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Abstract

There is a dearth of robust methods to estimate the causal effects of multiple treatments when the outcome is binary.

This paper uses two unique sets of simulations to propose and evaluate the use of Bayesian additive regression trees in

such settings. First, we compare Bayesian additive regression trees to several approaches that have been proposed for

continuous outcomes, including inverse probability of treatment weighting, targeted maximum likelihood estimator,

vector matching, and regression adjustment. Results suggest that under conditions of non-linearity and non-additivity of

both the treatment assignment and outcome generating mechanisms, Bayesian additive regression trees, targeted max-

imum likelihood estimator, and inverse probability of treatment weighting using generalized boosted models provide

better bias reduction and smaller root mean squared error. Bayesian additive regression trees and targeted maximum

likelihood estimator provide more consistent 95% confidence interval coverage and better large-sample convergence

property. Second, we supply Bayesian additive regression trees with a strategy to identify a common support region for

retaining inferential units and for avoiding extrapolating over areas of the covariate space where common support does

not exist. Bayesian additive regression trees retain more inferential units than the generalized propensity score-based

strategy, and shows lower bias, compared to targeted maximum likelihood estimator or generalized boosted model, in a

variety of scenarios differing by the degree of covariate overlap. A case study examining the effects of three surgical

approaches for non-small cell lung cancer demonstrates the methods.
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1 Introduction

1.1 Motivating research question

Lung cancer is the leading cause of cancer-related mortality worldwide and is estimated to have caused over 1.7

million deaths in 2018.1 The most common type of lung cancer is non-small cell lung cancer (NSCLC), accounting
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for approximately 85% of all lung cancer cases.2 When feasible, NSCLC tumors are treated using surgical
resection, which remains the most effective option for a cure.3

Open thoracotomy long stood as the standard surgical procedure for stage I–IIIA NSCLC tumors. However,
open thoracotomy is associated with considerable postoperative complications and mortality, especially in the
elderly.4,5 Beginning in the late 1990s, two newer and less invasive techniques, video-assisted thoracic surgery
(VATS) and, more recently, robotic-assisted surgery, were increasingly used.6,7 The adoption of VATS and
robotic-assisted surgery seemed to signal that the newer procedures offer a clinical benefit relative to open
resection.8,9 However, to our knowledge, no randomized controlled trials (RCTs) have been conducted to com-
pare the effectiveness of these surgical procedures, in part due to difficulties in recruiting patients and high study
costs. As a consequence, VATS and robotic-approaches were adopted into routine care without sufficient
scrutiny.6,10

In place of RCTs, large-scale population-based databases, such as the Surveillance, Epidemiology, and End
Results (SEER)-Medicare database, provide research opportunities for comparative studies. The SEER-Medicare
database comprises a large sample of patients who received each of the three surgical procedures and reflects
patient outcomes in the real world setting, containing demographic and clinical information for Medicare ben-
eficiaries with cancer in various United States regions.11 However, in contrast to RCTs, the real-world
adoption pattern of the three surgical approaches largely depends on the patients’ sociodemographic and
tumor characteristics, which may result in an unbalanced cohort with significant differences in the distributions
of sociodemographic characteristics, comorbidities, cancer characteristics, and diagnostic information across
treatment groups.12

The research question poses several challenges for statistical analyses. First, in practice, statistical methods
designed for a binary treatment are often used to account for underlying differences in patient characteristics to
compare each pair of surgical procedures.6,10,13 Unfortunately, applications of these methods can lead to the
comparisons of disparate patient subgroups, which may increase bias in treatment effect estimates.14 Second,
common measures for comparative effectiveness are postoperative complications, which are binary outcomes.
Thus, the treatment effects are typically based on the risk difference (RD), odds ratio (OD), or relative risk
(RR),15 all of which make it less straightforward to obtain inference, relative to continuous outcomes.16–18 Third,
the robotic-assisted surgery is a new advanced technology that was just adopted into practice in recent years. As a
result, the number of patients who are operated via this approach is smaller compared to the other two
approaches, yielding unequal sample sizes across the treatment groups. Appropriate causal inference methods
that can address these challenges are needed.

1.2 Overview of methods for causal inference with multiple treatments

Recent years have seen a growing interest in the development of causal inference methods with multiple treat-
ments using observational data. The theoretical work of Imbens19 and Imai and Van Dyk20 extended the pro-
pensity score framework in the setting with a binary treatment21 to the general treatment setting. Subsequently,
methods designed for a binary treatment have been reformulated to accommodate multiple treatments, including
regression adjustment (RA),22 inverse probability of treatment weighting (IPTW),23,24 and vector matching
(VM).14 Lopez and Gutman14 provide a comprehensive review of current methods for multiple treatments.
These methods focus on continuous outcomes.

RA,22,25,26 also known as model-based imputation,27 uses a regression model to impute missing outcomes,
estimating what would have happened to a specific unit had this unit received the treatment to which it was not
exposed. The causal estimand of interest can be estimated by contrasting the imputed potential outcomes between
treatment groups. The critical part of this method is the specification of the functional form of the regression
model. With a low-dimensional set of pre-treatment covariates, it is relatively easy to specify a flexible functional
form for the regression model. If there are many pre-treatment covariates, however, such a specification is more
difficult, and possible misspecification of the regression model could bias the estimate of treatment effects. RA
also heavily relies on extrapolation for estimation when the covariate distributions between treatment groups are
far apart.27

IPTW19,23,24 methods attempt to obtain an unbiased estimator for treatment effects in a way akin to how
weighting by the inverse of the selection probability adjusts for unbalances in sampling pools, introduced by
Horvitz and Thompson28 in survey research. A challenge with IPTW is that treated units with low generalized
propensity scores (GPSs) that are close to zero can result in extreme weights, which may yield erratic causal
estimates with large sample variances.29,30 This issue is increasingly likely as the number of treatments increases.14

Hu et al. 3219



An alternative method is to use trimmed or truncated weights, in which weights that exceed a specified threshold

are each set to that threshold.31,32 The threshold is often based on quantiles of the distribution of the weights (e.g.

the 1st and 99th percentiles).
Alternatives to estimate GPSs in the IPTW framework include generalized boosted models24 (GBMs) and

Super Learner33,34 (SL). GBMs grow multiple regression trees to capture complex and nonlinear relationships

between treatment assignment and pre-treatment variables. The estimation procedure can be tuned to find the

GPS model producing the best covariate balance between treatment groups. This feature of GBMs should help

alleviate extreme weights and improve the estimation of causal effects.24 However, the algorithm can be compu-

tationally intensive, and the robust procedure for estimating the variances of the effect estimates is not guaranteed

to result in proper confidence intervals. SL uses ensemble of machine learning approaches including regression,

ridge regression, and classification trees, to estimate a weight for each treatment. There is no guarantee that these

probabilities sum to 1, and it is common to normalize weights accordingly. To limit extreme weights, Rose and

Normand34 use a lower bound of 0.025 for each probability.
Targeted maximum likelihood estimation34,35 (TMLE) is a doubly robust approach that combines outcome

estimation, IPTW estimation, and a targeting step to optimize the parameter of interest with respect to bias/

variance. Rose and Normand34 implement TMLE by estimating both GPSs and a binary outcome using SL. For

obtaining variance estimates, Rose and Normand34 use influence curves, though bootstrapping is also suggested.

