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Abstract: A defining hallmark of tumor phenotypes is uncontrolled cell proliferation, while fermentative
glycolysis has long been considered as one of the major metabolic pathways that allows energy
production and provides intermediates for the anabolic growth of cancer cells. Although such a
vision has been crucial for the development of clinical imaging modalities, it has become now evident
that in contrast to prior beliefs, mitochondria play a key role in tumorigenesis. Recent findings
demonstrated that a full genetic disruption of the Warburg effect of aggressive cancers does not
suppress but instead reduces tumor growth. Tumor growth then relies exclusively on functional
mitochondria. Besides having fundamental bioenergetic functions, mitochondrial metabolism indeed
provides appropriate building blocks for tumor anabolism, controls redox balance, and coordinates
cell death. Hence, mitochondria represent promising targets for the development of novel anti-cancer
agents. Here, after revisiting the long-standing Warburg effect from a historic and dynamic perspective,
we review the role of mitochondria in cancer with particular attention to the cancer cell-intrinsic/extrinsic
mechanisms through which mitochondria influence all steps of tumorigenesis, and briefly discuss the
therapeutic potential of targeting mitochondrial metabolism for cancer therapy.

Keywords: tumor; metabolism; Warburg effect; oxidative phosphorylation (OXPHOS); mitochondria;
Krebs cycle; therapy

1. Introduction

These past decades have been marked by a growing number of studies dealing with cancer and
have led to a better overall understanding of this disease, in particular the fact that (1) cancer is not
a disease that could only originate from genetic and epigenetic modifications [1–4], and (2) tumor
cells do not exclusively depend on aerobic glycolysis to satisfy their bioenergetic and anabolic
demands [5–8]. Indeed, mitochondria have now been recognized as important mediators of cancer
behavior in all steps of tumorigenesis [9,10]. These long-standing misconceptions actually stem from
the “self/non-self” discrimination—which suggests that the immune system can only recognize foreign
entities [11,12]—and the so-called “Warburg effect”, referring to Otto Warburg, who described in 1927
an increased ability of tumors to uptake glucose [6,13–15]. Nevertheless, these correct, but incomplete
assumptions led to a wave of investigations that have revolutionized modern medicine, including
the rationale for the development of the [18F]-fluorodeoxyglucose-positron emission tomography
(FDG-PET) clinical imaging tool in the detection of tumor and metastatic foci [15,16].
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As will be detailed hereafter, Warburg’s seminal observation that tumor cells sustain aerobic
glycolysis, which corresponds to the fermentation of glucose into lactate when oxygen is present
(in contrast to the complete oxidation of glucose by mitochondria), gave prominence to the role of
mitochondria in cancer [14]. While the “Warburg effect” is an undeniable characteristic displayed
by a majority of tumor cells, Warburg himself suggested that the capacity of neoplastic cells to
sustain enhanced glycolytic rates would stem from primary mitochondrial defects [17], thus obscuring
the role of mitochondria in cancer for almost 80 years. However, in the mid-1990s, a renewed
interest in the relevance of mitochondria in cancer has attributed several pleiotropic roles during
tumorigenesis [9,10]. For example, mitochondrial outer membrane permeabilization (MOMP) has
been revealed as a critical step in the execution of regulated cell death (RCD) [18,19] and has led to the
identification that most cancer cells exhibit an increased resistance to RCD [1,3]. Considerable efforts
to identify and develop molecules that would efficiently target these mitochondrial control points have
thus been made as a strategy for chemo/radio-sensitization [20–22]. From a metabolic perspective,
mitochondria attracted renewed attention as it became clear that they can favor cancer reprogramming
in imparting substantial metabolic flexibility, thereby allowing tumor cell growth and survival under
fluctuating microenvironmental conditions. For example, mitochondrial uncoupling—which is the
abrogation of ATP generation in response to the mitochondrial membrane’s potential—has been
shown to favor the Warburg effect in tumor cells (for further details on mitochondrial uncoupling
and its function in cancer cell metabolism, please refer to [23]). In the same vein, some mitochondrial
metabolites have been shown to be sufficient to drive oncogenesis [24], and some mitochondrial
metabolic pathways could adapt to serve bioenergetic or anabolic functions, such as during nutrient
restriction, low levels of oxygen tension (hypoxia), and cancer treatments [25–29]. Hence, targeting
mitochondrial metabolism remains a major but very challenging approach for the establishment of
promising cancer therapeutics [30–32].

However, one of the biggest challenging issues with targeting mitochondria as a relevant
approach to efficiently eradicate tumor cells (or at least make them vulnerable after treatment
exposure) is that all differentiated tissues are dependent on oxidative phosphorylation (OXPHOS) to
survive [33–35]. This would then lead to the establishment of refined therapeutic strategies, whereby
tumor cells would be selectively targeted, while non-tumor/normal differentiated cells would be spared
from—or unresponsive to—the treatment-derived effects. Here, after revisiting the Warburg effect from
a historic/dynamic perspective, and seeing whether or not it is dispensable for cancer, we will discuss
the role of mitochondria in cancer by detailing the mechanisms through which they can impact on
tumorigenicity, and we will briefly highlight the therapeutic opportunities of targeting mitochondrial
metabolism as an anticancer strategy.

