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BRIEF REVIEW

Calciprotein Particles
Balancing Mineral Homeostasis and Vascular Pathology

Anton G. Kutikhin,* Lian Feenstra ,* Alexander E. Kostyunin, Arseniy E. Yuzhalin, Jan-Luuk Hillebrands, Guido Krenning

ABSTRACT: Hypercalcemia and hyperphosphatemia associate with an elevated risk of cardiovascular events, yet the pathophysiological 
basis of this association is unclear. Disturbed mineral homeostasis and the associated hypercalcemia and hyperphosphatemia 
may result in the formation of circulating calciprotein particles (CPPs) that aggregate the excessive calcium and phosphate ions. 
If not counteracted, the initially formed harmless amorphous spherical complexes (primary CPPs) may mature into damaging 
crystalline complexes (secondary CPPs). Secondary CPPs are internalized by vascular cells, causing a massive influx of calcium 
ions into the cytosol, leading to a proinflammatory response, cellular dysfunction, and cell death. Although the pathophysiological 
effects induced by CPPs in vascular cells receive increasing attention, a complete picture of how these particles contribute to 
the development of atherosclerosis and vascular calcification remains elusive. We here discuss existing knowledge on CPP 
formation and function in atherosclerosis and vascular calcification, techniques for investigating CPPs, and models currently 
applied to assess CPP-induced cardiovascular pathogenesis. Lastly, we evaluate the potential diagnostic value of serum CPP 
measurements and the therapeutic potential of anti-CPP therapies currently under development.

GRAPHIC ABSTRACT: A graphic abstract is available for this article.
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Calciprotein particles (CPPs) are blood-borne circu-
lating particles formed of a combination of calcium 
phosphate and protein.1,2 Their clinical importance 

stems from the observation that circulating CPP levels are 
elevated in patients with chronic kidney disease3,4 where 
vascular calcification develops earlier compared to healthy 
subjects.5,6 Indeed, increased circulating CPP levels asso-
ciate with arterial stiffness4 and the development and pro-
gression of calcific uremic arteriopathy,3 atherosclerosis,7 
and vascular calcification.8 Moreover, the propensity of 
serum to form CPPs is associated with the occurrence of 
cardiovascular events and mortality.9–15 Albeit the patho-
physiological effects of CPPs receive increasing attention, 
mechanistic insight into how these particles contrib-
ute to the development of atherosclerosis and vascular 

calcification remains elusive. In this review, we discuss 
existing knowledge on CPP formation and function in ath-
erosclerosis and vascular calcification, the techniques to 
investigate CPPs, and models currently applied to assess 
CPP-induced cardiovascular pathogenesis.

CALCIUM AND PHOSPHATE 
HOMEOSTASIS AND THE GENERATION 
OF CPPS
Serum calcium and phosphate levels are tightly regulated 
in the human body. Calcium and phosphate metabolism 
includes their intestinal absorption, deposition and resorp-
tion from the bone, and renal reabsorption, regulated by 
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calciotropic and phosphotropic factors (reviewed in Ren-
kema et al,16 Peacock,17 Peacock,18 Blaine et al19). Mecha-
nisms maintaining calcium and phosphate homeostasis 
are redundant and interconnected,16 and their dysregula-
tion may result in hypercalcemia and hyperphosphatemia 
as well as extraskeletal calcifications, including vascular 
calcifications.17,18

A network of endogenous inhibitors, with distinct 
mechanisms of action, prevents and inhibits the forma-
tion of extraskeletal calcifications.20 First, the prevention 
of bone resorption, the decrease in calcium and phos-
phate reabsorption by the kidneys, and the inhibition of 
calcium phosphate crystal growth all inhibit extraskeletal 
calcification. Osteoprotegerin is a decoy RANKL (recep-
tor for the receptor activator of NFκB [nuclear factor κB] 
ligand)21 precluding osteoclastic differentiation, activation, 
and bone resorption.22,23 Osteopontin inhibits osteoclas-
tic differentiation and bone resorption, but its vascular 
expression promotes mineral resorption via unknown 
mechanisms.24–26 Klotho is a coreceptor for fibroblast 
growth factor 23 that abates phosphate reabsorption 
in kidney proximal tubules and biosynthesis of calcitriol, 
thereby reducing renal tubular calcium reabsorption 
and intestinal calcium and phosphate absorption.27 

Furthermore, inorganic pyrophosphate hinders the nucle-
ation and crystallization of amorphous calcium and inhib-
its the growth of mature hydroxyapatite crystals.20

Second, circulating calcium scavengers buffer the 
amount of free calcium available for extraskeletal calcifi-
cation. Albumin binds ionized calcium (Ca2+) via its nega-
tively charged amino acids distributed on the surface of the 
tertiary protein structure, scavenging Ca2+ from the micro-
environment.1 Similarly, osteonectin scavenges Ca2+ via 
multiple negatively charged amino acids focused on specific 
domains, for example, EF-hand (helix-loop-helix) domain.28

Third, CPPs scavenge both free Ca2+ and phosphate 
(PO4

3−) ions and sequestering minerals available for 
extraskeletal calcification. CPPs are blood-borne spon-
geous carbonate-hydroxyapatite particles, 50 to 500 nm 
in diameter29,30 that adsorb proteins from their environ-
ment.31,32 Fetuin-A, MGP (matrix γ-carboxylated gluta-
mate protein) and GRP (γ-carboxylated glutamate–rich 
protein) scavenge Ca2+ and PO4

3− ions from the serum 
and complex these into clusters of protein and amorphous 
calcium phosphate (Ca3[PO4]2).

1,2,33,34 Fetuin-A scav-
enges serum Ca2+ and PO4

3− via its negatively charged 
extended β-sheet within the amino-terminal cystatin-like 
D1 domain1,33 and stabilizes nascent clusters of calcium 
phosphate in its monomeric form33 (Figure 1A). MGP 
and GRP contain negatively charged γ-carboxylated 
glutamate residues34,35 which bind both Ca2+ and cal-
cium-containing compounds (Figure 1A).36–39 The inter-
action between fetuin-A and MGP integrates calcium 
and phosphate clusters into amorphous proteinaceous 
spherical particles called primary CPPs (Figure 1B). 
In physiology, these initially formed primary CPPs are 
generally considered harmless and facilitate clearance 
of calcium and phosphate. However, in conditions of 
hypercalcemia or hyperphosphatemia, primary CPPs ripe 
into harmful needle-shaped crystalline secondary CPPs 
containing calcium hydroxyapatite (Ca10[PO4]6[OH]2) by 
a process called amorphous-to-crystalline transition31,40 