The use of TMLE has, to the best of our knowledge, not been deeply vetted for multiple treatment options by

using simulations.
Lopez and Gutman14 proposed the VM algorithm, which can match units with similar vector of GPSs. VM is

designed to replicate a multi-arm randomized trial by generating sets of units that are roughly equivalent on

measured pre-treatment covariates. VM obtains matched sets using a combination of k-means clustering and one-

to-one matching with replacement within each cluster strata. Simulations demonstrated that, relative to IPTW

with the GPSs estimated using multinomial logistic regression, and to generalizations of tools designed for binary

treatment, VM yielded lower bias in the covariates’ distributions between different treatment groups, while

retaining most of eligible units that received the reference treatment.14 However, the authors’ acknowledge that

there is a lack of guidance regarding the estimation of the sampling variance, and this is an area for further

statistical research.
Before describing Bayesian additive regression trees (BART)—one tool that we think is equipped to handle the

complexity of causal inference with multiple treatments—it is worth explicating on why one approach that,

although intuitive and easy to perform, is not recommended: a series of binary comparisons (SBCs). To wit,

grouping subjects into separate sub-populations, each with two treatments, and then using approaches designed

for binary treatment is an approach often used in practice.14 However, SBCs can (i) lead to non-transitive causal

estimates, (ii) increase bias, and (iii) leave it unclear which treatment is optimal, all of which make it inappropriate

for causal inference when there are more than two treatments.14

1.3 BART for causal inference

While the advanced regression and propensity score-based techniques described above were created for causal

inference with multiple treatments, these methods were developed with continuous outcomes in mind, and they

have been less studied in the context of both a binary outcome and multiple treatments.
In recent years, BART,36,37 a nonparametric modeling tool, has become more popular in causal settings. Hill38

proposed the use of BART for causal inference with a binary treatment and a continuous outcome. Hill38 and Hill

and Su39 used simulations to show that, in scenarios where there are non-linearities in the response surface and the

treatment assignment mechanism, BART generates more accurate estimates of average treatment effects (ATEs)

compared to various matching and weighting techniques, and comparable estimates in linear settings.
BART boasts several advantages for causal inference with a binary treatment.38,40 First, BART allows for an

extremely flexible functional form. Second, BART avoids ambiguity with respect to covariate balance diagnostics

required by propensity score-based approaches. Third, BART generates coherent uncertainty intervals for treat-

ment effect estimates from the posterior samples in contrast to propensity score matching and subclassification,

for which there is lack of agreement regarding appropriate interval estimation.20,38 Finally, BART is easy to

implement and requires less researcher programming expertise. However, like any methods that do not first

discard units that fall out of areas of the covariate space where common support does not exist, one vulnerability

of BART is that there is no mechanism to prevent it from extrapolating over these areas.
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We surmise that the strengths of BART are transferable to the multiple treatment setting. In the sections that

follow, we conduct two sets of simulations to investigate the operating characteristics of BART for estimating the

causal effects of multiple treatments on a binary outcome, and compare BART to the existing methods discussed

previously. We further supply BART with a strategy to identify a common support region and compare it to the

propensity score-based strategy with respect to the proportion of units retained for inference and the accuracy of

treatment effect estimates based on the retained inferential units. We subsequently apply the methods examined to

analyze a large dataset on stage I–IIIA NSCLC patients, drawn from the SEER-Medicare registry, and estimate

the comparative effect of robotic-assisted surgery versus VATS and open thoracotomy on postoperative

outcomes.

2 Potential outcomes framework for multiple treatments

2.1 Notation and assumptions

Our notation is based on the potential outcomes framework, which was originally proposed by Neyman41 in the

context of randomization-based inference in experiments. Potential outcomes were generalized to observational

studies and Bayesian analysis by Rubin,42–44 in what is now known as the Rubin causal model.45

Consider a sample of N units, indexed by i ¼ 1; . . . ;N, drawn randomly from a target population, which

comprises individuals in a study designed to evaluate the effect of a treatment W on some outcome Y. Each

unit is exposed to one of total Z possible treatments, that isWi¼w if individual i was observed under treatment w,

where w 2 W ¼ f1; 2; . . . ;Zg. The number of units receiving treatment w is nw, where
XZ

w¼1
nw ¼ N. For each

unit i, there is a vector of pre-treatment covariates, Xi, that are not affected byWi. Let Yi be the observed outcome

of the ith unit given the assigned treatment, and fYið1Þ; . . . ;YiðZÞg the potential outcomes for the ith unit under

each treatment of W. For each unit, at most one of the potential outcomes is observed (the one corresponding to

the treatment to which the unit is exposed). All other potential outcomes are missing, which is known as the

fundamental problem of causal inference.45 Let rðw;XiÞ be the GPS, which is defined as the probability of

receiving treatment w given pre-treatment covariates, that is rðw;XiÞ ¼ PrðWi ¼ wjXiÞ, for 8w 2 f1; . . . ;Zg.19,20
This definition extends the propensity score21 from a binary treatment setting to the multiple treatment setting, in

which conditioning must be done on a vector of GPSs, defined as RðXiÞ ¼ ðrð1;XiÞ; . . . ; rðZ;XiÞÞ, or a function of

RðXiÞ.20 In addition, we define the response surface as fðw;XiÞ � E½YiðwÞjXi�, for w 2 f1; . . . ;Zg.
In general, causal effects are not identifiable without further assumptions because only one of the potential

outcomes is observed for every unit. We make the following identifying assumptions:

1. The stable unit treatment value assumption,46 that is no interference between units and no different versions of

a treatment.
2. The positivity or sufficient overlap assumption, that is 0 < pðWijYið1Þ; . . . ;YiðZÞ;XiÞ < 1; 8Wi 2 f1; . . . ;Zg,

which implies that there are no values of pre-treatment covariates that could occur only among units receiving

one of the treatments.
3. The treatment assignment is unconfounded, that is pðWijYið1Þ; . . . ;YiðZÞ;XiÞ ¼ pðWijXiÞ; 8Wi 2 f1; . . . ;Zg,

which implies that the set of observed pre-treatment covariates, Xi, is sufficiently rich such that it includes all

variables directly influencing both Wi and Yi; in other words, there is no unmeasured confounding.

Under the unconfoundedness assumption, for any treatment w and pre-treatment covariates Xi

fðw;XiÞ ¼ E½YiðwÞjWi ¼ w;Xi� ¼ E½YijWi ¼ w;Xi� (1)

where the second identity is the conditional mean function of the observed outcomes.