2. The Warburg Effect: From Myth to Reality

2.1. Historical Perspectives

Otto Warburg and colleagues noticed, in the 1920s, that tumors were able to uptake massive
amounts of glucose in comparison with normal surrounding tissues. Furthermore, it has been
observed that glucose fermentation could occur in these tumors in order to generate lactate even
under oxygen non-limiting conditions, thus the term “aerobic glycolysis” [36,37]. However, it was also
noticed that respiration alone could preserve tumor cell survival, and it was thus suggested that to
proficiently eradicate cancer cells by siphoning them of their energy, both glucose and oxygen had
to be removed [13]. In 1925, Cori and Cori extended Warburg’s work and revealed the in situ lactic
acid levels displayed by mouse and rat tumors to be very much lower than those observed in the
in vitro experiments of Warburg [13,37,38]. Notably, Cori and Cori proved that the blood drawn that
emanates from a tumor had considerably reduced glucose and increased lactic acid than the blood
passing through the non-tumoral tissues, and finally concluded that this initial excess of lactic acid
generation displayed by tumors was washed out by the blood flow through the tissue [38]. In 1929,
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the English biochemist Herbert Crabtree studied the glycolytic activity of different tumor types and
noticed some heterogeneity. While confirming Warburg’s seminal findings, Crabtree further revealed a
heterogeneity in the magnitude of respiration exhibited by tumors, with many tumors showing an
important capacity to sustain respiration [39]. Hence, Crabtree suggested that not only do cancer
cells display enhanced aerobic glycolysis, but that significant differences were also observed during
fermentation according to the environmental or genetic variations.

Warburg later proposed, in 1956, that “the respiration of all cancer cells is damaged”, thereby
promoting the incorrect assumption that impaired respiration was the sine qua non that causes the
increased fermentation of glucose in tumors, even though observations from his own laboratory
and those of others indicated otherwise [14]. The observations of Chance and Weinhouse indeed
controverted Warburg’s hypothesis of mitochondrial defects in tumors [17,40], as rat hepatoma cells
were evidenced to have active mitochondria and respiratory capacity [41]. However, Warburg used to
say that “science progresses not because scientists change their minds, but because scientists attached
to erroneous views die, and are replaced” [42]. Warburg actually assumed that respiration must be
damaged in cancers because high levels of O2 were unable to abrogate the lactic acid production by
tumor cells [43]. Nonetheless, in 1962, Warburg attempted to justify the conclusions he had drawn and
admitted that the description he made based on insufficient (rather than damaged) respiration had led
to “fruitless controversy”. In the early 1970s, Efraim Racker termed this phenomenon the “Warburg
effect” and also pinpointed prior findings demonstrating that tumors were able to sustain respiration,
and developed his own ideas about the Warburg effect origins: ranging from intracellular pH disparities
to ATPase activity alterations [44,45]. Later on, Jeffrey Flier, Racker and Morris Birnbaum confirmed that
aerobic glycolysis was a well-regulated process controlled by growth factor signaling [46–49]. However,
at that time, the discovery of oncogenes led to the assumption that aberrant regulation of growth
factor signaling was an initiating event in tumorigenesis, shedding new light on Warburg’s hypothesis.
Therefore, it remained uncertain whether the Warburg effect was just a mere by-product of aberrant
growth factor signaling until recently, when several studies dealing with genetics demonstrated that the
Warburg effect was actually the best fit for tumor growth (but still dispensable under certain conditions
as will be developed in Section 2.3) [50–55]. Furthermore, as a proof of principle showing the renewed
interest in studying tumor cell metabolism during these last years, the number of publications referring
to the “Warburg effect” term has increased exponentially since the 2000s [56].

2.2. The Warburg Effect and Cellular Growth: A Fine-Tuned Nexus

Per unit of glucose, aerobic glycolysis is an unproductive way to favor ATP production in
comparison with the amount produced by mitochondrial respiration (2 versus 33.45 molecules of ATP
according to the recent observations of Mookerjee et al. [57]), so why would rapidly proliferating
cells be dependent on such an unproductive pathway to produce energy? Lactate production from
glucose occurs up to 100 times faster than the complete oxidation of glucose that takes place in the
mitochondria [58], and simple calculations indicated that the ATP demand may then never reach
limiting values in rapidly growing tumor cells [59,60]. Thus, this enhanced glucose consumption
is rather used as a source of carbon for anabolic processes and biomass that are needed to favor
the growth of rapidly proliferating cells [15,28,29,61,62]. This excess carbon is used for the de novo
building-up of nucleotides, lipids, and proteins, and can be redirected into several pathways that arise
from glycolysis [15,51,63] (Figure 1). One example is the deviation of the glycolytic flux into the de
novo biosynthesis of serine through the phosphoglycerate dehydrogenase (PHGDH) enzyme [59,64].
In addition, it is now admitted that rather than having a rate-limiting demand for ATP, highly
dividing cells are in great need of reducing equivalents in the form of NADPH (nicotinamide adenine
dinucleotide phosphate) [65,66]. Then, the accrued uptake of glucose allows for a greater synthesis of
these reducing equivalents through the oxidative branch of the pentose phosphate pathway (PPP) and
the serine synthesis pathway followed by the tetrahydrofolate cycle, which are then used 1) for the
maintenance of reduced glutathione (the major cellular antioxidant), and 2) in reductive biosynthesis
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(most notably in the de novo synthesis of fatty acids) [65,67] (Figure 1). Lastly, the final step of
fermentative glycolysis, conducted by lactate dehydrogenase A in reducing pyruvate into lactate with
a regeneration of NAD+ (nicotinamide adenine dinucleotide), is cardinal by ensuring a glycolytic
flux. Lactate serves as a substantial source of energy in rapidly growing tissues/tumors, but also in
differentiated organs/tissues subjected to important physiological, nutritional, and energetic demands
(such as embryonic and immune cells or regenerating tissues) [51]. For example, during physical
exercise, more than half of the energy turnover rate in the heart muscle is recruited from lactate
oxidation [68]. In the brain, besides its capacity to support adequate energy levels and the optimal
synaptic function [69], lactate per se (and not glucose) was revealed as a key player in alleviating the
hypoxia-induced damages of neurons [70]. In rapidly proliferating cancer cells, including lung and
pancreatic tumors, lactate could feed the tricarboxylic acid (TCA) cycle; lactate’s contribution as a
respiratory fuel exceeded that of glucose, especially in rapidly growing tumors [71,72]. Pyruvate can
also be redirected into the mitochondria and converted to acetyl-CoA for entry into the tricarboxylic
acid cycle (TCA) [22]. The TCA cycle intermediates are then either oxidized for catabolic purposes or
transformed into amino acids or citrate for export back to the cytosol (further details are provided in
the following sections).
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Figure 1. Note from the top—glucose to lactic acid—the three enzymatic steps that have been genetically
disrupted in our studies by CRISPR-Cas9 (red horizontal triangles). Red dotted arrows represent the
Hypoxia Inducible Factors (HIF)-induced genes that are upregulated during tumor hypoxia including
GLUT1, HK, GPI, LDHA, MCT4 and PDK1, thereby allowing tumors to have a sustained fermentative
glycolysis capacity. Glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1),
which is a novel glutathione-independent ferroptosis suppressor, are also depicted in this scheme;
both of them prevent the generation of membrane lipid peroxides.