Nonstandard Abbreviations and Acronyms

BMP bone morphogenic protein
Ca2+ ionized calcium
CaSR calcium-sensing receptor
CKD chronic kidney disease
CMVs calcifying microvesicles
CPPs calciprotein particles
ECs endothelial cells
eNOS endothelial nitric oxide synthase
ESRD end-stage renal disease
GRP γ-carboxylated glutamate–rich protein
HAP hydroxyapatite
IL interleukin
MGP matrix γ-carboxylated glutamate protein
MSR macrophage scavenge receptor
MSX  homeobox transcription factor muscle 

segment homeobox
NF-κB nuclear factor kappa B
RANKL  receptor activator of nuclear factor κB 

ligand
RUNX runt-related transcription factor
SOX sex-determining region Y-box
TACT trial to assess chelation therapy
TLR toll-like receptor
TNF tumor necrosis factor
VSMCs vascular smooth muscle cells

Highlights

• This review discusses the contribution of calcipro-
tein particles to the pathogenesis of atherosclerosis 
and vascular calcifications. The important deter-
minants of calciprotein particle formation and the 
pathogenic processes wherein calciprotein particles 
are involved are highlighted.

• Calciprotein particles are internalized by vascular 
cells, causing a massive influx of calcium ions into 
the cytosol, leading to a proinflammatory response, 
cellular dysfunction, and cell death.

• Calciprotein particles are a modifiable risk factor for 
the development of cardiovascular events.

• Pioneering anti-calciprotein particle therapies 
reduce the risk of cardiovascular events.
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Figure 1. Calciprotein particle (CPP) formation and pathophysiological mechanisms.
In the blood, Ca2+ and PO43− form complexes of calcium phosphate that can be scavenged by fetuin-A via the β-sheet of the amino-terminal 
cystatin-like D1 domain, which contains multiple negatively charged amino acids. MGP (matrix γ-carboxylated glutamate protein) and GRP 
(γ-carboxylated glutamate–rich protein) scavenge calcium phosphate via their negatively charged amino acids in the γ-carboxylated glutamate 
residues. Additionally, MGP and GRP scavenge PO43− via the phosphorylation of serine residues (A). The interaction between fetuin-A and 
MGP integrates calcium phosphate into amorphous spherical particles named primary CPP (B). These primary CPP may ripe into highly 
crystalline CPP (secondary CPP) under conditions of hypercalcemia and hyperphosphatemia (C). (Continued )



BR
IE

F 
RE

VI
EW

 - 
VB

Kutikhin et al Calciprotein Particles in Vascular Pathology

1610  May 2021 Arterioscler Thromb Vasc Biol. 2021;41:1607–1624. DOI: 10.1161/ATVBAHA.120.315697

(Figure 1C). Serum fetuin-A levels inversely associate 
with secondary CPP formation,13,41 implying that fetuin-A 
may act as an inhibitor of amorphous-to-crystalline tran-
sition.31 The key determinants of amorphous-to-crystal-
line transition need further investigation.

MGP, GRP, and fetuin-A are essential to calcium 
and phosphate homeostasis as mice lacking either pro-
tein spontaneously develop extraskeletal calcifications 
in soft tissues. MGP- and GRP-deficient mice develop 
medial arterial calcifications34,42,43 and may prematurely 
die from blood vessel rupture.34 Fetuin-A–deficient mice 
develop numerous calcified thrombi in the microvascula-
ture44,45 and intimal arterial calcifications on atheroscle-
rosis-prone genetic backgrounds.46 Exogenous fetuin-A 
supplementation inhibits the development of calcified 
thrombi in fetuin-A–deficient mice, confirming its rele-
vance to vasculopathy.44 Expectedly, serum Ca2+, PO4

3−, 
low fetuin-A, and high CPP levels all associate with the 
development of vascular pathology.47–49

Hereinafter, it must be noted that proteinaceous 
CPPs should be clearly distinguished from inorganic 
calcium phosphate crystals, although an identical min-
eral composition of these entities may evoke similar 
downstream events.

CPPS IN CARDIOVASCULAR 
PATHOPHYSIOLOGY
Internalization, Cell Death and Proinflammatory 
Signaling
CPPs exert considerable cytotoxic effects on mul-
tiple vascular and valvular cell types, including vascular 
endothelial cells (ECs),32 vascular smooth muscle cells 
(VSMCs),50 adventitial fibroblasts,51 valve interstitial cells, 
and valvular ECs.52

Internalization of CPPs is an active process that may 
occur via clathrin-mediated endocytosis, involving MSR 
(macrophage scavenge receptor) 1 scavenger recep-
tors and actin polymerization53–55(Figure 1D). CPP shape 
and crystallinity greatly impact internalization,54 and dif-
ferent cell types have distinct internalization efficacies. 
Macrophages preferentially internalize secondary CPPs, 
whereas ECs preferentially internalize primary CPPs.54 
The molecular basis behind these distinct internalization 
patterns is currently unknown but may reflect distinct 

receptors for primary and secondary CPPs. Indeed, 
knockdown of the MSR1 gene or blockade of the MSR1 
receptor in macrophages diminishes the internalization 
of secondary CPPs without affecting the internalization 
of primary CPPs.53,54 Furthermore, the CaSR (calcium-
sensing receptor) is expressed on a variety of vascular 
cells, including ECs, smooth muscle cells, and mono-
cytes56,57 and offers an alternative route for CPP inter-
nalization. Blood monocytes internalize secondary CPPs 
via the CaSR in a Ca2+ concentration-dependent manner, 
but independently of PO4

3−.56 Of note, the internalization 
of inorganic calcium phosphate crystals is also accom-
plished by clatherin-mediated endocytosis and macropi-
nocytosis,58 suggesting that CPPs and calcium phosphate 
crystals use similar internalization routes (Figure 1D).

Cytochalasin D, chlorpromazine, and polyinosinic acid 
lower CPP internalization rates regardless of their physi-
cal or chemical properties, indicating that although dif-
ferent surface receptors are responsible for the CPP 
binding, the downstream mechanism of internalization 
is similar.53,54 Nevertheless, it should be noted that the 
mechanisms of CPP internalization have received limited 
attention to date and need further investigation and inde-
pendent confirmation.