2.2 Definition of causal effects

Causal effects are summarized by estimands, which are functions of the unit-level potential outcomes on a

common set of units.42,44 For dichotomous outcomes, causal estimands can be the RD, OD, or RR. For purposes

of illustration, we use RD in this paper.
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Following Lopez and Gutman,14 we provide a broad definition of the causal RD that may be of interest with

multiple treatments. Define s1 and s2 as two subgroups of treatments such that s1; s2 � W and s1 \ s2 ¼ 1. Next,

let js1j and js2j be the cardinality of s1 and s2, respectively. Two commonly used causal estimands are the ATEs1;s2 ,

and the ATE among those receiving s1, ATTs1js1;s2 , where

ATEs1;s2 ¼ E

X
w2s1YiðwÞ
js1j �

X
w02s2Yiðw0Þ
js2j

" #
;

ATTs1js1;s2 ¼ E

X
w2s1YiðwÞ
js1j �

X
w02s2Yiðw0Þ
js2j jWi 2 s1

" # (2)

In equation (2), the expectation is over all units, i ¼ 1; . . . ;N, and the summation is over the potential outcomes

of a specific unit. Another set of causal estimands are the conditional treatment effects, given pre-treatment

covariates Xi

CATEs1;s2 ¼ E

X
w2s1YiðwÞ
js1j �

X
w02s2Yiðw0Þ
js2j jXi; hYjX

" #

CATTs1js1;s2 ¼ E

X
w2s1YiðwÞ
js1j �

X
w02s2Yiðw0Þ
js2j jWi 2 s1;Xi; hYjX

" # (3)

where the parameters hYjX and hX index the conditional distribution pðYjXÞ and distribution pðXÞ, respectively.
Causal inference methods via modeling the response surfaces (e.g. BART and RA) arrive at the population or

sample marginal treatment effects by integrating the conditional effects over the distribution of Xi.
47 In most

cases, however, it is difficult to model the possibly multi-dimensional Xi. We can obtain the marginal effects by

averaging the treatment effects conditional on the observed values of the covariates over the empirical distribution

of fXigNi¼1

ATEs1;s2 ¼
Z

CATEs1;s2ðX; hYjXÞdFXðX; hXÞ

ATTs1js1;s2 ¼
Z

CATTs1js1;s2ðX; hYjXÞdFXðX; hXÞ
(4)

In our motivating example, one of the research questions of interest is to compare the effectiveness of a newer

minimally invasive procedure (i.e. robotic-assisted surgery) versus the existing surgical procedures (e.g. VATS) in

the overall population, or among those patients who received robotic-assisted surgery. The corresponding target

causal estimands are defined as

ATE1;2 ¼
Z

E½Yið1Þ � Yið2ÞjXi; hYjX�dFXðX; hXÞ

ATT1j1;2 ¼
Z

E½Yið1Þ � Yið2ÞjWi ¼ 1;Xi; hYjX�dFXðX; hXÞ
(5)

2.3 Treatment effects using BART

Under the identifying assumptions, treatment effects such as ATT1j1;2 can be estimated by contrasting the imputed

potential outcomes between robotic-assisted surgery and VATS groups among those patients who received

robotic-assisted surgery, predicted from the estimates of the respective response surface models. In principle,

any method that can flexibly estimate fðw;XiÞ could be used to predict the potential outcomes. Chipman et al.36,37

demonstrated that BART has important advantages as a predictive algorithm over alternative methods in the

machine learning literature such as classification and regression trees,48 boosting,49 and random forests,50 in

particular with regard to choosing tuning parameters and generating coherent uncertainty intervals.
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BART is a Bayesian ensemble method that models the mean outcome given predictors by a sum of trees. For a
binary outcome, the BART model can be expressed using the probit model setup as

fðw;XiÞ ¼ EðYijWi ¼ w;XiÞ ¼ U
XJ
j¼1

gjðw;Xi;Tj;MjÞ
8<:

9=; (6)

where U is the standard normal c.d.f., each (Tj, Mj) denotes a single subtree model in which Tj denotes the
regression tree and Mj is a set of parameter values associated with the terminal nodes of the jth regression tree,
gjðw;XiÞ represents the mean assigned to the node in the jth regression tree associated with covariate value Xi and
treatment level w, and the number of regression trees J is considered to be fixed and known. The details of the
specification of prior distribution and the choice of hyper-parameters can be found in Chipman et al.37 Sampling
from the posterior distributions proceeds via a Bayesian backfitting MCMC algorithm.37 A total of L Markov
Chain Monte Carlo (MCMC) samples of model parameters (Tj, Mj) are drawn from their posterior distribution.
For each of L draws, we predict the potential outcomes for each unit and the relevant treatment level. The causal
estimand of interest can be estimated by contrasting the imputed potential outcomes between treatment groups.
For example, ATT1j1;2 can be estimated as follows

dATT1j1;2 ¼ ðn1LÞ�1
XL
l¼1

X
i:Wi¼1

flð1;XiÞ � flð2;XiÞ
� �

¼ ðn1LÞ�1
XL
l¼1

X
i:Wi¼1

U
XJ
j¼1

gjð1;Xi;T
l
j;M

l
jÞ

24 35� U
XJ
j¼1

gjð2;Xi;T
l
j;M

l
jÞ

24 358<:
9=;

(7)

where ðTl
j;M

l
jÞ are the lth draw from the posterior distribution of (Tj, Mj). We can obtain the point and interval

estimates of the treatment effect directly using the summary of posterior samples.

2.4 Common support

Because problems can arise when drawing inference to regions of the covariate space where there are insufficient
number of units in all treatment groups, propensity score-based methods are typically equipped with strategies for
defining a common support region. For BART, there is no such a mechanism to prevent it from extrapolating
over areas where a common support does not exist.

For a binary treatment, one strategy is to discard units that fall beyond the range of the propensity score.51,52

Hill and Su39 argue that these strategies typically ignore the information embedded in the response variable and
propose alternative discarding rules. Illustrative examples with one or two predictors were used to compare the
two types of discarding strategies and their implications on estimation of the causal effects and the proportion of
inferential units retained. Advantages of BART over the propensity score approach manifest in examples where
there is lack of common support for variables only predictive of treatment but not of the outcome or the treatment
mechanism is more difficult to model. However, in practice, identifying common support is often required for a
high-dimensional covariate space. In addition, the two types of strategies have not been compared in the multiple
treatment setting.

To address these limitations, we propose a strategy for BART to define both a common support region and the
corresponding discarding rules. Whereas Hill and Su39 use a common support for binary treatment using the 1 sd
rule, our empirical simulations suggest this rule may be too relaxed in the setting of three or more treatment
groups. We use a sharper cutoff and identify a common support as follows. We discard any unit i, withWi¼w, for
which sfw0i > maxjfsfwj g; 8j : Wj ¼ w, where sfwj and sfw0j denote the standard deviation of the posterior distribution
of the potential outcomes under treatment W¼w and W ¼ w0, respectively, for a given unit j.

