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Multi‑factor mediated functional 
modules identify novel 
classification of ulcerative colitis 
and functional gene panel
Lijie Lai1,3, Hanyang Li1,3, Qi Feng2, Jun Shen1* & Zhihua Ran1*

Ulcerative colitis is a chronic, idiopathic, and inflammatory disease of the rectal and colonic mucosa, 
the behavior of which is of heterogeneity in individuals. Here, we explored the multifactor-mediated 
functional modules associated with ulcerative colitis classification in the whole genome. Datasets 
downloaded from the GEO database were used to identify differentially expressed genes between 
ulcerative colitis patients and healthy individuals initially, followed by acquisition of the remaining 
ulcerative colitis -related genes from the OMIM and STRING databases. The results identified 914 
ulcerative colitis-related genes, of which 60 were differentially expressed genes obtained from GEO 
datasets. Through weighted co-expression network analysis of ulcerative colitis-related genes, four 
modules were obtained, three of which were related to ulcerative colitis. Following interactions 
between microRNA, long noncoding RNA, transcription factors, and module hub genes were 
predicted and used to construct ulcerative colitis multifactor networks. Additionally, we performed 
consensus clustering of the ulcerative colitis samples. The results revealed that ulcerative colitis could 
be divided into four subtypes, with six hub genes identified as potential biomarkers for classification. 
These findings offer novel insights into ulcerative colitis and a basis for disease classification of 
ulcerative colitis.

Ulcerative colitis (UC), a subtype of inflammatory bowel disease (IBD), is a chronic, relapsing, and nonspecific 
inflammatory disease, the etiology and pathogenesis of which are not fully understood. UC lesions are confined 
to the mucosa and submucosa and mostly located in the sigmoid colon and rectum but can also extend to the 
descending colon or even the entire colon. Typical clinical manifestations include diarrhea, purulent stool, and 
abdominal pain1. In Asia, UC incidence is much lower than that in Europe, with at incidence of 6.3 per 100,000 
person-years2; however, the incidence has increased annually3.

Due to the heterogeneous and varying disease course, UC classification is critical for clinical management of 
patients. The most commonly used subclassification system for UC incorporates an assessment of disease extent 
and the severity of an individual relapse of the disease. Additionally, the Montreal classification of disease extent 
of UC can be divided into three subtypes: ulcerative proctitis, left-sided UC, and extensive UC4. The develop-
ment of high-throughput microarray has allowed gene-expression profiling to identify genes associated with the 
clinical phenotype of UC. Alterations in gene expression in IBD patients correlate with the clinical phenotype5. 
Notably, several genes have been identified as biomarkers of the UC phenotype, including polymeric immuno-
globulin receptor, interleukin (IL)-8, and HLA class II histocompatibility antigen DRB1 beta chain6,7. Although 
identification of differentially expressed genes (DEGs) is necessary, determining their interconnectedness is also 
important. Correlation networks are increasingly being used in bioinformatics applications, with weighted co-
expression network analysis (WGCNA) commonly used to describe molecular mechanisms and reconstruct co-
expression networks of genes in different samples8. MicroRNAs (miRNAs), transcription factors (TFs) and long 
noncoding RNAs (lncRNAs) also play roles in disease behavior of UC. Three mechanisms have been described 
for miRNA-specific gene regulation: translation repression, direct mRNA degradation, and miRNA-mediated 
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mRNA decay9. Additionally, TFs and lncRNAs are capable of regulating gene expression, with lncRNAs also 
capable of interacting with miRNA. Therefore, it is necessary to study the multifactor-mediated gene modules 
to allow UC classification.

The Montreal classification offers a clinical view of ulcerative colitis classification. To obtain additional genetic 
information for supplementary clinical disease characteristics, we obtained UC-related modules via WGCNA, 
constructed a multifactor network of the functional modules, and explored potential functional modules and 
gene biomarkers useful for UC classification.