Consequently, this originally thought to be “wasteful” system is ultimately shown to be extremely
efficient once one may understand that the ultimate goal of a tumor cell is nothing more than cellular
growth and division. Given that the Warburg effect is also noticed during the rapid proliferation of the
primary cells, it is more generally perceived as a characteristic of cell proliferation than as a privilege
of oncogenic transformation, and can thus be perceived as an important player that contributes to
anabolic metabolism (see Figure 2 for a rapid overview) [73,74].
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Figure 2. Key conclusions issued from the analysis of fermentative glycolysis (Warburg effect) in
normal tissues and cancers [51].

2.3. Is the Warburg Effect Dispensable for Cancer?

Cells that sustain high glycolytic rates do not catabolize the totality of their pyruvate into
lactate, but rather a significant amount of the pyruvate is oxidized and metabolized in the TCA
cycle, thus delivering energy through respiration and the metabolic intermediates for the anabolic
pathways that stem from TCA cycle [75]. Hence, as previously reported by Crabtree [39], mitochondrial
respiration can actually occur in tumor cells and a key question then arises: is the Warburg effect
dispensable for cancer? In other words, would the inhibition of the Warburg effect push tumor cells to
rapidly rewire their metabolism towards mitochondria and oxidative phosphorylation (OXPHOS) to
survive and proliferate? Our laboratory has even pushed the question further, could full suppression
of the Warburg effect arrest tumor growth? We addressed this fundamental question by using two
tumorigenic cancer cell lines, derived from human colon adenocarcinoma (LS174T) and mouse B16-F10
melanoma, in which we genetically disrupted the Warburg effect at either one of the three fermentative
glycolytic steps: (1) glucose 6 phosphate isomerase, (2) lactate dehydrogenase A, B or both A/B,
and (3) lactate/H+ symporters monocarboxylate transporter (MCT) 1 and 4 (see Figure 1).

Glucose 6 phosphate isomerase (GPI) is a cytosolic enzyme involved in the reversible
inter-conversion between glucose 6 phosphate (G6P) and fructose 6 phosphate (F6P), and its
genetic disruption using the CRISPR/Cas9 technique is associated with major metabolic and growth
modifications. Indeed, both the LS174T and B16-F10 GPI-KO cell lines, which had no measurable GPI
enzymatic activity and secretion of lactic acid, rewired their metabolism towards the PPP and OXPHOS
as supported by their augmented respiratory capacity [54]. Remarkably, the highly glycolytic LS174T
tumor cell line (with a low respiratory capacity when cultured under standard conditions) displayed a
strong reactivation of OXPHOS when challenged by a GPI ablation, thus creating an augmented and
exclusive reliance on oxygen [54]. This phenotype explained 1) the inability of the LS174T GPI-KO cells
to grow in hypoxia (1% O2), and 2) their increased sensitivity to OXPHOS inhibition by phenformin or
oligomycin [54]. This vulnerability created by such metabolic rewiring is in line with the observations
described for ovarian and hepatocarcinoma cancer cell lines, where GPI silencing completely abolished
cancer cell growth in combination with OXPHOS inhibition [76].

Lactate dehydrogenase (LDH) is a family of NAD+-dependent enzymes that catalyze the reversible
conversion between pyruvate and lactate, with a simultaneous oxidation/reduction of the cofactor
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(NAD+/NADH) [77,78]. Active LDH is a homo/heterotetramer assembled from two different subunits:
M (muscle) and H (heart), encoded by two separate genes, LDHA (M) and LDHB (H), respectively [77,78].
The important role of LDHA in maintaining a Warburg phenotype and promoting the tumorigenic
potential of malignancies was confirmed by numerous findings showing that LDHA inhibition,
gene silencing, or knockdown considerably decreased the tumorigenic potential in several types of
cancer [50,79,80]. Hence, we used the same genetic approach to create LDHA-KO LS174T and B16-F10
cells and showed that the complete abrogation of the LDHA gene results in only about a 30% decrease
in the secreted lactate levels [55]. Interestingly, the LDHA-KO cells revealed an augmented OXPHOS
capacity, thus pointing to (1) an increased reliance on OXPHOS for the production of energy, and (2) an
amplified vulnerability to respiratory chain inhibitors including phenformin, which significantly
reduced the clonal growth [55]. This unexpected low 30% decrease in the secreted lactate levels was
corroborated by the finding that the lack of LDHA did not significantly influence in vitro cell growth
under normoxic conditions [55]. This could at least partially be explained by the retained ability of
LDHA-KO cells to catalyze a pyruvate conversion to lactate, although at a reduced rate compared with
the wild type (WT) cells, but at levels sufficient to drive glycolysis, lactate production, and growth.
We therefore hypothesized that this activity might be due to the presence of a LDHB isoform in both
cell lines, capable of catalyzing the reverse reaction when LDHA is no longer present. However, alone
LDHB-KO cells did not significantly impact on the cells’ growth and viability, neither in normoxia
nor hypoxia (1% O2) [55]. Rather, they behaved essentially like WT cells in terms of lactate secretion,
glycolytic and mitochondrial activity, and sensitivity to OXPHOS inhibitors [55]. It was only when both
the LDHA and LDHB isoforms were disrupted that a distinct phenotype with no detectable lactate
secretion and a complete metabolic redirection toward OXPHOS was observed [55]. It is of importance
to note that the genetic LDHA/B-double KO cell phenotype was mimicked in vitro by the dual first
specific LDHA, the LDHB inhibitor GNE140 [55], killing the possibility of aberrant emergence during
the genetic selection. Again, this increased reliance on OXPHOS displayed by these LDHA/B-double
KO cells was marked by an increased vulnerability to the inhibitors that target the mitochondrial
respiratory chain (phenformin) in comparison with the WT or LDHA/B-KO cells [55]. Importantly,
in vivo, only a delay and not an abrogation of tumor growth could be observed, thus suggesting that
at least in immunodeficient mice, the Warburg effect can be replaced by OXPHOS [55].

