP1 interacted in the

control (CC = 0.86), but they were not correlated with each other

in the pmAF patients (CC = 0.17); although all of the connections

among the DEGs in the dilated cardiomyopathy pathway were

weak correlation in both pmAF patients and controls, there are

great difference between the corresponding CCs in both cases.

Thus, we inferred that the alterations of connections among the

DEGs in three pathways may be another cause that these signaling

pathways promote pmAF.

In addition, some existing researches indirectly supported our

prediction. For the PPAR signaling pathway, [21] and [22]

illustrated that the peroxisome proliferator-activated receptors

(PPARs) are lipid-activated transcription factors that regulate lipid

and lipoprotein metabolism, glucose homeostasis, inflammation

and cardiovascular system; The PPARs are a family of three

nuclear hormone receptors, PPARa, -b/d, and –c, in which the

PPARc activator pioglitazone can attenuate congestive heart

failure-induced atrial structural remodeling and AF promotion,

with effects similar to those of candesartan [15]. The focal

adhesions are large multi-protein assemblies that form at the basal

surface of cells on planar dishes, and that mediate cell signaling,

force transduction and adhesion to the substratum [23]. The

modulation of focal adhesion assembly/disassembly in response to

mechanical load may be related to a primary role for focal

adhesion assembly in myofibrillogenesis [24]. Like their costameric

counterparts in vivo, the cardiomyocyte focal adhesions contain

vinculin and other cytoskeletal proteins that form a dense adhesion

plaque at sites of close approximation of the sarcolemma to the

ECM. The increase in cardiomyocyte ECM deposition results in

abnormal conduction through the atria, thus creating a substrate

for atrial fibrillation [25]. The Dilated cardiomyopathy (DCM), a

genetically heterogeneous disorder, causes heart failure and

rhythm disturbances. The dilated cardiomyopathy was typically

preceded by atrial fibrillation, sinus node dysfunction, and

conduction block [26]. Remodeling occurs in both ventricle and

atrium in dilated cardiomyopathy. Thus, the dilated cardiomyop-

athy might cause pmAF by the alteration of atrial ECM

components during remodeling [20].

Comparison between the APCA and other related
methods

The study of Censi, et al. [6] illustrated the effectiveness and

feasibility of PCA method in finding disease –related biological

features. APCA is an improved PCA and both have same

theoretical basis. Therefore we first compare APCA with PCA.

Figure 3 shows the first 10 PCs extracted by APCA and PCA

respectively. Their first PCs respectively account for 99.61% and

98.42%. In minor PCs, the second PC of APCA is much larger

than the third PCs onward, while the second PC of PCA is

comparable with the third to the fifth PCs. Our simulation showed

that PCA is undesirable or has drawbacks for the data analysis

Table 3. The predicted pmAF – related signaling pathways.

No. Pathway name The involved DEG P-value

1 PPAR signaling pathway ADIPOQ, FABP4, LPL, PLIN, PCK1 5.0E-5

2 Focal adhesion IGF1, LAMB1, MYL2, SPP1 2.3E-2

3 Dilated cardiomyopathy IGF1, MYL2, PRKACA 3.3E-2

doi:10.1371/journal.pone.0076166.t003
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with different numbers of samples in the different classes because

PCA uses the number of the samples to weight the class

conditional covariance matrix in constructing the total scatter

matrix. As such, the class with large number of samples will

dominate the results of the principle components of PCA while the

information of the class with small number of samples cannot be

well shown in its principal components. Now the APCA takes

a = 0.3 and so the larger weight ((1-a) = 0.7 comparing to 0.345

(10/29) of PCA) is used for the class of pmAF. Thus, information

of the class of pmAF is emphasized in APCA (0.7.0.5) while it is

deemphasized in PCA (0.345,0.5). Furthermore, with b = 20 (it is

significantly larger than b = 1 in PCA), APCA forces the largest PC

to capture the difference of the class means and hence clearly

separates the information about the difference of the class means

from the information about the within-class variations into

different principal components. PCA with b = 1 makes these two

different types of information mixed in various PCs. Thus, the first

two PCs of APCA have higher discriminating power of classifying

normal and pmAF samples than that of PCA since APCA

considers the unbalanced sample numbers.