Materials and methods
Data resources.  Two UC gene-expression datasets (GSE109142 and GSE111889)10,11 and a miRNA dataset 
(GSE133059) specific to UC were downloaded from the GEO database (https​://www.ncbi.nlm.nih.gov/geo/) 
(Table 1). All datasets were open-accessed and no human data or animal experiments were included in the study. 
Therefore, there is no ethical approval problem in this study. 

DEG analysis.  Data from GSE109142 was log2 transformed, and differential expression analysis was per-
formed using the limma package (http://www.bioco​nduct​or.org/packa​ges/relea​se/bioc/html/limma​.html). R 
Software used in this study is R version 3.6.3 (Holding the Windsock) released on 2020-02-29. Genes showing 
significant differential expression (p < 0.05) and a log fold change (|log2FC|) > 2 were designated as significant 
genes. Analysis of GSE111889 was performed using DESeq212, DEGs were identified according to the same 
p-value cut-off and a |log2FC|> 1. The miRNA dataset GSE133059 was preprocessed and normalized using the 
robust multi-array average method, followed by the Limma package for differential expression analysis. Differ-
entially expressed miRNAs were selected according to a p < 0.05 and a |log2FC|> 2.

UC‑related genes.  The STRING database (http://strin​g-db.org/) was used to analyze gene interactions13. 
Submission of the 60 identified DEGs to STRING returned 744 interaction genes according to a minimum 
required interaction score of 0.9. We then downloaded 110 genes related to UC from the OMIM database (https​
://omim.org/)14. A total of 914 potential UC-related genes were obtained.

WGCNA.  UC-related modules were analyzed using WGCNA, which is used to describe the gene-association 
pattern between different samples. WGCNA can be used to identify gene sets with highly synergistic variation 
and identify candidate biomarkers or therapeutic targets based on the interconnectivity of gene sets and the 
association between gene sets and phenotypes. WGCNA of UC-related genes was performed using the R pack-
age WGCNA (https​://cran.rstud​io.com/web/packa​ges/WGCNA​/).

GO and KEGG pathway enrichment analyses.  Functional enrichment analysis was performed using 
ClueGO and CluepeDia14. A p < 0.05 and a kappa score ≥ 0.95 were set as cut-offs for analysis of each module.

Identification of hub module genes.  To identify the hub genes related to UC traits, we input the genes 
of each module into STRING (https​://strin​g-db.org/) and obtained a protein–protein interaction (PPI) network 
with default parameter values. We used the cytoHubba plugin (http://apps.cytos​cape.org/apps/cytoh​ubba)15, 
which integrates 11 topological analysis methods and six centralities with the Maximal Clique Centrality (MCC) 
algorithm, to explore the top 10 candidates as hub genes in the PPI network. The STRING database was further 
utilized for gene-interaction analysis of the hub genes of the four modules, with the network subsequently visu-
alized using Cytoscape software (https​://cytos​cape.org/)16.

Interaction between miRNA, lncRNA, TF and mRNA.  Interactions between miRNA and mRNA were 
determined using miRwalk (http://mirwa​lk.umm.uni-heide​lberg​.de/)17, with these screened and confirmed 
as relevant according to at least three databases [miRwalk, TargetScan (http://www.targe​tscan​.org/vert_72/), 
miRDB (http://mirdb​.org/), and miRTarBase (http://mirta​rbase​.mbc.nctu.edu.tw/php/index​.php)]18,19. MiRNA–
lncRNA and TF–mRNA interactions were determined using StarBase (v.3.0; http://starb​ase.sysu.edu.cn) and 
TRRUST (v.2.0; http://www.grnpe​dia.org/trrus​t)20,21, respectively.

Table 1.   UC datasets sample information.