Inorganic calcium phosphate crystals induce cell death 
via Ca2+-dependent mitochondrial outer membrane per-
meabilization.59 Controversy exists as to the exact mecha-
nism of the cytosolic calcium influx; some experimental 
results indicate mild lysosome membrane permeabiliza-
tion59,60; other studies report severe lysosomal rupture due 
to the osmotic difference between the crystal-carrying 
lysosomes and the cytosol.61 CPPs also induce cell death 
in a variety of vascular cells, albeit to a lesser extent,32,62,63 
and it is tempting to speculate that CPP-induced cell 
death occurs via similar mechanisms. Of note, the incorpo-
ration of fetuin-A into calcium phosphate crystals—effec-
tively generating secondary CPPs—dose-dependently 
decreases cytotoxicity by limiting particle-induced intra-
cellular Ca2+ elevations.63 The exact mechanism by which 
CPPs induce cell death remains unclear and may differ 
between primary and secondary CPPs, as these have dis-
tinct crystallinity and therefore solubility in lysosomes.54 
Nonetheless, cleavage of caspase-3 and caspase-9 fol-
lowing CPP internalization by vascular cells implies a cen-
tral role for intrinsic apoptosis (Figure 1D).32,64

CPPs induce expression and secretion of proinflam-
matory cytokines, including IL (interleukin)-1β, IL-6, IL-8, 

Figure 1 Continued. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) can internalize CPP via receptor-mediated 
pinocytosis. In ECs, CPP internalization induces a rise in intracellular Ca2+ level, which results in the inflammatory activation of the ECs, 
characterized by increased transcellular permeability, oxidative stress, and inflammatory cytokine production (D). In VSMCs, CPP internalization 
results in a rise in intracellular Ca2+ and PO43− levels that evoke osteochondrogenic dedifferentiation via various mechanisms including 
inflammatory signaling and oxidative stress. An important molecular consequence of osteochondrogenic dedifferentiation of VSMCs is the 
production and excretion of calcifying microvesicles, which facilitate vascular calcification (E). α-SMA indicates alpha smooth muscle actin; 
ALP, alkaline phosphatase; CaSR, calcium-sensing receptor; CNN, calponin; ER, endoplasmatic reticulum; HAP, hydroxyapatite; IL, interleukin; 
MSR, macrophage scavenge receptor; MSX, homeobox transcription factor muscle segment homeobox; NF, nuclear factor kappa B; OPN, 
osteopontin; Pit, phosphate transporter; ROS, reactive oxygen species; Runx, runt-related transcription factor; SM-MHC, smooth muscle 
myosin heavy chain; SOX, sex-determining region Y-box; TLR, toll-like receptor; and TNF, tumor necrosis factor.
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and TNF (tumor necrosis factor)-α,50,54,55,65,66 potentially 
via the Ca2+-reactive oxygen species-NFκB-axis or 
inflammasome activation.56,67–69 Knockdown of the toll-
like receptor 4 (TLR4), RANKL, or CaSR gene abrogates 
secretion of TNF-α and IL-1β after CPP exposure, indi-
cating a paramount role for TLR4, RANKL, and CaSR 
in CPP-induced cytokine responses.54,56,65 Primary CPPs 
promote the release of IL-1β, whereas secondary CPPs 
induce TNF-α secretion,54 suggesting that primary and 
secondary CPP have distinct receptor binding affinities 
and evoke distinct signaling cascades. Nonetheless, 
inflammasome activation is required for CPP-induced 
cytokine expression, as blocking inflammasome assem-
bly abrogates overall cytokine expression (Figure 1D).70

Endothelial Dysfunction
The endothelium represents a barrier between circulat-
ing CPPs and underlying vascular tissue and are the first 
cell population exposed to CPPs upon their formation. 
Endothelial inflammatory activation and endothelial dys-
function are triggered by proatherogenic and proinflam-
matory signaling molecules and key in the development 
of atherosclerosis and vascular calcification (reviewed in 
Gimbrone and García-Cardeña,71 Davignon and Ganz,72 
Karwowski,73 and Boström74). Understanding how CPPs 
affect EC behavior75 may partly explain how CPPs con-
tribute to these and possibly other vascular pathologies.

Endothelial dysfunction is defined as the pathological 
state wherein vasoconstriction occurs as a consequence 
of an imbalance in the relative contribution of endothe-
lium-derived relaxing and contracting factors.76 It is well 
established that proatherogenic signaling molecules, 
including oxidized lipids, evoke endothelial dysfunction,72 
which may culminate in hypertensive responses.77,78 CPP 
number and serum calcification propensity both associ-
ate with blood pressure,9,10,79,80 implying CPP may also 
induce endothelial dysfunction. Moreover, endothelial 
dysfunction associates with serum fetuin-A levels81 and 
sevelamer—a calcium binder that reduces circulating 
CPPs82—preserves endothelial-dependent vasorelax-
ation and maintains endothelial integrity in mice with 
chronic kidney disease.83 One possible mechanism by 
which CPP may induce endothelial dysfunction is by 
reducing NO bioavailability, either by repressing the 
expression or activity of eNOS (endothelial NO syn-
thase),84,85 or by the ROS-mediated scavenging of NO.86 
Alternatively, CPPs might increase levels of asymmetrical 
dimethylarginine, an endogenous inhibitor of NO.87 The 
exact mechanism by which CPPs induce endothelial dys-
function is unknown and warrants further investigation.

Osteochondrogenic dedifferentiation
Vascular calcification is associated with the osteo-
chondrogenic dedifferentiation of VSMCs,88,89 induced 

by the proatherogenic and proinflammatory milieu.90–92 
The osteochondrogenic dedifferentiation of VSMCs is 
controlled by distinct transcription factors like Runx2 
(runt-related transcription factor 2), Osterix, MSX2 
(homeobox transcription factor muscle segment 
homeobox 2), and SOX9 (sex-determining region 
Y-box 9; reviewed in Durham et al93). Activation of the 
osteochondrogenic transcription machinery culminates 
in decreased expression of contractile proteins (eg, 
α-smooth muscle actin, smooth muscle myosin heavy 
chain, smoothelin, calponin) and increased expression of 
osteogenic markers (osteopontin, osteocalcin, alkaline 
phosphatase, and collagens).94

Another sequel of the osteochondrogenic dedif-
ferentiation of VSMCs is excessive production of core 
matrisome components (ie, collagens, proteoglycans, 
and glycoproteins) and extracellular matrix regulators 
(ie, matrix metalloproteinases and metalloproteases) that 
contribute to blood vessel remodeling.95,96 This further 
potentiates the osteochondrogenic dedifferentiation pro-
cess, aggravating impairment of vascular homeostasis 
and resulting in a stable proatherogenic microenviron-
ment and increased vascular stiffness.96