MCTs (1–4) facilitate the transport of lactate and protons into and out of cells and both MCT1
and MCT4 expression levels were evidenced to be increased in tumors [51,81–85]. Having a strong
interest in studying these different intracellular pH (pHi)-regulating systems, we investigated the
effects of the pharmacological/genetic inhibition of lactic acid export on tumor cells to see whether
these cells could sustain metabolic rewiring in order to strive. Pharmacological inhibition with the
specific AstraZeneca MCT1/2 inhibitor (AR-C155858) was reported to impede glycolysis and tumor
growth of the RAS-transformed fibroblasts expressing only MCT1/2 [86]. Importantly, this compound
was shown to be ineffective in preventing the growth of tumor cells lacking glycolytic activity that
only rely on OXPHOS to strive [86]. Reciprocally, the expression of MCT4 in respiration-deficient
RAS-transformed fibroblasts was shown to favor in vivo tumor growth [83]. In non-small cell lung
cancer cells, the genetic disruption of the MCT’s chaperone CD174 was described to lower the glycolytic
rate 2.0- to 3.5-fold, and to stimulate mitochondrial respiration, thereby making CD174-null cells
particularly sensitive to inhibitors of mitochondrial respiration both in vitro and in vivo [87,88]. Finally,
a combined inhibition/disruption of MCT1/4, which severely reduces the lactic acid export, imposes a
strong reduction in tumor growth [88,89]. The reason for this growth arrest is due to the intracellular
acidification that is known to block mTORC1 [90,91]. Now, this growth arrest/cytostatic effect can be
transformed into cell death (energy crisis) when an MCT inhibition is combined with a short exposure
to the mitochondrial complex I inhibitor phenformin [88,92–94].

These three examples point to a common feature: an extraordinary metabolic plasticity displayed
by tumor cells. In all three cases, the disruption of the glycolytic flux resulted in an abolishment
of the lactic acid secretion and augmented the reliance on OXPHOS for the energetic needs and
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survival. Coming back to Otto Warburg’s original findings, it has become now evident that the
involvement of mitochondrial metabolism to cancer formation and development are of paramount
importance. In the following sections, we will specifically focus on mitochondria, by detailing the
cancer cell-intrinsic/extrinsic mechanisms through which they can impact on malignant transformation
and progression, and briefly emphasize the therapeutic potential of targeting mitochondrial metabolism
in cancer therapy.

3. Mitochondrial Metabolism in Cancer

3.1. Carcinogenesis

Mitochondria whose name was derived from the Greek “mito”, meaning thread, and “chondria”,
due to their granulosity [95], may favor a malignant transformation by at least two major mechanisms
that include (1) the mitochondrial reactive oxygen species (ROS) that support the accumulation of
oncogenic DNA alterations and activation of oncogenic pathways [96], and (2) the abnormal increase in
the specific mitochondrial metabolites including fumarate, succinate, and 2-hydroxyglutarate (2-HG),
which has important transforming properties [97].

3.1.1. Reactive Oxygen Species (ROS)

ROS, in the form of superoxide anion radical and/or hydroxyl radical are produced from
physiological metabolic reactions and were described for the first time by Poul K. Jensen in 1966,
who proved that they originate from the respiratory chain [98,99]. Later on, Chance and co-workers
also reported that isolated mitochondria produce H2O2 [100–102]. Indeed, through the mitochondrial
complexes I, II and III, OXPHOS has been identified as the main source of ROS production, thus making
mitochondria the major contributors of cellular redox homeostasis [98,103]. Their participation during
a malignant transformation is shown by the fact that mice deficient in p53 that are maintained under
hypoxic conditions (10% O2) display a reduced level of tumorigenesis, and thus a survival advantage
in comparison with those exposed to the standard atmospheric conditions (21% O2) [104]. In line
with this, the autophagic removal of damaged mitochondria overproducing ROS led to a reduced
potential of oncogenesis, since the specific knockdown or knockout of autophagic genes (such as Atg5
or Atg7) have been shown to promote cancer transformation [105–107]. ROS are also involved in
oncogenic signal transduction cascades via cysteine oxidation, as demonstrated with H2O2, which can
inactivate the tumor suppressor phosphatase and tensin homolog (PTEN) by oxidizing the active site’s
cysteine residues [103,108]; this leads to the formation of a disulfide bond and prevents PTEN from
inactivating the phosphoinositide 3 kinase (PI3K) pathway [96,109]. ROS may have several yet to be
discovered consequences on the diverse mitogen-activated pathways that are usually abrogated by
phosphatases [109,110]. Kamata et al. indeed demonstrated that the accumulation of intracellular
H2O2 could inactivate mitogen-activated protein kinase (MAPK) phosphatases through oxidation of
their catalytic cysteine, and thus maintains the MAPK pathway in an active state [111,112]. In line with
this, RAS and RAC small GTP-binding proteins appeared to be directly linked to the production of
superoxide anion radical O2