For multiple treatments with Z¼ 3, when estimating the ATT of treatment W¼ 2 and W¼ 3 among those
treated with W¼ 1, we discard for unit i with Wi¼ 1, if

sf2i > maxjfsf1j g; and
sf3i > maxjfsf1j g

(8)
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When estimating the ATEs, we apply the discarding rule in equation (8) to each treatment group.
There is likewise a lack of consensus for defining a common support region with GPS-based approaches. For

matching using the GPS, Lopez and Gutman14 propose a rectangular support region. Let rðw;XÞ denote the

treatment assignment probability for w, and let rðw;XjW ¼ w0Þ represent treatment assignment probability for

w among those who received treatment w0. A rectangular common support region can be defined as follows with

Z¼ 3. For any w;w0 2 W ¼ f1; 2; 3g

rðw;XÞlow ¼ maxfminðrðw;XjW ¼ 1ÞÞ;minðrðw;XjW ¼ 2ÞÞ;minðrðw;XjW ¼ 3ÞÞg
rðw;XÞhigh ¼ minfmaxðrðw;XjW ¼ 1ÞÞ;maxðrðw;XjW ¼ 2ÞÞ;maxðrðw;XjW ¼ 3ÞÞg

(9)

For weighting methods, techniques such as trimming32 or stabilizing (more useful for time-varying confound-

ing, see Hu et al.,53 Hu and Hogan,54 and Hernán and Robins55) are frequently used in place of a common

support. However, the lack of common support in the covariate space may lead to extreme weights and unstable

IPTW estimators. In this article, we used fixed quantile-based trimming. More recently, Ju et al.56 developed an

adaptive truncation approach based on the collaborative TMLE methodology and showed their estimators

achieved the best performance for both point estimation and confidence interval coverage among all propensity

score truncation-based estimators.

3 Simulation studies

3.1 Design and implementation

We conduct expansive simulations in order to better understand how BART will work in complex causal settings.

Our first set of simulations, Simulation 1, contrasts BART with other approaches, while our second set,

Simulation 2, looks into the role that covariate overlap plays in inferences with multiple treatments.
The design of both simulations mimics the range of scenarios that are representative of the data structure in the

SEER-Medicare registry. Three treatment levels (Z¼ 3) are used throughout, with pairwise ATTs of RD are our

outcome of interest. True treatment effects are computed based on a simulated superpopulation of size 100,000.

We replicated each of the scenarios described below 200 times within sub-populations of the superpopulation. In

Simulation 1, we began with the comparisons of 10 methods: (1) RA, (2) IPTW with weights estimated using

multinomial logistic regression (IPTW-MLR), (3) IPTW with weights estimated using generalized boosted models

(IPTW-GBM), (4) IPTW with weights estimated using super learner (IPTW-SL), (5) IPTW-MLR with trimmed

weights, (6) IPTW-GBM with trimmed weights, (7) IPTW-SL with trimmed weights, (8) VM, (9) TMLE, (10)

BART. We used VM to only estimate the ATT effects as the algorithm for estimating the ATEs has not been fully

developed, and implemented TMLE to only estimate the ATE effects as we are not aware of any implementation

of TMLE for the estimation of ATT effects for multiple treatment options. In simulation 2, only BART, TMLE,

and IPTW-GBM, the top performing methods in Simulation 1, were further examined.
We implemented the methods as follows. For RA, we first fit a Bayesian logistic regression model with main

effects of all confounders using the bayesglm() function in the arm package in R. We then drew a total of 1000

MCMC samples of regression coefficients from their posterior distributions and predicted the potential outcomes

for each unit and relevant treatment group. When implementing IPTW, we estimated GPSs by including each

confounder additively to a multinomial logistic regression model, a GBM, and a SL model, respectively. The

stopping rule for the optimal iteration of GBM was based on maximum of absolute standardized bias, which

compares the distributions of the covariates between treatment groups.24 We implemented SL using the weightit()

function in the R package WeightIt for multinomial treatment and included three algorithms: main terms regres-

sion, generalized additive model, and support vector. The treatment probabilities are normalized to sum to one.

The weights—inverse of the GPSs—were then trimmed at 5 and 95% to generate trimmed IPTW estimators.

GPSs for VM were estimated using multinomial logistic regression with main effects of all confounders. We used a

combination of k-means clustering with k¼ 5 subclasses and one-to-one matching with replacement and a caliper

of 0.25 to ensure that the matched cohort is relatively similar in terms of the distributions of the confounders. We

used the R package tmle to implement TMLE as described in Rose and Normand.34 We used SL to estimate each

treatment probability and bound them from below to 0.025. Applying BART to the simulation datasets, we used

the default priors associated with the bart() function available in the BART package in R. For each BART fit, we
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allowed the maximum number of trees in the sum to be 100. To ensure the convergence of the MCMC in BART,

we let the algorithm run for 5000 iterations with the first 3000 considered as burn-in.
To judge the appropriateness of each technique, we use mean absolute bias (MAB), root mean squared error

(RMSE), and coverage probability (CP). In addition, we examine the large-sample convergence property of each

method.

3.1.1 Simulation 1: Which causal approach yields the lowest bias and RMSE?

We compare each of the 10 approaches across a combination of two design factors: the study sample size (i.e. the

total number of units) and the ratio of units in the treatment groups. We varied the two factors in three scenarios:

(1) 1200 with a 1:1:1 ratio, (2) 4000 with a 1:5:4 ratio, and (3) 11,600 with a 1:15:13 ratio to represent equal,

moderately unequal, and highly unequal sample sizes across treatment groups. The relatively small sample size

(400) in the first group—which will be used as the reference group of the ATT effects—and the scenario of highly

unequal sample sizes mimic the SEER-Medicare data in the motivating study.
We considered 10 confounders with five continuous variables and five categorical variables. We assumed that

both the treatment assignment mechanism and the response surfaces are nonlinear models of the confounders, as

a realistic representation of the application data. Specifically, the treatment assignment follows a multinomial

logistic regression model

ln
PðW ¼ 1Þ
PðW ¼ 3Þ ¼ a1 þ XnL1 þQnNL

1

ln
PðW ¼ 2Þ
PðW ¼ 3Þ ¼ a2 þ XnL2 þQnNL

2

(10)

where Q denotes the nonlinear transformations and higher-order terms of the predictors X, nL1 and nL2 are vectors

of coefficients for the untransformed versions of the predictors X and nNL
1 and nNL

2 for the transformed versions of

the predictors captured in Q. The intercepts, a1, a2, were specified to create the corresponding ratio of units in

three treatment groups in each scenario. We generated three sets of parallel response surfaces as follows

E½Yð1ÞjX� ¼ logit�1fs1 þ XcL þQcNLg
E½Yð2ÞjX� ¼ logit�1fs2 þ XcL þQcNLg
E½Yð3ÞjX� ¼ logit�1fs3 þ XcL þQcNLg

(11)

where regression coefficients (s1; s2; s3, c
L, and cNL) were chosen so that the prevalence rates in the treatment

groups were similar as the rates of respiratory complications observed in the SEER-Medicare data (see Table 3).