Sample Features Control Patient All

mRNA

GSE109142 Rectum 20 206 226

GSE111889
Rectum 23 27 50

Ileum 21 24 45

miRNA

GSE133059 Mucosa 8 8 16

https://www.ncbi.nlm.nih.gov/geo/
http://www.bioconductor.org/packages/release/bioc/html/limma.html
http://string-db.org/
https://omim.org/
https://omim.org/
https://cran.rstudio.com/web/packages/WGCNA/
https://string-db.org/
http://apps.cytoscape.org/apps/cytohubba
https://cytoscape.org/
http://mirwalk.umm.uni-heidelberg.de/
http://www.targetscan.org/vert_72/
http://mirdb.org/
http://mirtarbase.mbc.nctu.edu.tw/php/index.php
http://starbase.sysu.edu.cn
http://www.grnpedia.org/trrust
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Mapping hub genes to samples and UC classification analysis.  Disease classification of UC was 
performed using hub genes. Consensus clustering of UC samples was performed using the R package Consen-
susClusterPlus (https​://bioco​nduct​or.org/packa​ges/relea​se/bioc/html/Conse​nsusC​luste​rPlus​.html). One-way 
analysis of variance (ANOVA) was then performed to obtain the hub genes with significantly different expres-
sion levels in each subtype (p < 0.05).

Results
Identification of DEGs between UC samples and normal samples.  The GSE109142 dataset con-
tains data for 226 rectal samples data, of which 20 are from healthy controls and 206 from UC patients. A total 
of 3,622 DEGs were obtained by differential expression analysis, among which 3,287 were upregulated and 335 
downregulated (Fig. 1a, Supplementary Table 1). The GSE111889 dataset includes data from 45 ileum samples 
(21 healthy controls and 24 UC patients) and 50 rectal samples (23 health controls and 27 UC patients). Dif-
ferential expression analysis of the ileum samples identified 1,059 DEGs, of which 611 were upregulated and 448 
downregulated (Fig. 1b, Supplementary Table 2). Analysis of rectal specimens identified 328 DEGs, of which 
148 were upregulated and 180 downregulated (Fig. 1c, Supplementary Table 3). Plotting the identified DEGs 
revealed 60 commons among the three groups (Fig. 1d).

WGCNA.  The 914 UC-related genes were mapped to the gene-expression profile of GSE109142, and scale-
free WGCNA was performed. We identified five modules (grey, turquoise, blue, brown, and yellow) using default 
parameters (Fig. 2a, Supplementary Table 4). Among these, genes in the grey module represented those not been 
assigned to other modules. Genes in the brown and turquoise modules were significantly positively correlated 
with healthy individuals and negatively correlated with UC patients, whereas those in the yellow modules were 
significantly negatively correlated with healthy individuals and positively correlated with UC patients (Fig. 2b).

GO and KEGG analyses of module genes.  GO and KEGG enrichment analyses of the obtained mod-
ules showed that the turquoise module contained 294 genes, which were mainly related to neutrophil homeosta-
sis, response to mycotoxin, and smooth muscle cell migration (Fig. 3a, Supplementary Table 5). The 67 genes in 
the blue module were mainly related to transcription coactivator binding and RNA polymerase II repression of 
TF binding (Fig. 3b, Supplementary Table 6). The 64 genes in the brown module were mainly related to regula-
tion of leukocyte chemotaxis and positive regulation of leukocyte chemotaxis (Fig. 3c, Supplementary Table 7). 
The 47 genes in the yellow module were mainly related to the apicolateral plasma membrane and regulation of 
metallopeptidase activity (Fig. 3d, Supplementary Table 8). Therefore, we speculated that the enriched pathways 
of UC-related modules played roles in the pathogenesis of UC, and part of the pathways were also related to UC 
classification.