VSMC osteochondrogenic dedifferentiation may be 
induced by a plethora of factors, including oxidized lip-
ids97 and oxidative stress,98 inflammatory cytokines,99 
growth factors,100 hormones,101 vitamin D,102 and calcium 
phosphate crystals.103 Hence, the use of HMG-CoA 
(β-hydroxy β-methylglutaryl-CoA) reductase inhibitors—
more commonly known as statins—has received high 
interest as potential therapeutic in vascular calcification 
because of their lipid-lowering and anti-inflammatory 
effects.104 The inhibition of cholesterol synthesis dimin-
ishes cAMP-dependent matrix calcification by VSMC105 
and mitigates inflammation-induced artery calcification 
in rodents106 via mechanisms including the lowering of 
plasma Ca2+ levels,107 the suppression of autophagy,108 
the prevention of phosphate-induced VSMC apopto-
sis,109,110 and microarchitectural changes in calcium 
deposits.111 Yet, clinical studies on the use of statin ther-
apy in vascular calcification have been discordant: statins 
are reported to promote,112,113 suppress,114,115 or have no 
effect on vascular calcification.116 These discrepancies 
may be explained by the interaction between statins 
and BMP (bone morphogenic protein)-2 signaling in 
VSMC.117,118 The activation of BMP-2 signaling is a key 
event in vascular calcification as it evokes the expression 
of the osteochondrogenic transcription factors Runx2 
and Osterix.119,120 Indeed, the loss of the BMP-2 inhibi-
tory molecule Smad6 culminates in the aggravation of 
vascular calcification.92,121 Statins induce the expression 
of BMP-2117 and BMP receptor II118 in VSMC, which may 
change the calcification process. Indeed, statins promote 
macrocalcification of atherosclerotic plaques, irrespec-
tive of their plaque-regressing effects.122,123 As macro-
calcifications associate with plaque stability,124 these 
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observations may explain why statins decrease cardio-
vascular risk, despite increasing vascular calcification.124 
Thus, a deeper understanding of the mechanisms under-
lying vascular calcification is warranted and the clinical 
need for new treatments remains.

It is well accepted that CPPs promote calcification by 
VSMCs.2,50,62,125 However, controversy exists on the induc-
tion of osteochondrogenic dedifferentiation by CPPs. To 
illustrate, some studies report reduced osteochondro-
genic dedifferentiation when the formation of secondary 
CPPs is blocked125 or CPPs are removed from serum,2 
whereas others fail to identify osteochondrogenic gene 
signatures in the calcified lesions.45

Mechanistic insight on the interference of CPPs on 
the osteochondrogenic dedifferentiation of VSMC is 
limited, yet the elimination of CPPs from the serum of 
patients with end-stage renal disease (ESRD) reduces 
the serum capacity to induce osteochondrogenic 
dedifferentiation and abrogates its procalcific capac-
ity.2 Likewise, the addition of CPPs derived from ESRD 
patients to the serum of healthy blood donors promotes 
the osteochondrogenic dedifferentiation of VSMCs.2 
CPP-induced osteochondrogenic dedifferentiation 
appears restricted to secondary CPPs, as inhibiting 
amorphous-to-crystalline transition prevents VSMC 
calcification.125 In VSMCs, CPPs provoke an increase 
in cell-bound calcium50,126 and may induce osteochon-
drogenic differentiation via a multitude of mecha-
nisms (Figure 1E). First, CPPs induce the expression 
and secretion of TNFα by VSMC,50 which can trigger 
osteochondrogenic dedifferentiation via the MSX2127 
and AP-1 (activator protein 1)128 transcriptional regu-
lators augmenting the expression of Runx2. Second, 
CPPs may provoke the expression and secretion of 
BMP-2 by VSMC,103 which induces osteochondrogenic 
dedifferentiation via increased phosphate transport,129 
resulting in endoplasmic reticulum stress and the acti-
vation of osteogenic transcription factor XBP1 (x-box 
binding protein 1).130 Third, CPPs induce VSMC oxida-
tive stress50 which activates a multitude of downstream 
signaling cascades (eg, Akt [Ak-strain transforming], 
p38 MAPK [mitogen-activated protein kinase], and 
NFκB) enhancing the transcriptional activation of the 
osteochondrogenic differentiation program.131–134 Alter-
natively, CPPs promote the secretion of IL-6 from EC,64 
which may drive the osteochondrogenic differentiation 
of VSMC in a STAT3 (signal transducer and activator of 
transcription 3)-dependent manner.135

Calcifying Microvesicles
Vascular calcification occurs in the extracellular 
space136,137 and is initiated by the secretion of calci-
fying microvesicles (CMVs) from VSMC138 and plaque 
macrophages,139 which represent nucleation sites for 
matrix calcification.140 Cell-derived CMVs are distinct 

from blood-borne CPPs. CMVs and CPPs differ in ori-
gin, size, the presence of membranous proteins and 
lipids, and crystallinity (Table). CMVs are a heteroge-
neous group of secreted vesicles, including matrix 
vesicles and exosomes,157,164,165 which function to main-
tain mineral homeostasis. Under physiological condi-
tions, CMVs contain inhibitors of calcification, whereas 
under pathogenic conditions, promoters of calcification 
are present.158,159,166,167 Once released in the extracel-
lular space, CMV aggregate by annexin-dependent 
tethering158,160 and bind to matrix collagens161 to form 
nucleation sites for calcification, culminating in micro-
calcifications,140 which may fuse to form macrocalcifi-
cations within the vessel wall.168

CPPs may influence CMV-mediated calcification in 
several ways. First, CPPs induce apoptosis of VSMC59 
and apoptotic bodies form a nidus for calcification.169,170 
Second, CPPs cause a rise in cytoplasmic Ca2+,59 and high 
cytosolic Ca2+ levels in VSMC result in the formation of 
procalcifying CMVs158 (Figure 1E). Third, CPPs can be iso-
lated from calcified atherogenic lesions32 wherein CPPs 
may fuse to and integrate into the developing microcalci-
fications. How CPPs interfere with CMV-mediated calcifi-
cation is understudied and a complete picture is lacking. 
Nonetheless, serum calcification propensity and CPP 
maturity associate with calcified lesion size,8,171 suggest-
ing an interaction that deserves further evaluation.