By generating nonparallel response surfaces across treatment groups, we can induce heterogeneous treatment

effects. This topic warrants a stand-alone research and is beyond the scope of this article. Details of model

specification in equations (10) and (11) are given in Table S1 of Supplementary Materials. The observed outcome

Y is related to the potential outcome Y(w) via Yi ¼
X

w2fw1;w2;...;wZgYiðwÞIðWi ¼ wÞ.

3.1.2 Simulation 2: How do levels of covariate overlap impact causal estimates?

Only BART, TMLE, and IPTW-GBM, the top performing methods in Simulation 1, are used in Simulation 2,

which more deeply examines the impact of covariate overlap.
We generated datasets following the simulation configuration of scenario 3 in Simulation 1, including the total

sample size, the ratio of units, the number of continuous and categorical confounders, and the response surface

models, to mimic the SEER-Medicare dataset. To create varying covariate overlaps that are “measurable” in

degrees, we generate the treatment variable and covariate distribution as follows.
Three levels of covariate overlap were designed: (1) weak—there is lack of overlap in the covariate space defined

by all 10 confounders, (2) strong—there is strong overlap with respect to each of the 10 confounders, and (3)

moderate—the five categorical variables had sufficient overlap as in the strong scenario and overlap is lacking for

the five continuous variables. Two configurations were examined in the moderate scenario. All of the five con-

tinuous variables or only two of them were included in the response surface models, resulting in one configuration

where overlap was lacking for a variable that was a true confounder and another configuration when overlap was

lacking for a variable that was not predictive of the response surface (therefore not a true confounder).
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This simulation is designed to make it difficult for any method to successfully estimate the true treatment effect,

as both the treatment assignment and the outcome are difficult to model. We simulated datasets for each scenario

as follows.

• Weak. We assumed that the treatment variable W followed a multinomial distribution,

W�MultinomialðN; p1; p2; p3Þ, and generated the treatment assignment by setting N¼ 11,600,

p1 ¼ :03; p2 ¼ :52, and p3 ¼ :45. The covariates were generated from the distributions conditional on treatment

assignment to create sufficient or lack of overlap. The continuous variables were generated independently from

XjjW ¼ 1�Nð�1; 1Þ; XjjW ¼ 2�Nð1; 1Þ; XjjW ¼ 3�Nð3; 1Þ for j ¼ 1; . . . ; 5. The categorical variables were

generated independently from XjjW ¼ 1�MultinomialðN; :3; :3; :4Þ; XjjW ¼ 2�MultinomialðN; :6; :2; :2Þ;
XjjW ¼ 3�MultinomialðN; :8; :1; :1Þ, for j ¼ 6; . . . ; 10. The potential outcomes of each treatment group were

drawn from the response surface models (11), with all of the 10 covariates included (i.e. all covariates are true

confounders). Under this scenario, lack of overlap was designed for each of the 10 confounders.
• Strong. The treatment variable W was generated in the same way as in the weak scenario. We created strong

covariate overlap by generating similar distributions of the covariates across the treatment groups for all 10

confounders X1 � X10. Specifically, we assumed XjjW�Nð:05W; 1� 0:05WÞ for j ¼ 1; . . . ; 5, and

XjjW�MultinomialðN; :3� :001W; :3þ :001W; :4Þ for j ¼ 6; . . . ; 10.
• Moderate. We generated five categorical confounders X6 � X10 with strong overlap and lack of overlap for five

continuous variables X1 � X5. We distinguished the situation where overlap is lacking for a variable that is not

predictive of the outcome (moderate I) and the situation when it is lacking for a true confounder (moderate II).

Specifically, we assumed that XjjW ¼ 1�Nð�0:5; 1Þ; XjjW ¼ 2�Nð1; 1Þ; XjjW ¼ 3�Nð2:5; 1Þ for j ¼ 1; . . . ; 5
and XjjW�MultinomialðN; :3� :001W; :3þ :001W; :4Þ for j ¼ 6; . . . ; 10. In moderate I, the response surface

models only included covariates X1;X5;X6 � X10, thus, X2, X3, and X4 that defined a covariate area in which

the lack of overlap occurred are non-confounders. In moderate II, covariates X1 � X10 were all included in the

response surface model, inducing lack of overlap in five true confounders.

Distributions of estimated GPSs across the treatments are compared using boxplots. For each overlap scenario,

we estimated the GPS for each unit in the sample using GBMs, and plotted the distributions of estimated GPSs

using a separate boxplot for the unit receiving each type of treatment (Figure 1). Substantial overlap in boxplots

is presented in the strong overlap scenario, while the weak overlap scenario highlights the different distributions

of GPSs.

3.2 Simulation results

3.2.1 Simulation 1

Table 1 presents the MAB, RMSE, and CP of the estimates of two ATT effects ATT1j1;2 and ATT1j1;3, and three

ATE effects ATE1;2; ATE1;3, and ATE2;3, for the three scenarios in Simulation 1.
No single method trumped others in estimating both ATT1j1;2 and ATT1j1;3 across all three scenarios. For

ATT1j1;2, outcome modeling approaches had smaller MABs and RMSEs, whereas for ATT1j1;3, GPS approaches

showed similar or slightly better performance than BART. RA performed best under the scenario of equal sample

sizes. As the sample sizes in the comparison groups grew relative to the reference group, BART generally pro-

duced low MAB and RMSE. With GPS approaches, IPTW-GBM outperformed IPTW-MLR, IPTW-MLR-

Trim, IPTW-SL, and IPTW-SL-Trim in the estimates of ATT1j1;2 across all three scenarios, but had similar

performances in estimating ATT1j1;3. Weight trimming did not improve IPTW-MLR, IPTW-GBM, or IPTW-

SL. VM presented larger bias and RMSE than BART and IPTW-GBM. None of the methods had nominal CP.

IPTW methods and RA in general generated greater than the nominal CP, VM had a CP that decreased as the

ratio of units became more unbalanced (0.99 to 0.80), and BART yielded a CP around 0.80–0.88, which we

suspect is because the reference group is relatively small. Overall, BART and IPTW-GBM tended to show the best

performances across settings for the ATT estimates.
For the ATE estimates, BART consistently provided lower MAB and RMSE followed by TMLE, across all

three scenarios with different ratio of units. BART had nominal CP across all three scenarios. IPTW methods and

TMLE yielded conservative intervals and greater than the nominal CP. RA was sensitive to the ratio of units. In

the scenario with highly unequal sample sizes across treatment groups, RA had subpar performance. The intervals

produced by RA rarely covered the true effects, resulting in a low CP. Altogether, BART and TMLE provided the
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best performances across settings for the ATE estimates. Boxplots of biases from 200 replications in pairwise ATT

and ATE estimates appear in Figures S1 and S2 in Supplemental Materials.
In Figure 2, we examined the large-sample convergence property of each of six methods. We considered only

the scenario with the ratio of units¼ 1:15:13, which is the most representative of the SEER-Medicare registry. We

simulated the data with increasing sample sizes of n ¼ (2900, 5800, 8700, 11,600, 14,500, 17,400). We computed

the RMSE of the estimates of ATT1j1;2 and ATT1j1;3 for each n. We then regressed logðRMSEÞ on (�logn) using a

simple linear regression with a slope b for each method. The least-squares estimation of b approximates the

convergence rate.57 BART and GBMs converged at a rate of Oðn�1=2Þ for both ATT estimates. IPTW-MLR,

IPTW-SL, VM, and RA all converged at a slower rate than Oðn�1=2Þ. Figure S3 in Supplemental Materials

displays the convergence property of each of six methods for the estimates of the ATE estimates. BART and

TMLE converged at a rate of Oðn�1=2Þ for all of the pairwise ATE estimates. GBMs varied in the rate of

convergence across three pairwise ATE effects, from Oðn�1=2Þ to Oðn�2=5Þ to Oðn�1=3Þ. IPTW-MLR, IPTW-S,

and RA all had a much slower convergence rate.