Figure 1.   The differential expression analysis results in Volcano Plot and Venn diagram. (a) shows the 
differential expression analysis results of GSE109142 dataset. (b,c) show the differential expression analysis 
results of GSE111889 dataset. (d) shows Venn diagram of the DEGs in three groups.

https://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html
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Identification of hub genes and construction of the PPI and UC multi‑factor networks.  Ten 
hub genes from each module were identified, for a total of 40 hub genes, which were then used to construct 
a PPI network (Fig. 4, Supplementary Table 9). Interactions between miRNA and the hub genes were deter-
mined using the miRwalk database, from which 68 pairs of miRNA interactions with the 3′ and 5′ untrans-
lated regions and the coding sequence of the hub genes were identified (Supplementary Table 10). Analysis of 
the miRNA-expression dataset GSE133059 downloaded from the GEO database indicated two differentially 
expressed miRNAs overlapping with those interacting with hub genes (hsa-miR-138 and hsa-miR-31-5p) (Sup-
plementary Table 11). These two miRNAs were then used to generate 16 pairs of miRNA–lncRNA interactions 
(Supplementary Table 12). We then identified 86 regulatory relationships between TFs and hub genes (Supple-
mentary Table 13), followed by merging the identified interactions between miRNA, lncRNA, TF and hub genes 
to generate the UC multifactor network (Fig. 5).

Additionally, five genes from this network were screened by the Maximal Clique Centrality (MCC) algo-
rithm on Cytohubba, and GO and KEGG analyses revealed their relationship with mitochondrion, responses 
to hormones, and responses to lipids (Supplementary Table 14). These results showed that metabolic disorders 
played a key role in the pathogenesis of UC, and some of them might also be related to the classification of UC.

Identification of module genes for UC disease classification.  We mapped the 40 hub genes of the 
modules to the UC patient specimens in GSE109142, followed by clustering of the samples. The results showed 
that it was appropriate to divide UC disease into four subtypes. Figure 6 shows the hierarchical clustering heat-
map of UC across four clusters containing 49, 75, 60, and 22 samples, respectively (Supplementary Table 15). 
One-way ANOVA identified six genes that showed significant differences in expression between the four groups 
(p <  0.05) (Supplementary Table 16), with Fig. 7 showing a heatmap and box plot of the average expression of 

Figure 2.   (a) shows the cluster dendrogram of UC-related modules, including five modules. (b) shows the 
heatmap of module-trait relationships made by WGCNA R package (https​://cran.rstud​io.com/web/packa​ges/
WGCNA​/).

https://cran.rstudio.com/web/packages/WGCNA/
https://cran.rstudio.com/web/packages/WGCNA/
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Figure 3.   The diagram of GO and KEGG analysis. (a) shows the diagram of Turquoise module. (b) shows the 
diagram of Blue module. (c) shows the diagram of Brown module. (d) shows the diagram of Yellow module.

Figure 4.   Network diagram of hub gene interactions made by cytoHubba plugin (http://apps.cytos​cape.org/
apps/cytoh​ubba).

http://apps.cytoscape.org/apps/cytohubba
http://apps.cytoscape.org/apps/cytohubba
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these genes. These results indicated that the six identified genes might represent biomarkers for UC subtype 
classification.

Discussion
In this study, we identified 60 DEGs between UC patients and healthy individuals based on the GSE109142 and 
GSE111889 datasets. WGCNA of the DEGs and UC-related genes revealed three functional modules related 
to UC. The brown and turquoise modules were significantly positively correlated with healthy individuals and 
negatively correlated with UC patients, whereas the yellow modules were significantly negatively correlated 
with healthy individuals and negatively correlated with UC patients. Clustering analysis of UC specimens from 
GSE109142 suggested that UC could be divided into four subtypes, and six hub genes could potentially repre-
sent biomarkers for UC classification. However, all potential biomarker genes belong to the turquoise modules. 
These hub genes included C-X-C chemokine ligand (CXCL) 8 (also known as IL-8), neuropeptide Y receptor Y4, 
complement C5a receptor 1, galanin, C-X-C chemokine receptor (CXCR) 2, and CXCR1. Among them, CXCL8 is 
associated with inflammation grading of intestinal mucosa in UC22, and CXCR2 and CXCR1 reportedly play key 
pathophysiological roles in UC23. Additionally, IL-8 reportedly mediates the immune response in UC through 
CXCR124.