− in transformed fibroblasts; an ROS-mediated neo-transformation of these
cells could then be evidenced since treatment with antioxidants was associated with a block in the
RAS-induced cellular transformation [113]. Further, the accumulation of ROS can directly affect DNA
integrity and it has been shown that ROS-mediated DNA damages could favor the initiation stage
of tumorigenesis. For example, the capacity of hydroxyl radicals to attack DNA is well known and
was shown to trigger single and/or double strand breaks which can then affect genome integrity [114].
In addition to causing genetic modifications, ROS have also been associated with epigenetic alterations
that favor oncogenic transformation; indeed, a ROS-induced hypermethylation of the promoter region
of tumor suppressor genes has been shown to promote carcinogenesis, as exemplified in liver cancer,
where hepatocellular carcinoma (HCC) cells exposed to H2O2 had increased hypermethylation levels
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of the promoter region of the E-cadherin gene (a hallmark of an epithelial-to-mesenchymal transition
(EMT) that is lost during this process), leading then to its down-regulation [115].

3.1.2. Oncometabolites

Dominant mutations in mitochondrial enzymes allowed the discovery of mitochondrial-derived
signaling molecules that are called oncometabolites. Succinate dehydrogenase complex iron
sulfur subunit B (SDHB), fumarate hydratase (FH), and the cytosolic and mitochondrial isocitrate
dehydrogenase (IDH) isoforms 1 and 2 have been shown to be mutated in various types of cancer [97].
While SDHB and FH enzymes are generally affected by the loss-of-function mutations, with augmented
levels of fumarate and/or succinate, IDH1 and IDH2 often display gain-of-function mutations that
lead to the production of 2-HG [116]. Behaving as bona fide oncometabolites, the accumulation of
fumarate, succinate, and 2-HG may be enough to enhance tumor transformation [116]. The structural
similarity of these oncometabolites to α-ketoglutarate (α-KG) makes them of interest as they can
act as competitive inhibitors of the α-KG-dependent enzymes that regulate gene expression levels
through epigenetic modifications, including the Jumonji domain (JMJ) histone lysine demethylases
and ten-eleven translocation (TET) dioxygenases [117,118]. For example, TET activity abrogation
was reported to increase the hypermethylation of CpG islands, leading then to the silencing of
genes [117]. 2-HG and succinate were shown to alter the α-KG-dependent HIF-prolyl oxidase
activity of the egl-9/PHD family hypoxia inducible factor 1α and 2 (EGLN1/PHD2—EGLN2/PHD1),
hence favoring neo-transformation through a mechanism associated with the stability of the hypoxia
inducible factors 1 and 2 [119–121]. Fumarate can also promote a non-enzymatic post-translational
protein modification known as “succination”, most likely due to the inactivation of the succinate
dehydrogenase enzyme complex, and augments the kelch-like ECH-associated protein 1 (KEAP1),
enabling the activation of the transcription factor’s nuclear factor erythroid 2-related factor 2 (NRF2)
and consequent upregulation of antioxidant pathways [122]. The same post-translational modification
also seems to affect the non-enzymatic antioxidant glutathione, thereby preventing its recognition by
glutathione reductase and resulting in decreased NADPH and an augmented ROS production [123].
Altogether, these observations perfectly represent the critical influence that mitochondria can exert at
the different stages of malignant transformation.

3.2. Cancer Progression

3.2.1. A Biosynthetic Hub

As progressing tumors can rely on the reversibility of various TCA cycle reactions and the existence
of multiple anaplerotic circuitries centered on mitochondria to survive, the following paragraphs
will discuss the different TCA cycle intermediates that are involved in this phenomenon to see how
mitochondria represent a powerhouse from which anabolism is fed [124,125]. (see Figure 1 for a
general and non-exhaustive overview)

Located at a central position, citrate is a key intermediate that operates as a major node of
flexibility [126] (Figure 1). Besides replenishing the oxidative mode of the TCA, citrate can also
be transformed into acetyl-CoA for export to the cytosol and nucleus, where it can be used as a
substrate either for the synthesis of fatty acids and cholesterol, or for acetylation reactions [127]. Indeed,
upregulation of lipogenesis was proposed as a characteristic of rapidly growing tumors to support
the membrane need associated with an intense proliferation [128]. The inhibition of ATP-citrate lyase
(ACLY), which catalyzes mitochondrial-derived citrate into acetyl-CoA, has been shown to reduce
tumorigenesis in several models [128]. In contrast, certain cancers rely on mitochondrial fatty acid
oxidation (FAO) for ATP generation [129]. Further, FAO may be a favored fuel choice for cancers
undergoing stress as evidenced in HCC, where highly tumorigenic HCC cells increased FAO to favor
ATP generation when cultured under glucose-restricted conditions [28,29]. Beyond ATP production,
increased FAO in some cases may also confer benefits in maintaining redox homeostasis [129].
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It was also reported that an epigenetic remodeling of chromatin could result from the production of
FAO-derived acetyl-CoA, subsequently causing gene expression modifications, leading ultimately
to enhanced cell proliferation [130]. In line with this, an ACLY-dependent production of acetyl-CoA
from mitochondrial-derived citrate is also used for epigenetic modifications: (1) with the modification
of histone acetylation patterns that ultimately leads to chromatin modification via histone acetyl
transferases (HATs), and (2) for the acetylation of many cytosolic and mitochondrial proteins, thereby
modifying their structural conformation and activity [127,131].