Numerous feature selection methods have been applied to the

identification of DEGs on microarray, including Fold change,

Welch t-statistic, SAM (Significance Analysis of Microarray), etc.

[27]. The feature selection methods separately identify each DEG

that has significant difference in statistics and the number of

identified DEGs is usually very large, while APCA identify DEGs

whose expressions are correlated. Since the AF signature is

activated by a general modulation of the whole genome but a

single gene, APCA is able to better characterize different

pathophysiological aspects of AF. Typically, the number of

samples is limited by the availability of sufficient patients or cost

and the noise is inevitable in a microarray study. The number of

samples and noise are significant challenge to any feature selection

approaches [27], while APCA is more robust to both factors [28].

For a microarray data with unbalanced samples, APCA is able to

allocate larger weight to the group with fewer sample number for

reducing the influence of imbalance on the final results. Therefore

APCA can produce more reliable results than other methods that

do not consider the problem of unbalanced sample number when

processing U133A dataset, which is a typical microarray data with

unbalanced samples.

Comparing with the existing results
By PCA, Censi, et al. identified 50 pmAF - related DEGs from

the same data set [6]. APCA and PCA’ mechanisms of weighting

two classes of samples (pmAF and control) are very different so

that the scores of same a gene generated by APCA and PCA are

very different. Therefore, APCA and PCA identify different DEG

lists that have very low overlap. This is the main reason why only 6

genes are same between two DEG lists identified by our and Censi,

et al.’s methods.

Our enrichment analysis about biological process and cellular

component on GO for 50 DEGs also shows the majority of them

(27 DEGs, while ours is 37 DEGs) are individually related to the

etiological factors inducing AF. Using 50 DEGs extracted by

Censi, et al., we do not find any a gene is included in the

statistically enriched GAD terms of disease on GAD (we have 22

DEGs), and only one statistically enriched pathway named focal

adhesion is found on KOBAS, in which genes JUN, PIK3R1,

TNC and THBS4 are involved. This illustrates that the correlation

in biological functions among our 51 DEGs is higher than that of

Figure 2. The connection relationships among 5 DEGs in the PPAR signaling pathway. A. The connection relationships in pmAF. B. The
connection relationships in controls. The threshold of CC is 0.9.
doi:10.1371/journal.pone.0076166.g002

Figure 3. The first 10 PCs extracted by APCA and PCA [6].
doi:10.1371/journal.pone.0076166.g003
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50 DEGs. Therefore, there are more genes and combinational

works of multiple genes in our 51 DEGs to be associated with

occurrence and progress of pmAF. APCA is a more appropriate

method to microarray data that have unbalanced samples.

Finally, it is worthy explaining that we do not analyze the

U133B data set because too many genes were not annotated on

this chip, which may result in wrong interpretation to the final

results. The pathophysiology of pmAF is extremely complex. In

our future work, we shall validate the suggested pmAF-related

DEGs in experiments and integrate multiple types of data (such as

gene sequence, RNA and miRNA expression profiles, protein-

protein interactions) to build functional networks promoting

pmAF for more comprehensive understanding of pmAF patho-

physiology.

Conclusion

This work proposes a novel method to identify the DEGs from

microarray data with unbalanced sample numbers. 51 DEGs

associated with pmAF are identified, in which 42 DEGs are

different from the existing related results. The PPAR, focal

adhesions and dilated cardiomyopathy signaling pathways are

predicted to be associated with pmAF based on all of the identified

DEGs. This work provides some new insights into biological

features of pmAF and has also the potentially important

implications for improved understanding of the molecular

mechanisms of pmAF.
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