The results of functional enrichment analysis of UC-related modules showed that there was a significant 
difference in interactions among different modules, which was largely associated with their differing functions. 
Coincidentally, the six hub genes related to UC classification all belong to the turquoise module. Enrichment 
analysis of the genes in the turquoise module suggested their involvement in multiple GO pathways, including 
CXCR activity and binding, with three of the six potential UC classification biomarkers also associated with 
these pathways. C-X-C chemokines play an important role in leukocyte activation and migration by interacting 
directly with receptors on the cell surface, including CXCR1 and CXCR2. A previous study described a potential 
pathological role for C-X-C chemokines in UC25, which agrees with the results of GO and KEGG enrichment 
analyses in the present study and suggests their possibly important role in UC classification. Additionally, the 
brown module was found to be mainly enriched in pathways associated with leukocyte chemotaxis, and genes 
in the yellow module were mainly enriched in pathways associated with regulation of metallopeptidase activity. 
Because leukocyte chemotaxis and metallopeptidase play important roles in chronic inflammation and chronic 
intestinal tissue destruction in UC26,27, we speculated the brown and yellow modules were the most important 
modules in the pathogenesis of UC.

In addition, by collecting the clinical characteristics of UC patients in 4 subtypes, we obtained the clinical 
features of different subtypes of UC. UC patients in Cluster 1 had lower Pediatric Ulcerative Colitis Activity 
Index (PUCAI) scores, lower total Mayo scores, and higher baseline calprotectin levels. UC patients in Cluster 
2 had higher PUCAI and total Mayo scores. Most of these patients were treated with cyclosporin as the initial 
treatment agent. UC patients in this subtype also had higher histology severity scores and lower baseline cal-
protectin levels, and a week 4 calprotectin levels of ≥ 250. The clinical characteristics of UC patients in Cluster 
3 and Cluster 2 were similar, except that UC patients in Cluster3 had higher baseline calprotectin levels. The 

Figure 5.   UC multi-factor network diagram made by Cytoscape software 3.8.2 (https​://cytos​cape.org/).

https://cytoscape.org/


7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5669  | https://doi.org/10.1038/s41598-021-85000-3

www.nature.com/scientificreports/

Figure 6.   When k = 4, the clustering heat map of UC is made by R package ConsensusClusterPlus (https​://bioco​
nduct​or.org/packa​ges/relea​se/bioc/html/Conse​nsusC​luste​rPlus​.html).

Figure 7.   The expression heat map and expression level of 6 hub genes in different clusters, the heat map is 
made by R package pheatmap (https​://cran.r-proje​ct.org/web/packa​ges/pheat​map/).

https://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html
https://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html
https://cran.r-project.org/web/packages/pheatmap/
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clinical characteristics of UC patients in Cluster 4 and Cluster1 were similar, except that UC patients in Cluster 
4 had lower baseline calprotectin levels.

During construction of the UC multi-factor network, we identified the miRNAs hsa-miR-138-5p and hsa-
miR-31-5p, which both interact with hub genes and are differentially expressed between UC and healthy indi-
viduals. A previous report showed that hsa-miR-31-5p could serve as an effective biomarker of Crohn’s disease 
subtypes28, and another study identified miR-138-5p as differentially expressed in UC inflamed mucosa relative 
to non-inflamed mucosa in UC patients and controls29. Coincidentally, the UC multi-factor network showed that 
both miRNAs interact with CXCL5 through the TF nuclear enriched abundant transcript 1 (NEAT1), suggesting 
that the two miRNAs and NEAT1 could also be used as potential biomarkers for UC classification. However, 
verification of this hypothesis will require further analysis of UC patient specimens.