Perivascular Adipocytes and Adventitial 
Fibroblasts
It is increasingly recognized that the perivascular adi-
pose tissue actively contributes to atherogenesis172,173 
and vascular calcification.174,175 The perivascular adi-
pose tissue, wherein perivascular adipocytes reside, 
is a highly metabolic tissue, which secretes a plethora 
of paracrine signaling molecules, including vasoactive 
and immunomodulatory factors.176–178 Proatherogenic 
actions of perivascular adipocytes include the secre-
tion of proinflammatory cytokines,179 the recruitment of 
inflammatory cells into the vessel wall,180 the induction of 
smooth muscle cell proliferation in the neointima,181 and 
the activation of adventitial fibroblasts,182 all facilitating 
atherogenesis. Moreover, inflammatory activation of the 
perivascular adipose tissue is associated with decreased 
plaque stability, vascular calcification, and an increased 
cardiovascular risk score.174

Adventitial fibroblasts also contribute to athero-
genesis183 and vascular calcification.184 Stimulated by 
atherogenic and proinflammatory signaling molecules, 
adventitial fibroblasts acquire a motile myofibroblas-
tic phenotype185,186 and migrate into the forming neo-
intima.187,188 Myofibroblast are professional extracellular 
matrix producing cells, that facilitate neointimal growth 
by the secretion of collagens and other matrix compo-
nents.189 Moreover, myofibroblasts secrete a variety of 
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proinflammatory cytokines,190 which enhance endothe-
lial dysfunction, inflammatory cell recruitment into the 
neointima,191–193 and smooth muscle cell proliferation.186 
Notably, vascular calcification may not only occur in 

the intima or media but also occurs in the adventitia,194 
where—under conditions of hypercalcemia and hyper-
phosphatemia—adventitial myofibroblasts actively con-
tribute to calcium deposition.19

Table. Characteristics of the Various Procalcifying Particles: CaP, CPPs, and CMVs

Particle Aliases

Origin  Organic profile Mineral profile   

Serum, 
Tissue, 
Protein N/S Size. nm Protein Lipid

Crystallin-
ity (A/C)

Mineral 
profile Biologic effect References

CaP Calcium pyrophos-
phate dihydrate 
microcrystals

? S 1–30 − − C HAP CPP induce inflammatory 
signaling in macrophages

70

 Hydroxyapatite crys-
tals, hydroxyapatite 
particles

? S 15–200 − − C HAP CaP crystals induce EC 
toxicity and activation, 
osteochondrogenic dedif-
ferentiation, and calcifi-
cation

52,58

 Nanoparticulate 
apatite, nanosized 
hydroxyapatite, 
calcium phosphate 
nanoparticles

? S 100–300 − − C cHAP, HAP CaP crystals induce 
VSMC toxicity

59–61

CPPs CPPs Serum N/S 30–250 FetA, Alb, 
ApoA, 
GRP, 
MGP

− A: CPP-I cHAP, HAP, 
Monetite

CPP induce inflammatory 
signaling, osteochondro-
genic dedifferentiation 
and calcification

1,2,41,49,50, 
55,56,125,126

C: CPP-II

 Calcium phosphate 
bions

Serum N/S 100–500 FetA, Alb, 
ApoA

− A: CPP-I cHAP, HAP, 
Calcite

Calcium phosphate bions 
induce EC toxicity and 
intimal hyperplasia

32,64

C: CPP-II

 Calcium phosphate 
(nano)particles

FetA S 30–200 FetA ? A: CPP-I HAP Calcium phosphate (nano)
particles induce VSMC 
toxicity, but to a lesser 
extent than CaP

31,63

C: CPP-II

 Calcium phosphate 
precipitates

Serum N ? FetA ? ? ? Calcium phosphate pre-
cipitates levels associate 
with kidney function and 
vascular calcification

141

 Calcifying nanopar-
ticles, calcified 
nanoparticles

Serum 
and  
tissue

S 20–1000 ? ? ? ? Calcifying nanoparticles 
induce vascular occlusion 
and calcification

62,142,143

 Fetuin-mineral com-
plexes

FetA S ? FetA, Alb, 
MGP

? ? ? Fetuin-mineral complex 
levels associate with 
osteoclast activity, bone 
resorption and vascular 
calcification

144–149

 Mineralo-organic 
nanoparticles, 
mineralo-protein 
nanoparticles

Serum S 50–350 FetA, Alb, 
ApoA

− A: CPP-I HAP Mineralo-organic nanopar-
ticles induce inflammatory 
signaling

40,66, 
150–154

C: CPP-II

 Nanobacteria Serum S 200–500 FetA ? C HAP Nanobacteria are CPP 
and induce calcification

51,155

 Protein-mineral 
complexes, protein-
mineral particles

FetA S 50–250 FetA, Alb, 
MGP

? A: CPP-I ? Protein-mineral complexes 
are endocytosed via SRA 
and induce inflammatory 
signaling

53,54,156

C: CPP-II

CMV Calcifying extra-
cellular vesicles, 
exosomes, Matrix 
vesicles

Cells 
(VSMC, 
Mph)

N 30–300 Annexins, 
CD9, 
CD63

Mem-
bra-
nous

A Ca3(PO4)2 CMV contain membra-
nous lipids and amor-
phous calcium phosphate 
and localize at sited of 
extracellular calcification

138–140, 
157–163

CPP: CPP-1: primary CPP; CPP-II: secondary CPP. ? indicates undetermined; −, negative; A, amorphous; Alb, albumin; C, crystalline; CaP, calcium phosphate crystal; 
cHAP, carbonate-hydroxyapatite (Ca10(PO4)3(CO3)3(OH)2); CMV, calcifying microvesicle; CPP, calciprotein particle; EC, endothelial cell; FetA, Fetuin-A; GRP, GLA-rich 
protein; HAP, hydroxyapatite (Ca10(PO4)6(OH)2); MGP, matrix γ-carboxylated glutamate protein; Mph, macrophage; N, natural origin; S, synthetic origin; SRA, scavenger 
receptor A; and VSMC, vascular smooth muscle cell.
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Thus, perivascular adipocytes and adventitial fibro-
blasts actively contribute to atherogenesis and calcifica-
tion. Hitherto, it is obscure if, and how CPPs might alter 
the behavior of these cells, and thus if CPPs mediate 
vascular pathogenesis via the perivascular adipose tis-
sue or adventitia is unknown.