3.2.2 Simulation 2

Figure 3 displays boxplots of biases of ATT1j1;2 and ATT1j1;3 among 200 simulations under four levels of overlap

for each of IPTW-GBM, IPTW-GBM with trimmed weights, BART, and BART with discarding rules (Figure 3

(a)); and boxplots of biases of ATE1;2; ATE1;3, and ATE2;3 for each of TMLE, BART, and BART with discarding

rules (Figure 3(b)).
BART boasted smaller bias under nearly all levels of overlap compared to TMLE and IPTW-GBM. The

advantage is more evident when there is more lack of covariate overlap. The larger biases and RMSEs (see Table

S2 and Table S3 in Supplemental Materials) in the IPTW-GBM estimates under the weak scenario relative to

moderate and strong overlap suggest that weighting by the GPS—even by employing flexible machine learning

techniques—suffers from insufficient covariate overlap. The doubly robust method, TMLE, did not show as much

variation in its performance across different levels of covariate overlap. In addition, in the weak scenario, weight

trimming largely altered the IPTW-GBM estimates, indicating the lack of overlap may have led to extreme GPSs.

GPS methods ignore the information in the outcome variable, thus assessing covariate overlap regardless of

Figure 1. Overlap assessment for the scenarios of (a) weak, (b) moderate, and (c) strong covariate overlap. Each panel presents
boxplots by treatment group of the estimated GPSs for one of the treatments, PðWi ¼ wjXÞ; w 2 f1; 2; 3g, for every unit in the
sample. The left panel presents treatment 1 (W¼ 1), the middle panel presents treatment 2 (W¼ 2), and the right panel presents
treatment 3 (W¼ 3).
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whether the variables are true confounders; BART, on the contrary, takes advantage of the information contrib-

uted by the outcome. This is demonstrated by the similar performance delivered by IPTW-GBM in moderateI

(lack of overlap in non-confounders) and moderateII (lack of overlap in true confounders), and better perfor-

mance of BART in moderateI than in moderateII. BART perhaps recognized, in moderateI, that X2, X3, and X4 do

not play an important role in the response surface and showed a better performance than IPTW-GBM (smaller

bias in both treatment effects).
Our BART discarding rule (8) considerably reduced the biases in the estimates of both ATE and ATT effects in

the weak scenario where there was substantial lack of covariate overlap. When the lack of covariate overlap was

moderate, the discarding strategy noticeably improved over plain BART. When there was sufficient covariate

overlap, BART with and without discarding performed equally well. The weighting methods and TMLE are not

coupled with discarding rules. To get a sense of the proportion of units that would be retained in the common

support region for inference based on the GPSs, we applied the GPS-based discarding rule, employed by VM,

designed for obtaining a common support region for multiple treatments (9). Using BART, the percentages of

discarded units in the treated group, averaged across 200 replications, in the weak, moderateI, moderateII, and

strong scenario were 38, 24, 15, and 0.2%, respectively, as compared to 86, 42, 42, and 13% computed by the

GPS-based discarding rule (9). BART retains a much larger common support region while providing more

accurate treatment effect estimates.

Table 1. Comparison of the estimated average treatment effects on the treated in terms of mean absolute bias (MAB), root mean
square error (RMSE), and coverage probability (CP) across 200 replications in Simulation 1. The causal estimand is based on risk
difference.

ATT1j1;2 ATT1j1;3 ATE1;2 ATE1;3 ATE2;3

Scenario Method MAB RMSE CP MAB RMSE CP MAB RMSE CP MAB RMSE CP MAB RMSE CP

RA 0.01 0.02 0.99 0.03 0.04 0.99 0.01 0.02 0.99 0.03 0.04 0.98 0.02 0.02 0.99

IPTW-MLR 0.06 0.07 1 0.04 0.05 1 0.07 0.08 1 0.04 0.05 1 0.09 0.10 1

IPTW-MLR-Trim 0.06 0.07 1 0.04 0.05 1 0.07 0.08 1 0.04 0.05 1 0.09 0.10 1

IPTW-GBM 0.05 0.06 0.99 0.05 0.06 0.98 0.07 0.07 1 0.06 0.07 0.98 0.13 0.13 0.96

I IPTW-GBM-Trim 0.06 0.07 0.99 0.05 0.06 0.98 0.06 0.06 0.98 0.06 0.07 1 0.11 0.12 0.96

IPTW-SL 0.06 0.07 1 0.05 0.06 1 0.07 0.08 1 0.05 0.06 1 0.12 0.13 1

IPTW-SL-Trim 0.06 0.07 1 0.06 0.08 1 0.06 0.07 1 0.05 0.05 1 0.10 0.11 1

VM 0.05 0.07 0.99 0.06 0.08 0.93 – – – – – – – – –

BART 0.03 0.04 0.88 0.04 0.05 0.80 0.03 0.03 0.96 0.03 0.03 0.95 0.03 0.04 0.95

TMLE – – – – – – 0.04 0.05 1 0.02 0.03 1 0.05 0.06 1

RA 0.02 0.02 1 0.05 0.05 0.92 0.02 0.02 0.80 0.05 0.05 0.60 0.03 0.03 0.67

IPTW-MLR 0.05 0.06 1 0.03 0.03 0.99 0.06 0.08 1 0.04 0.05 1 0.07 0.07 1

IPTW-MLR-Trim 0.06 0.06 1 0.03 0.03 0.99 0.06 0.07 1 0.03 0.04 1 0.08 0.08 1

IPTW-GBM 0.03 0.04 0.98 0.03 0.04 0.99 0.05 0.05 0.98 0.05 0.06 1 0.09 0.09 0.94

II IPTW-GBM-Trim 0.05 0.06 0.98 0.04 0.04 0.99 0.05 0.05 0.98 0.05 0.06 1 0.09 0.09 1