Glutamine can be oxidized through the TCA cycle and represents an important source for the
synthesis of macromolecules [75] (Figure 1). The amide nitrogen on glutamine is used in purine
synthesis, whereas glutamine-derived carbons are used in pyrimidine, amino acid and lipid synthesis.
Glutaminolysis, which corresponds to glutamine catabolism, was reported to be (1) augmented in
numerous tumors that are addicted to glutamine, and (2) often induced by MYC upregulation of
glutaminase (GLS), which catabolizes glutamine into glutamate and ammonia [75,132]. Glutamate is
then oxidized to α-KG by glutamate dehydrogenase (GDH), thus allowing the entry into the TCA cycle.
For example, the expression of Sirtuin 4 (SIRT4) in B cell lymphoma, which is a mitochondrial-localized
tumor suppressor protein that inhibits a glutamate-to-α-KG conversion, was associated with a decreased
glutamine uptake and cellular growth; conversely, its loss increased glutamine consumption and
hastened tumorigenesis [133]. In parallel, it was indicated that, in comparison to quiescent cells,
proliferating cells (normal and tumor) primarily use glutamate via transaminases to couple non-essential
amino acid synthesis to α-KG production and TCA cycle anaplerosis, pinpointing the relevance of
this pathway in supporting biosynthesis during tumor cell proliferation [134]. Glutamine also acts as
another source of carbons for acetyl-CoA production, which can then serve lipid biosynthesis through
reductive carboxylation under hypoxia or when the mitochondria are damaged [135,136]. Experiments
using a [5-13C]-glutamine tracer could indeed demonstrate that, through reductive carboxylation, an up
to 25% formation of lipogenic acetyl-CoA came from glutamine in several types of tumor cells [135].
In addition, via malic enzyme activity, glutamine-derived malate is also metabolized into pyruvate,
which can then be converted into oxaloacetate/acetyl-CoA for reentry into the TCA cycle [137]. In line
with this, cytosolic malic enzyme 1 was demonstrated to sustain NADPH generation from glutamate
in pancreatic and breast cancers, thereby participating in redox homeostasis [134,138]. Furthermore,
NADPH production can also be achieved via the IDH1-dependent reductive carboxylation of glutamine,
thereby reducing the levels of mitochondrial ROS [136] (for further details on glutamine metabolism
and redox homeostasis, refer to [136,139,140]). Importantly, while several studies could provide strong
evidence that the requirements for glutamine were substantial for numerous types of tumors [141], it is
important to note that the dispensability of glutamine was also noted under certain circumstances,
as evidenced by lung tumor cells, which lost their glutamine dependency when grown in vivo [142].

Mitochondria also participate to malignant progression through nucleotide synthesis
via one-carbon metabolism [143]. The mitochondrial folate synthesis pathway consists
of serine hydroxylmethyltransferase (SHMT2) and the bifunctional methylenetetrahydrofolate
dehydrogenase/cyclohydrolase (MTHFD2) [144,145]. Gene expression profiling could indeed identify
many types of MTHFD2-overexpressing tumors and further studies revealed MTHFD2 as an important
determinant of cancer cell survival [145]. Further, SHMT2 expression was detected in ischaemic tumor
regions, thereby procuring a proliferative advantage under hypoxia [146]. Using isotope labeling,
Kim et al. demonstrated that while inhibition of SHMT2 is associated with an improved pyruvate
kinase (PKM2) activity and carbon flux into the TCA cycle, cells that display greater levels of SHMT2
activity limit that of PKM2 and flux into the TCA. This action decreases oxygen consumption and
confers to cells localized in weakly vascularized tumor zones a survival benefit [146]. Additionally,
SHMT2 regulation of serine metabolism is also involved in the generation of NADPH, and thus
the subsequent detoxification of ROS under hypoxia, which is an essential function for survival of
MYC-driven cancers [144]. Altogether, these observations emphasize the crucial role of mitochondria
in allowing cancer cells to thrive during malignant progression.
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3.2.2. Resistance to RCD

As aforementioned, progressing tumors encounter fluctuating microenvironmental conditions
and this would commonly create an accrued sensitivity to mitochondrial regulated cell death (RCD)
via a mitochondrial outer membrane permeabilization (MOMP) or a mitochondrial permeability
transition (MPT) [147]. The pro-apoptotic BCL-2 family members BAX (BCL-2-associated X protein)
and BAK (BCL-2 homologous antagonist killer) are recruited to the mitochondrial outer membrane
and oligomerize to mediate MOMP, resulting in a pore formation and cytochrome c release from
mitochondria into the cytosol to initiate caspases activation [148]. While BAX/BAK is inhibited
by anti-apoptotic proteins under physiological conditions, neoplastic cells evade this via the
downregulation of pro-apoptotic and/or upregulation of anti-apoptotic genes by several mechanisms
(for further details see [149]). Therefore, the balance of pro- and anti-apoptotic proteins impacts a
tumor cell’s vulnerability in response to apoptotic signals. Additionally, since some tumors sustain an
increased mitochondrial transmembrane potential (∆Ψm) associated with high glycolytic rates and
increased resistance to RCD, restoring pyruvate consumption via a chemical inhibition of PDK1 was
not only reported to augment RCD sensitivity, but also inhibit in vivo tumor growth [150]. In line with
this, detaching mitochondrial-bound hexokinase II (enzyme involved in the first step of glycolysis by
converting glucose into G6P) from mitochondria has been suggested to trigger MOMP in different types
of cancer cells [151]. The maintenance of optimal antioxidant defenses is also crucial for tumor cells to
evade ROS-driven MPT as evidenced by Vaughn et al., who demonstrated that both normal/tumor
cells thoroughly impede cytochrome c-mediated apoptosis via a mechanism that relies on glucose
metabolism; cytochrome c is indeed reduced and held inactive by the PPP-derived NADPH [152].
Mitochondrial dynamics also dictate apoptotic susceptibility, as the loss of dynamin-related protein 1
(DRP1) (a fundamental component of mitochondrial fission) was shown to delay cytochrome c release
and apoptotic induction [153]; similarly, a decreased DRP1 expression was shown to enhance resistance
to an oncogenic V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS)-induced cellular
transformation [154]. The relevance of mitochondrial dynamics in apoptosis is further evidenced by the
induction of mitochondrial hyperfragmentation secondary to mitofusin 1 (MFN1) ablation—an essential
component of mitochondrial fusion—resulting in an augmented resistance to apoptotic stimuli owing
to the loss of the interaction between BAX and the mitochondrial membranes [155]. Moreover,
the inhibition of DRP1 was shown to restore sensitivity to apoptotic stimuli through the reestablishment
of a balanced and adequate mitochondrial network [155].