Dynamics of CPPs In Vivo
Serum CPPs can be isolated from a variety of (pre)clini-
cal animal models32 and patient samples by (ultra)centrif-
ugation,49,141,144,145,150,195 allowing analysis of their quantity, 
morphology, constituents, and subsequent study of their 
pathogenicity in in vitro or in vivo models. Alternatively, 
CPP formation can be replicated in vitro by the super-
saturation of serum-supplemented culture medium with 
calcium salts and phosphates.32,151 Primary and second-
ary CPPs are, respectively, synthesized by moderate and 
severe calcium/phosphate supersaturation of the culture 
medium66,152 or short- and long-term incubation.54 Nota-
bly, plaque-derived and synthesized CPPs show morpho-
logical and chemical resemblance.32

Intravenous administration of CPPs into normolipid-
emic rats leads to aortic neointimal lesions in 30% to 
40% of rats.64 Such preatherosclerotic niches are char-
acterized by endothelial activation and the osteochon-
drogenic dedifferentiation of VSMCs, which produce 
abundant extracellular matrix,64 resembling that in human 
atherosclerotic plaque development.93,196 Combining 
CPP administration with balloon-induced vascular injury 
provokes development of intimal hyperplasia in 50% 
to 90% of animals,32,142,143 which vary in the presence 
of calcium phosphate deposits,32,64,142,143 suggesting a 
secondary hit (eg, dyslipidemia or a chronic low-grade 
inflammation) as prerequisite for vascular calcification. 
Intravenous CPP administration has to date only been 
performed in normolipidemic animals, and it remains 
unclear whether CPPs are involved in the transition of 
developing plaques to calcified plaques. Administration 
of CPPs into atherosclerosis-prone apoE-deficient or 
low-density lipoprotein receptor–deficient mice with pre-
established plaques could clearly answer this question 
and provide new insights into how CPPs affect athero-
sclerotic plaque calcification.

Despite the differences between the actions of pri-
mary and secondary CPPs in vitro, administration of 
either CPP type culminates in a similar outcome in vivo; 
that is, the prevalence of intimal hyperplasia and features 
of neointima formation by these 2 particle types is simi-
lar.32,64 It is tempting to speculate that the administered 
primary CPPs would mature into secondary CPPs in vivo, 
but evidence for this is lacking. Alternatively, the shape 
factor of toxicity of secondary CPPs may become negligi-
ble in vivo because of the adsorption of numerous serum 
proteins that smooth out the otherwise sharp particles.54 
In keeping with this hypothesis, mass spectrometry 

analysis documented a similar protein composition for 
primary and secondary CPPs derived from various bio-
fluids like serum and ascites, suggestive of an identical 
adsorption pattern.150

The ability to fluorescently label CPPs by tagging 
fetuin-A or albumin with fluorescent dyes or generat-
ing a fluorescent-fusion fetuin-A/albumin and subse-
quently incorporating it into synthesized CPPs allows for 
their pharmacokinetic and pharmacodynamic evaluation 
(eg, serum half-life, biodistribution, and clearance char-
acteristics) as well as their cellular localization at sites 
of vascular injury. Alternatively, fluorescent bisphospho-
nate labeling of calcium phosphate offers a similar strat-
egy to track CPPs in vivo. To illustrate, the intravenous 
administration of fluorescently labeled CPPs in healthy 
normolipidemic mice suggests that CPPs have a rela-
tively short serum half-life and are rapidly cleared by the 
liver and spleen.53,54 In mice deficient in the macrophage 
scavenger receptor class A/macrophage receptor with a 
collagenous structure, administered CPPs did not accu-
mulate in liver Kupffer cells or spleen macrophages, sug-
gesting that clearance of CPPs is largely dependent on 
macrophage uptake.53 Furthermore, in a mouse model 
of calcified atherosclerosis, fluorescently labeled CPPs 
accumulate in the vessel lumen and plaque area and 
colocalize to the endothelium and macrophages.53 No 
CPPs were found in the arterial wall, suggesting that 
CPPs did not associate with VSMCs. Noteworthy, how-
ever, is that the fluorescence intensity of CPPs critically 
depends on the maturity of the particles and the extent 
of crystallinity54 and may not provide a sufficiently strong 
signal for complete in vivo imaging.

Although investigations on the in vivo effects of CPPs 
on the vasculature are in their infancy, development of in 
vivo imaging tools to assess the dynamics of CPPs, their 
distribution, and detection of the cell types they associ-
ate with, will undoubtedly increase insight into the patho-
physiological role of CPPs in the cardiovascular system. 
Advances in CPP imaging enable investigation of key 
questions about the identity of cell types affected by 
CPPs in vivo or whether the detrimental effects of CPPs 
are limited to the cardiovascular system. These develop-
ments could culminate in the development of specific 
therapies targeting CPPs.

Clinical Relevance of CPPs: a Biomarker and 
Modifiable Risk Factor for Cardiovascular 
Pathology
The serum of patients with ESRD, coronary artery dis-
ease, or arterial hypertension has a greater propensity to 
CPP formation than serum from healthy blood donors.79 
Increased propensity to generate CPPs is associated with 
adverse cardiovascular outcomes (ie, all-cause and car-
diovascular death, myocardial infarction, and peripheral 
artery disease) in patients with predialysis chronic kidney 
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disease (CKD)9 and ESRD, including kidney transplant 
recipients.12,15 Moreover, the augmented propensity to form 
CPPs associates with the occurrence and progression of 
severe coronary artery calcifications and atherosclerotic 
cardiovascular events in patients with CKD stages 2 to 
4.14,171 These observations were partially verified by find-
ings of a recent study that patients with acute coronary 
syndrome have higher CPP serum levels than patients 
with stable angina (without predialysis CKD or ESRD) and 
serum CPP levels correlate with the total and lipid plaque 
volumes.7 Hence, serum CPP levels may be considered 
a surrogate marker of coronary atherosclerosis and coro-
nary artery calcification. Meta-analyses demonstrating a 
link between reduced serum fetuin-A and albumin and a 
higher risk of coronary artery disease, additionally testify to 
the potential importance of elevated calcification propen-
sity in the pathogenesis of atherosclerosis.197,198

A method to determine calcification propensity has 
been developed which may be used for diagnostic 
approaches; CPP formation in patient serum is induced 
by supersaturating the serum with calcium and phos-
phate and measuring the optical density after incuba-
tion (Figure 2A). Other methods to quantify CPPs in 
serum and biofluids include microplate-based dynamic 
light-scattering and electron or atomic force micros-
copy. Microplate-based dynamic light scattering is both 
a high-throughput and precise method for estimat-
ing the hydrodynamic radius of nanoparticles and can 
be modified to detect CPPs.8 Alternatively, electron or 
atomic force microscopy are low-throughput but demon-
strative methods for CPP visualization2,49 (Figure 2B). 
Alternatively, one-half maximal transition time has been 
established as a measure of primary-to-secondary CPP 
transition, and a prognostic biomarker in various patient 
cohorts (Figure 2C).9–15,79 Although this method provides 
a surrogate marker suggesting elevated CPP formation 
in disease, it remains unclear if all types of CPPs are 
equally detected, what their composition is, and whether 
the actual concentration of circulating CPPs is indeed 
elevated. Nonetheless, validation by independent groups 
of the association between a decreased one-half maxi-
mal transition time and the occurrence of pathology are 
appearing in literature.199,200