IPTW-SL 0.06 0.06 1 0.04 0.04 0.99 0.06 0.07 1 0.05 0.05 1 0.11 0.11 1

IPTW-SL-Trim 0.06 0.07 1 0.06 0.06 0.99 0.06 0.07 1 0.05 0.05 1 0.10 0.10 1

VM 0.04 0.05 0.86 0.05 0.07 0.88 – – – – – – – – –

BART 0.02 0.03 0.80 0.03 0.04 0.75 0.02 0.02 0.96 0.01 0.02 0.98 0.01 0.02 0.94

TMLE – – – – – – 0.04 0.04 1 0.02 0.02 1 0.04 0.04 0.96

RA 0.03 0.03 1 0.07 0.07 0.44 0.03 0.03 0.06 0.07 0.07 0.03 0.04 0.04 0.03

IPTW-MLR 0.06 0.06 1 0.02 0.03 0.73 0.07 0.08 1 0.05 0.06 1 0.07 0.07 1

IPTW-MLR-Trim 0.06 0.07 1 0.02 0.03 1 0.06 0.07 1 0.03 0.04 1 0.07 0.08 1

IPTW-GBM 0.03 0.04 1 0.02 0.03 0.98 0.04 0.05 0.98 0.04 0.05 1 0.06 0.06 0.98

III IPTW-GBM-Trim 0.06 0.06 1 0.02 0.03 0.98 0.04 0.05 1 0.05 0.05 1 0.06 0.06 0.10

IPTW-SL 0.06 0.06 0.99 0.03 0.03 1 0.06 0.07 1 0.04 0.05 1 0.10 0.10 1

IPTW-SL-Trim 0.06 0.07 0.99 0.04 0.05 1 0.06 0.07 1 0.04 0.05 1 0.10 0.10 0.99

VM 0.03 0.04 0.80 0.05 0.06 0.78 – – – – – – – – –

BART 0.02 0.03 0.76 0.03 0.04 0.74 0.02 0.03 0.95 0.02 0.03 0.96 0.01 0.01 0.94

TMLE – – – – – – 0.03 0.03 0.98 0.01 0.02 0.97 0.03 0.03 0.96

ATT: Average treatment effect on the treated; BART: Bayesian additive regression trees; IPTW-GBM: IPTW with weights estimated using generalized

boosted models; IPTW-MLR: IPTW with weights estimated using multinomial logistic regression; IPTW-SL: IPTW with weights estimated using super

learner; RA: regression adjustment; TMLE: Targeted maximum likelihood estimation; VM: vector matching.
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4 Application to SEER-Medicare data on NSCLC

Clinical encounter and Medicare claims data on 11,980 patients with stage I–IIIA NSCLC were drawn from the

latest SEER-Medicare database. These patients were above 65 years of age, diagnosed between 2008 (first year

patients in the registry underwent robotic-assisted surgery) and 2013, and underwent surgical resection via one of

the three approaches, including robotic-assisted surgery, VATS, or open thoracotomy. The dataset contains

individual-level information at baseline on the following variables: age, gender, marital status, race, ethnicity,

income level, comorbidities, cancer stage, tumor size, tumor site, cancer histology, and whether they underwent

positron emission tomography, chest computed tomography, or mediastinoscopy. Table 2 summarizes these

variables for each surgical approach. We compared the effectiveness of the three surgical approaches in terms

of four outcomes: the presence of respiratory complication within 30 days of surgery or during the hospitalization

in which the primary surgical procedure was performed, prolonged length of stay (LOS) (i.e.> 14 days), intensive

care unit (ICU) stay following surgery, and readmission within 30 days of surgery. Table 3 presents the outcome

rates in the three surgical groups.
Among the 11,980 patients, 396 (3.3%) received robotic-assisted surgery, 6582 (54.9%) underwent VATS, and

5002 (41.8%) were operated via open thoracotomy. We estimated the causal effects of robotic-assisted surgery

versus VATS or open thoracotomy among patients who underwent robotic-assisted surgery (i.e. ATTs1js1;s2 and

ATTs1js1;s3 ) and in the overall population (i.e. ATEs1;s2 and ATEs1;s3 ) using BART, RA, IPTW with GPSs estimated

using multinomial logistic regression or GBMs (with or without trimming), and VM. Each method was imple-

mented as described in Section 3. All pre-treatment covariates were included additively to the GPS models for

IPTW methods and VM, and to the response surface models for RA and BART.
Table S4 in Supplemental Materials presents the point and interval estimates of ATTs1js1;s2 and ATTs1js1;s3 based

on RD for all the methods examined. To provide uncertainty intervals for the treatment effect estimates, non-

parametric bootstrap was used for the IPTW methods and VM, and Bayesian posterior intervals were used for

RA and BART. All methods yielded statistically insignificant effects on respiratory complication and readmission

if patients who received robotic-assisted surgery had instead been treated with open thoracotomy or VATS. For

prolonged LOS and ICU stay, all methods except RA and VM suggested that robotic-assisted surgery led to

significant smaller rates of the outcomes compared to open thoracotomy, but no statistically significant differences

compared to VATS. The results from this empirical dataset provided partial evidence that robotic-assisted surgery

Figure 2. The large-sample convergence rate of each of six methods for the estimates of two treatment effects, ATT1j1;2 and ATT1j1;3.
BART and IPTW-GBM converged the fastest, approximately at a rate of Oðn�1=2Þ. RA converged the slowest, approximately at a rate
of Oðn�1=20Þ. ATT: Average treatment effect on the treated; BART: Bayesian additive regression trees; IPTW-GBM; IPTW with weights
estimated using generalized boosted models; IPTW-MLR: IPTW with weights estimated using multinomial logistic regression; IPTW-
SL: IPTW with weights estimated using super learner; RA: regression adjustment; RMSE: root mean squared error; VM: vector
matching.
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may have a positive effect on some postoperative outcomes among those who were operated with robotic-assisted

surgery compared to open resection, but no advantages on over VATS.
To highlight the importance of simultaneous comparisons of multiple treatments, we implemented each

method using SBCs to show how such inappropriate practices can result in different and confusing estimates

of treatment effects. Table S4 also includes the estimates of ATTs1js1;s2 and ATTs1js1;s3 from SBCs. For BART, the

conclusions are generally consistent with those using multiple treatment comparisons, though we note several

inconsistent directions of the estimates of treatment effects. Given the different estimands and sub-populations to

which inference using SBCs is generalizable when using GPS-based approaches, it would generally be inappro-

priate to directly compare causal estimates. However, we note that IPTW methods, implemented using SBCs, did

not always match the findings that were based on IPTW methods designed for multiple treatments. The ATE

estimates appear in Table S5 in Supplementary Materials.
We further explored the sensitivity of BART for binary outcomes to the choice of end-node prior, specifically

via the hyperparameter k.40 We employed 5-fold cross-validation to choose the optimal k that minimizes the

misclassification error. Results suggested the optimal hyperparameter k¼ 2, which is the default value of k in the

bart() function (not shown). Moreover, we extended the 1 sd rule, the discarding rule of BART proposed by Hill

and Su,39 to the multiple treatment setting, to assess whether common support between treatment groups is

reasonable based on the uncertainty in the posterior predictive distributions associated with the outcome in the

observed versus the counter-factual treatment group. We did not exclude any patients from the empirical dataset

based on the discarding rule in equation (8).