3.2.3. Metastatic Dissemination

Metastases generally refers to the dissemination of tumor cells to distant organ sites [156]. One of
the initial changes of the metastatic cascade is EMT induced under hypoxia, which bestows tumor
cells with augmented invasive properties [157–159]. Multiple mitochondrial metabolites have been
shown to support the EMT process, and especially fumarate, which could counteract the transcription
of anti-metastatic microRNAs upon the inhibition of TET dioxygenases [160–162]. Mitochondrial
biogenesis and OXPHOS have also been suggested to support metastatic dissemination, as demonstrated
when the peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) was silenced
in breast cancer models [163]; PGC-1α is a central regulator of mitochondrial biogenesis whose
levels are often associated with tumor reliance on mitochondrial respiration (for further details refer
to [164]). While circulating cancer cells originating from orthotopic mammary tumors displayed greater
mitochondrial biogenesis and respiration, the silencing of PGC-1α resulted in a reduced migratory
phenotype and metastatic potential [163]. Moreover, rotenone, which is a mitochondrial complex I
inhibitor, mirrored the PGC-1α silencing effects on tumor cells, with reduced mitochondria respiration
and invasive properties, thereby pinpointing the crucial role of mitochondrial-derived ATP on the
capacity of tumor cells to be invasive; these results brought newfound significance to the role of PGC-1α
in supporting tumor metastasis [163]. ROS were also evidenced to activate multiple signal transduction
cascades associated with increased metastatic capabilities, such as proto-oncogene tyrosine-protein
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kinase SRC and protein tyrosine kinase 2 beta (PTK2B) signaling [165,166]. Indeed, the inhibition
of SRC was evidenced to impede tumor cell migration and mitochondrial ROS scavenging to block
metastatic take in rodents [165]. Imbalances in the mitochondrial shape also dictate the metastatic
susceptibility as a consequence of mild ROS overproduction. Indeed, an augmented expression of
DRP1 was associated with a migratory phenotype in several types of cancer cells [167]. In contrast,
under severe oxidative stress conditions, ROS have been shown to abrogate metastasis mainly as a
straight consequence of weakened fitness, RCD, and/or cellular senescence [168,169]. OXPHOS and
subsequent ROS generation are therefore required for the metastatic cascade, and collectively these
observations highlight the fundamental role held by mitochondria in supporting cancer progression
and metastasis.

As discussed in the above sections, the diversity of the carbon substrates fueling tumor cells thus
perfectly exemplifies the concept of metabolic heterogeneity, which is also and importantly mirrored
by the different components found in the tumor microenvironment. To take the reasoning further,
carcinoma-associated fibroblasts (CAFs) have indeed been evidenced to dynamically participate in the
metabolic needs of tumor cells, thereby favoring tumor initiation and progression [170–172]. Of note,
an elegant work from Mechta-Grigoriou’s group recently identified two particular subsets of CAFs
having prominent roles in inducing tumor cell migration and invasion in breast cancer [173].

4. Therapeutic Challenges

The final objective of traditional chemotherapeutics and anti-cancer agents is to prompt the death
of tumor cells [174]. Since mitochondria play a crucial role in the control of regulated cell death
(RCD), emerging evidence has suggested that targeting mitochondrial metabolism could potentially
be a promising area for cancer treatment. As previously stated, tumor cells can interchangeably use
glycolysis and OXPHOS as a source of ATP production (see Sections 2.2 and 2.3). Hence, although
targeting mitochondrial ATP generation might not be an appealing strategy for cancer treatment,
we however, propose that there are at least three reasons to envision it as a potential target since (1) the
interiors of various solid tumors remain weakly perfused and the ETC is still functioning; a drug
preventing mitochondrial ATP generation would then favor the cell death of these weakly oxygenated
tumors [175,176], (2) there are tumors that heavily rely on OXPHOS to generate ATP, and that these cancer
cells are likely to be imaged by 18F-BnTP, a recently reported promising imaging tool sensitive to drugs
that restrict mitochondrial ATP production due to a lack of glycolytic compensation [86,88,177–179];
important to mention as well is IACS-010759, a selective inhibitor of mitochondrial complex I [180],
and (3) preventing mitochondrial ATP generation would synergize with therapeutic strategies that
reduce glycolysis. However, one of the main challenging issues with targeting mitochondria is to not
impact on normal cells; the prerequisite here, would be whether tumors preferentially uptake the
drugs that prevent the production of mitochondrial ATP in comparison with normal cells. In this
regard, we speculate that a metformin/phenformin drug may be a promising anti-cancer agent that
targets mitochondrial ATP generation without increasing the toxicity in normal tissues. Similarly,
it has also been proposed that decreasing the mitochondrial protein translation and stability may
offer another opportunity to obstruct mitochondrial bioenergetics. Indeed, tetracycline treatment
was shown to impede mitochondrial protein translation and potentiate anti-tumor effects in several
preclinical models of leukemia; dismantling the translation of ETC-related proteins resulted in major
defects in mitochondrial respiration [181]. As said, glutamine is an important carbon source for cancer
cells. Targeting glutamine metabolism and transport becomes of great interest [27], as evidenced with
two specific GLS inhibitors: compound 968 and bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl
sulfide, which reduced glutamine catabolism and delayed in vivo tumor growth in experimental models
of cancer [137,182]. Similarly, inhibiting the glutamate-to-α-KG conversion by aminotransferases
also decreased tumor growth [183,184]. Notably, one may keep in mind that not all malignancies
display an addiction to glutamine catabolism, and using [13C]-glutamine infusion in patients may
help in predicting which tumors will respond to therapies that target glutamine metabolism [185].
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As stated above, mitochondria and the signaling pathways that are responsive to ROS are intrinsically
linked and targeting mitochondrial ROS through antioxidants has shown to efficiently hamper
tumorigenesis both in vitro and in vivo [22]. However, many clinical studies showed that the effects of
antioxidant treatment on the onset and progression of tumors are extraordinarily difficult to anticipate.
It has indeed been reported that moderate/high increases of ROS could unexpectedly act as cancer
suppressors by maintaining senescence-induced tumor suppression and sensitizing tumor cells to
chemotherapeutic drugs, thus making the use of antioxidant treatments very limited and most of
the time ineffective [22,186]. On the other side, to counterbalance the enhanced ROS production,
tumor cells require NADPH and one way to achieve this is using one-carbon metabolism [22]. In this
regard, beyond the critical identified role of SHMT2 in regulating redox homeostasis (via NADPH
production) [144], MTHFD2 was also reported to be essential since its loss resulted in an improved
capacity of sensitizing tumor cells to oxidant-induced cell death [145]. Targeting mitochondrial
metabolic enzymes in combination with other therapies known to augment the production of ROS
should then be considered and may eventually offer new promising therapeutic avenues.