A recently introduced flow cytometry-based tech-
nique allows for direct quantification of CPPs in serum 
and other biofluids (Figure 2D), which may be translated 
into routine clinical diagnostics. In this protocol, CPP and 
membranous extracellular vesicles are separated from 
other cellular particulates by size-exclusion or ultracen-
trifugation and further characterized by a combination 
of a fluorescently labeled bisphosphonate (OsteoSense 
680EX) that labels mineral deposits and a green fluores-
cent membrane-intercalating dye (PKH67) that labels 
membranous structures. Using this technique, CPPs are 
detected as OsteoSense+/PKH67− events, whereas cal-
cifying extracellular vesicles appear as OsteoSense+/

PKH67+ events.7,162 Moreover, CPPs can be further dis-
criminated on basis of their light-scattering properties, 
allowing for the separate quantification of primary and 
secondary CPPs162 (Figure 2D).

The clinical significance of serum CPPs is high-
lighted by the recent TACT (Trial to Assess Chelation 
Therapy; https://www.clinicaltrials.gov; Unique identifier: 
NCT00044213). Serum CPPs can be routinely decal-
cified using EDTA disodium salt in vitro, and infusion 
of EDTA culminates in reduced cardiovascular risk in 
patients. In TACT, the EDTA treatment regimen was asso-
ciated with 1.22-fold lower risk of a primary composite end 
point (death from any cause, repeated myocardial infarc-
tion, stroke, coronary revascularization, or hospitalization 
for angina pectoris).201 Notably, in subgroups of patients 
with diabetes,202 and those having diabetes mellitus and 
peripheral artery disease—2 conditions whereby patients 
have elevated serum CPP levels—the reduction in risk 
scores was even greater (1.69- and 1.92-fold, respec-
tively).203 Although EDTA therapy is relatively safe,204 its 
limited bioavailability (≈5%) when taken orally205 limits its 
clinical use. Follow-up trials (TACT2 [Trial to Assess Che-
lation Therapy-2; https://www.clinicaltrials.gov; Unique 
identifier: NCT02733185] and TACT3a [Trial to Assess 
Chelation Therapy-3a; https://www.clinicaltrials.gov; 
Unique identifier: NCT03982693] trials) are ongoing, 
focused on the efficacy of chelation therapy specifically 
in diabetic patients with prior myocardial infarctions and 
individuals with diabetes and critical limb ischemia result-
ing from severe peripheral atherosclerosis, respectively. 
Besides chelation therapy, new clinical studies are start-
ing that specifically aim to reduce the serum calcifica-
tion propensity or the number of circulating CPPs.82,206,207 
Albeit their initial data indicates a successful reduction in 
CPP formation, their effects on long-term cardiovascular 
risk have yet to become apparent.

Future Perspectives and Therapeutic 
Implications for CPPs in Cardiovascular 
Pathology
The clinical relevance of elevated circulating CPP levels 
is illustrated by a significant correlation between an aug-
mented calcification propensity or increased number of 
circulating CPPs and a higher risk of adverse outcomes, 
including major cardiovascular events and mortality.9–14 
As CPPs represent a modifiable risk factor for cardiovas-
cular diseases, pioneering clinical trials aimed at reducing 
the level of circulating CPPs are ongoing.82,206,207 Despite 
current advances in CPP research, revealing their clinical 
relevance to cardiovascular morbidity and primary modes 
of action, many questions remain unanswered.

First, we propose that the methods for obtaining CPPs 
require standardization, as their current nomenclature 
(Table), isolation techniques, and synthesis methods are 
diverse. CPP extraction from biological fluids is currently 
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Figure 2. Methods to detect calciprotein particles (CPPs) in clinical samples.
Supersaturation of serum with calcium chloride (CaCl2) and sodium diphosphate (Na2HPO4) followed by incubation under culture conditions for 
24 h causes the formation of CPPs that can be measured by absorbance at 650 nm. In disease conditions wherein CPP levels are increased, 
the OD650 readings increase (A). Alternatively, CPPs can be pelleted by centrifugation and investigated by dynamic light scattering to assess 
particle size, electron and atomic force microscopy to assess morphology, or elemental analysis (EDX) to assess mineral constituent (B). 
Supersaturation of serum is also used to measure the one-half maximal transition time needed for amorphous-to-crystalline transition (T50). An 
increased serum propensity for secondary CPP formation is observed as a reduction in T50 (C). A novel flow cytometry-based technique allows 
for the direct quantification of CPP levels in serum. Here, serum precipitates are labeled with a combination of a fluorescent bisphosphonate 
(osteoSense) and a fluorescent membrane-intercalating dye (PKH67) and separated based on size, calcium phosphate content, and the 
presence of membranous lipids. CPPs are observed as OsteoSense+/PKH67− events that fluoresce dim compared to calcium phosphate 
crystal (CaP) crystals. CPPs are further characterized as primary- or secondary CPPs based on crystallinity (D). CMVs indicates calcifying 
microvesicles; ESRD, end-stage renal disease sample; HC, healthy control sample; MFI, mean fluorescence intensity; and OD, optical density.
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limited to the serum of etidronate-, vitamin D–treated, 
or uremic rats,141,144–148,156 with only few studies report-
ing the isolation of CPPs from human blood or tissue.2,32 
Moreover, the pathogenic capacity of CPPs may depend 
on the health of the serum donor. Although CPPs can be 
synthesized in vitro by combining serum, Ca2+, and PO4

3−, 
a systematic and detailed comparison of CPPs synthe-
sized using serum from cardiovascular patients and CPPs 
produced using serum from healthy human volunteers is 
lacking. We recommend performing in-depth character-
ization of CPPs’ physicochemical properties (eg, Ca2+, 
phosphate and protein content, particle size, and crystal-
linity) and comparing them to native CPPs isolated from 
patient sera, before using in vitro synthesized CPPs for 
mechanistic studies. Moreover, rather than the current 
multitude of protocols used to synthesize CPP in vitro, 
the research field would benefit from standardization.