Figure 3. Biases among 200 replications under scenarios of differing covariate overlap for IPTW-GBM versus BART and two
treatment effects ATT1j1;2 and ATT1j1;3; and for TMLE versus BART and three treatment effects ATE1;2; ATE1;3, and ATE2;3. (a) BART-
discard versus GBM for ATT estimates and (b) BART-discard versus TMLE for ATE estimates. ATE: Average treatment effects; ATT:
Average treatment effect on the treated; BART: Bayesian additive regression trees; IPTW-GBM: IPTW with weights estimated using
generalized boosted models; TMLE: targeted maximum likelihood estimation.
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Table 2. Baseline characteristics of patients in three surgical groups in SEER-Medicare data.

Robotic-assisted surgery VATS Open thoracotomy

Characteristics N¼ 396 N¼ 6582 N¼ 5002

Age (years), mean (SD) 74.3 (5.7) 73.9 (5.4) 74.5 (5.7)

Female, N (%) 223 (56.3) 3446 (52.4) 2941 (58.8)

Married, N (%) 227 (57.3) 3753 (57.0) 2802 (56.0)

Race, N (%)

White 320 (80.8) 5694 (86.5) 4369 (87.3)

Black 21 (5.3) 364 (5.5) 248 (5.0)

Hispanic 15 (3.8) 218 (3.3) 139 (2.8)

Other 40 (10.1) 306 (4.6) 246 (4.9)

Median household annual income, N (%)

1st quartile 97 (24.5) 2132 (32.4) 1009 (20.2)

2nd quartile 88 (22.2) 1729 (26.3) 1193 (23.9)

3rd quartile 98 (24.7) 1345 (20.4) 1143 (22.9)

4th quartile 113 (28.5) 1376 (20.9) 1657 (33.1)

Charlson comorbidity score, N (%)

0� 1 154 (38.9) 2163 (32.9) 1810 (36.2)

1� 2 113 (28.5) 1944 (29.5) 1379 (27.6)

>2 129 (32.6) 2475 (37.6) 1813 (36.2)

Year of diagnosis, N (%)

2008–2009 14 (3.5) 2686 (40.8) 1484 (29.7)

2010 33 (8.3) 1123 (17.1) 857 (17.1)

2011 85 (21.5) 1033 (15.7) 866 (17.3)

2012 131 (33.1) 899 (13.7) 821 (16.4)

2013 133 (33.6) 841 (12.8) 974 (19.5)

Cancer stage, N (%)

Stage I 295 (74.5) 4195 (63.7) 3884 (77.6)

Stage II 63 (15.9) 1504 (22.9) 709 (14.2)

Stage IIIA 38 (9.6) 883 (13.4) 409 (8.2)

Tumor size, in mm, N (%)

�20 160 (40.4) 1967 (29.9) 2232 (44.6)

21� 30 98 (24.7) 1696 (25.8) 1388 (27.7)

31� 50 109 (27.5) 1804 (27.4) 987 (19.7)

�51 29 (7.3) 1084 (16.5) 367 (7.3)

Histology, N (%)

Adenocarcinoma 255 (64.4) 3757 (57.1) 3348 (66.9)

Squamous cell carcinoma 107 (27.0) 2165 (32.9) 1167 (23.3)

Other histology 34 (8.6) 660 (10.0) 487 (9.7)

Tumor site, N (%)

Upper lobe 215 (54.3) 3829 (58.2) 2859 (57.2)

Middle lobe 27 (6.8) 308 (4.7) 335 (6.7)

Lower lobe 141 (35.6) 2195 (33.3) 1720 (34.4)

Other site 13 (3.3) 250 (3.8) 88 (1.8)

PET scan, N (%) 302 (76.3) 5004 (76.0) 3410 (68.2)

Chest CT, N (%) 263 (66.4) 4525 (68.7) 3148 (62.9)

Mediastinoscopy, N (%) 62 (15.7) 715 (10.9) 420 (8.4)

CT: computed tomography; PET: positron emission tomography; SD: standard deviation; VATS: video-assisted thoracic surgery.

Table 3. The outcome rates in three surgical groups: robotic-assisted surgery, VATS, and open thoracotomy.

Outcomes Robotic-assisted surgery VATS Open thoracotomy Overall

N¼ 396 N¼ 6582 N¼ 5002 N¼ 11,960

Respiratory complication 30.1% 33.6% 33.3% 33.3%

Prolonged LOS 5.3% 10.4% 5.5% 8.2%

ICU stay 60.2% 75.3% 59.1% 67.9%

Readmission 8.8% 9.8% 8.0% 9.0%

ICU: intensive care unit; LOS: length of stay; VATS: video-assisted thoracic surgery.
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5 Summary and discussion

Our paper makes two primary contributions to the causal inference literature. First, we extend BART to the

multiple treatment and binary outcome setting, highlighting that the strengths of BART for binary treatment also

manifest with multiple treatments. Second, we propose a common support rule for BART, and find that BART

consistently shows superior performance over alternative approaches in various scenarios with differing levels of

covariate overlap.
In addition to the primary findings in our simulations corresponding to bias, RMSE, CP, and large-sample

convergence property, BART boasts a few additional advantages that make it a unique tool for the multiple

treatment setting. As one example, BART is computationally efficient. All simulations were run in R on an iMAC

with a 4GHz Intel Core i7 processor. On a dataset of size n¼ 11,600, each BART implementation took less than

150 s to run, while each IPTW-GBM implementation took about 10min to run. As a second example, BART

produces coherent interval estimates of the treatment effects for either continuous or binary outcomes using

posterior samples. For GBMs, McCaffrey et al.24 estimate the variance by using robust procedure for continuous

outcomes, but acknowledge that there is currently lack of theory to guarantee that this approach results in proper

confidence intervals. For estimands based on a binary outcome such as the RD investigated in this article, it is

difficult to approximate the variance using robust procedure. For matching-based approaches, there is still ambi-

guity regarding appropriate methods for interval estimation.14,20,38

We apply the methods examined to 11,980 stage I–IIIA NSCLC patients, drawn from the latest SEER-

Medicare linkage. Results suggest that robotic-assisted surgery may be preferred in terms of prolonged LOS

and ICU stay, among those who were operated via the robotic-assisted technology, relative to open thoracotomy

or VATS. Different choice of methods, or inappropriate practice such as implementing SBCs for pairwise ATT

effects, may lead to different conclusions about the treatment effects, explicating the importance of appropriate

methods and practice for causal inference with multiple treatments.
The promising performance of BART in the complex multiple treatment setting will lay groundwork for several

future research avenues. First, the flexibility offered by nonparametric modeling of BART can be leveraged to

model regression relationships in survival data. Second, individual treatment effects that are easily obtained from

BART provide a building block for estimating the heterogeneous treatment effect. Finally, we have made a

significant untestable assumption related to unmeasured confounding. Developing sensitivity analyses under

this complex multiple treatments setting leveraging BART would also be a worthwhile and important

contribution.
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