In line with these last observations, ferroptosis has recently been described as an iron-dependent
form of non-apoptotic cell death that can be activated in cancer cells by natural stimuli, synthetic agents,
or the disruption of the cystine/glutamate antiporter xCT [66,187] (Figure 1). Three key hallmarks define
ferroptosis, namely the oxidation of polyunsaturated fatty acid (PUFA)-containing phospholipids,
the availability of redox-active iron and the loss of the glutathione peroxidase 4 (GPX4) [188–190]
(Figure 1). Although it is uncertain whether mitochondria could have a function in this process,
recent evidence could bring new findings on novel functions that impact on ferroptosis such as the
status of ferroptosis suppressor protein 1 (FSP1) in the control of the reduced co-enzyme Q10 [191],
which may potentially highlight the role of ferroptosis as a novel attractive therapeutic concept in
cancer biology [192,193]. However, since no consensus on the role of mitochondria during ferroptosis
has been reached, further investigations are still required.

Finally, altogether, these observations exemplify the intricate contribution of mitochondria during
malignant transformation and progression, and how targeting tumor mitochondrial metabolism
actually remains a big challenge.

5. Conclusions

In contrast to what Otto Warburg stated almost a century ago, the respiration of all cancer cells is
not damaged and even more, it has become evident that mitochondrial metabolism does influence the
functionality and aggressiveness of tumor cells. Mitochondria are indeed multifaceted organelles that
impact on malignant initiation, growth, and survival, and multiple aspects of mitochondrial biology
beyond ATP generation dynamically support the onset and development of tumors. Furthermore,
the substantial flexibility that mitochondria confer to neoplastic cells, such as modifications in fuel
choice utilization, bioenergetics, oxidative stress, and susceptibility to cell death, allows the survival
of these cells in the face of hostile fluctuating microenvironmental conditions. The rapid metabolic
shift of tumor cells towards OXPHOS when the Warburg effect is abrogated perfectly exemplifies this
mitochondrial-induced flexibility and remarkably highlights the existence of a metabolic/bioenergetic
continuum shared between glycolysis and mitochondria (OXPHOS). Importantly, tumor cell metabolism
should not be perceived as a binary concept in which tumor cells only rely on the Warburg effect
on one side or on OXPHOS on the other, but rather to an integrative system that displays different
metabolic phenotypes and adaptations according to the location within the tumor microenvironment.
Indeed, new evidence could reveal a dual capacity of tumor cells in sustaining both glycolysis and
OXPHOS [172]. Finally, mitochondrial metabolism has brought significant attention as a target for the
expansion of innovative anti-cancer agents. However, significant issues in translating these preclinical
drugs (that were evidenced to be highly effective in eradicating tumorigenic cancer cells) towards
clinical settings still remain, as their use would necessarily affect normal cells, including beneficial
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anti-cancer immune cells. Therefore, sophisticated therapeutic strategies in order to precisely modulate
mitochondrial functions in a distinct cellular type will have to be defined in the future.
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ACLY ATP-citrate lyase
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EMT Epithelial-to-mesenchymal transition
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IDH Isocitrate dehydrogenase
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KEAP1 Kelch like ECH-associated protein 1
KRAS V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
LDH Lactate dehydrogenase
MAPK Mitogen-activated protein kinase
MCT Monocarboxylate transporter
MFN1 Mitofusin 1
MOMP Mitochondrial outer membrane permeabilization
MPT Mitochondrial permeability transition
MTHFD2 Methylenetetrahydrofolate dehydrogenase/cyclohydrolase
NAD+ Nicotinamide adenine dinucleotide
NADPH Nicotinamide adenine dinucleotide phosphate
NRF2 Nuclear factor erythroid 2-related factor 2
OXPHOS Oxidative phosphorylation
PGC-1α Peroxisome proliferator-activated receptor gamma coactivator-1 alpha
PHGDH Phosphoglycerate dehydrogenase
pHi Intracellular pH
PI3K Phosphoinositide 3 kinase
PKM2 Pyruvate kinase
PPP Pentose phosphate pathway
PTEN Phosphatase and tensin homolog
PTK2B Protein tyrosine kinase 2 beta
PUFA Polyunsaturated fatty acid
RCD Regulated cell death
ROS Reactive oxygen species
SDH Succinate dehydrogenase complex iron sulfur subunit
SHMT2 Serine hydroxylmethyltransferase
SIRT4 Sirtuin 4
TCA cycle Tricarboxylic acid cycle
TET dioxygenases Ten-eleven translocation dioxygenases
WT Wild Type
α-KG α-Ketoglutarate
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