Second, the current classification of CPPs into either 
primary (amorphous) or secondary (crystalline) particles 
may be oversimplified. CPPs can adsorb macromol-
ecules from the ambient fluid and undergo dissolution-
reprecipitation and ion exchange reactions.150,153,154,208 
This leads to formation of a variety of different particles, 
not limited to certain sets hitherto defined as primary or 
secondary CPPs. Moreover, the exact shape, crystallin-
ity, and chemical composition of CPPs within tissues are 
affected by several local factors including pH, amount, 
and relative proportion of available mineral ions,209 and 
the conformation of CPPs present in the vascular tissues 
they affect remains unclear. We strongly recommend 
comprehensive mineral and organic profiling as CPP 
effects, and their molecular mechanisms are defined 
by these physical and chemical features. This profiling 
would preferentially include the visualization of CPP size, 
structure, shape, crystallinity, and chemical composition 
combined with mass spectrometry approaches to deter-
mine the protein composition.

Third, it remains unclear whether particle formation 
under conditions of hyperphosphatemia is restricted to 
Ca2+ and whether alternative protein-mineral particles 
have pathophysiological properties like those of CPPs. 
Comparing the pathogenic effects of magnesium phos-
phate particles with the same size, shape, and organic 
profile as CPPs, we found that, unlike CPPs, these 
particles lack pathogenic capacity, suggesting that the 
pathogenic potential of CPPs is defined by its mineral 
component and possibly its crystallinity and not its pro-
teinaceous constituents.64 Moreover, administration of 
CPPs produced using pyrophosphate—a phosphate 
substitute that does not allow for hydroxyapatite crys-
tal formation—causes no pathogenic effects, suggesting 
that the specific crystals, and not the Ca2+ or phosphate, 
possess pathogenic capacity.210

Fourth, current understanding of the signaling mech-
anisms evoked by CPP exposure is inadequate. Valuable 
information on the signaling mechanisms underlying 

CPP-mediated pathogenesis has been obtained from 
in vitro experiments (discussed in this review), but the 
observation that CPPs induce massive cell death in vitro 
but not in vivo suggests that CPP may evoke different 
signaling events in vitro and in vivo and may explain why 
current methodologies have been unable to identify 
clear alterations in signaling pathways. This illustrates 
the need to develop in vitro systems that mimic patho-
physiology more closely. Furthermore, recent advances in 
high-throughput “-omics” approaches (RNA-sequencing,  
ribosome profiling, and mass spectrometry) will in the 
future provide a better insight into CPP-mediated sig-
naling in primary vascular cells, as the lack of such data 
currently inhibits our understanding of cell-specific 
effects of CPPs and their involvement in pathogenesis. 
We propose that using single-cell RNA-sequencing can 
separate the process of cell death and other signaling 
events after exposure of vascular cell populations to 
CPPs. This approach can be complemented by combin-
ing CPP exposure with established cardiovascular risk 
factors (hypoxia, oxidized low-density lipoprotein choles-
terol, advanced glycation end-products).

Regarding the in vivo studies reported to date, CPPs 
display different pathogenic behavior in animals and 
humans. In humans, elevated levels of CPPs have been 
primarily associated with increased vascular calcifica-
tion,3,9,149 whereas in rodents CPP administration is asso-
ciated with intimal hyperplasia and atherosclerosis64 and a 
highly variable frequency of vessel calcification.32,64,142,143 
It should, however, be noted that the animal models cur-
rently used for CPP administration are normolipidemic, 
without a renal phenotype. Performing further studies to 
investigate the ability of CPPs to induce or aggravate 
vascular calcification would best be conducted in animal 
models that are predisposed to vascular calcification, 
such as partially nephrectomized rodents, or animals with 
dyslipidemia or inherently disturbed mineral homeostasis.

From clinical perspective, the elevation of circulating 
CPPs levels in patients with acute coronary syndrome 
compared with those with stable angina suggest pos-
sible importance of this parameter to prognosticate 
ischemic heart disease. Circulating CPP levels may also 
have prognostic value in other patient cohorts, includ-
ing individuals with osteopenia/osteoporosis, primary 
hyperparathyroidism, or CKD, as these conditions are 
characterized by hypercalcemia and hyperphospha-
temia, and the concentration of CPPs in the blood is 
closely reflected by patients’ mineralization status. As 
such, investigations into circulating CPP levels may 
explain the relationship between elevated bone turn-
over and the increased risk of cardiovascular disorders 
observed in these patients. Also, noteworthy, however, 
is that current investigations have focused primarily on 
measurement of calcification propensity rather than 
on direct detection of CPPs in the blood. The number 
of circulating CPPs may better predict cardiovascular 
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outcomes in these patients and would be a valuable 
addition to measuring calcification propensity.

From a translational perspective, pioneering studies 
using chelation therapy have established that circulat-
ing CPPs indeed represent a modifiable risk factor for 
cardiovascular outcome, although generalized chelation 
therapy has its limitations. Future research should focus 
on identifying Ca2+ chelators with a superior pharmaco-
kinetic profile, or medicaments to facilitate the hepatic 
clearance of CPPs in patients at risk of developing car-
diovascular events. For instance, Mg2+ has been recently 
suggested as a promising new therapeutic intervention 
in the development of CPP-induced vascular calcifica-
tions, as it dose-dependently delays maturation from 
primary to secondary CPPs and prevents VSMC calci-
fication in vitro.125 Mg2+-supplementation prevents and 
reverses the development of vascular calcifications in 
mice,211 making it a promising therapeutic intervention 
for patients with increased CPP levels.212 Replacement 
of calcium carbonate with lanthanum carbonate low-
ers serum CPP levels in patients with ESRD,213 which 
may explain its beneficial effect on the attenuation of 
aortic calcification.214 A recent study proposed 4,6-di-
O-(methoxy-diethyleneglycol)-myo-inositol-1,2,3,5-tet-
rakis(phosphate)—an inositol phosphate analog—as an 
agent limiting primary-to-secondary CPP transition and 
preventing vascular calcification.215 These results sug-
gest avenues for future clinical trials of crystallization 
inhibitors specifically targeting the formation of harmful 
secondary CPPs, at least in high-risk patients with CKD.

CONCLUSIONS
CPPs may be proposed as a relatively novel potential 
culprit of vascular disease which can be particularly 
important in patients with a concomitant chronic kidney 
disease. Yet, exactly how CPPs influence vascular cells 
and cardiovascular pathology in vitro and vivo remains 
obscure. Upcoming research may uncover additional 
detrimental effects of CPPs, or pathways mediating the 
underlying pathophysiological mechanisms, whereas 
clinical investigations aim at direct identification of CPPs 
in the serum to evaluate their association with various 
cardiovascular pathologies. New insights into CPP-
induced cardiovascular pathology will certainly lead to 
improved therapeutic interventions and possibly benefit 
cardiovascular outcome.
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