This study has some limitations. Because the GSE111889 dataset contains ileum and rectal specimens, and the 
number of samples from UC patients is small. Therefore, we used both the GSE109142 and GSE111889 datasets 
for analysis and applied the intersection of the results. To confirm the accuracy of these results, it will be neces-
sary to validate the findings using an appropriate validation dataset. Additionally, our study was limited to in 
silico prediction. To confirm these results, it will be necessary to verify and extend the findings using a larger 
cohort of UC patients. We divided UC patients into four groups based on hub genes. However, due to the limited 
clinical information provided by the samples in the GSE109142 dataset, we cannot relate this classification to 
the clinical classification of UC well only through the results at this stage. To apply the classification highlighted 
here as a reference for patient clinical management, it will be necessary to collect and summarize more detailed 
clinical characteristics of each group. Furthermore, follow-up studies are necessary to clarify whether the other 
predicted miRNAs, lncRNAs, and TFs activate or inhibit the functional modules chosen for classification, which 
the in silico analysis in the present study could not determine.

Conclusion
In this study, we identified 60 DEGs associated with UC two publicly available datasets. A total of 914 UC-related 
genes were obtained by merging UC-specific DEGs with UC genes from the public database. Additionally, scale-
free WGCNA was performed using the 914 UC-related genes, resulting in identification of four modules, three 
of which were related to UC. A total of 40 hub genes from the modules were selected to construct a multi-factor 
network, which revealed that UC classification could be accomplished according to four subtypes and six genes, 
which might represent UC-subtype classification biomarkers.

Data availability
All the datasets included in this article (GSE109142, GSE111889 and GSE133059) can be downloaded from the 
GEO database (https​://www.ncbi.nlm.nih.gov/geo/).

Code availability
All the software and websites used in this article have been mentioned in the part of Method.

Received: 18 September 2020; Accepted: 23 February 2021

References
	 1.	 Ungaro, R., Mehandru, S., Allen, P. B., Peyrin-Biroulet, L. & Colombel, J. F. Ulcerative colitis. Lancet (London, England) 389, 

1756–1770. https​://doi.org/10.1016/s0140​-6736(16)32126​-2 (2017).
	 2.	 Molodecky, N. A. et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic 

review. Gastroenterology 142, 46-54. e42 (2012).
	 3.	 Ouyang, Q. et al. The emergence of inflammatory bowel disease in the Asian Pacific region. Curr. Opin. Gastroenterol. 21, 408–413 

(2005).
	 4.	 Satsangi, J., Silverberg, M. S., Vermeire, S. & Colombel, J. F. The Montreal classification of inflammatory bowel disease: controver-

sies, consensus, and implications. Gut 55, 749–753. https​://doi.org/10.1136/gut.2005.08290​9 (2006).
	 5.	 Ben-Shachar, S. et al. Gene expression profiles of ileal inflammatory bowel disease correlate with disease phenotype and advance 

understanding of its immunopathogenesis. Inflamm. Bowel Dis. 19, 2509–2521. https​://doi.org/10.1097/01.Mib.00004​37045​.26036​
.00 (2013).

	 6.	 Bruno, M. E. et al. Correlation of biomarker expression in colonic mucosa with disease phenotype in Crohn’s disease and ulcerative 
colitis. Dig. Dis. Sci. 60, 2976–2984. https​://doi.org/10.1007/s1062​0-015-3700-2 (2015).

	 7.	 Matsumura, Y. et al. HLA-DRB1 alleles influence clinical phenotypes in Japanese patients with ulcerative colitis. Tissue Antigens 
71, 447–452. https​://doi.org/10.1111/j.1399-0039.2008.01031​.x (2008).

	 8.	 Langfelder, P. & Horvath, S. J. B. B. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 
(2008).

	 9.	 Forterre, A. et al. Myotube-derived exosomal miRNAs downregulate Sirtuin1 in myoblasts during muscle cell differentiation. Cell 
Cycle (Georgetown, Tex.) 13, 78–89. https​://doi.org/10.4161/cc.26808​ (2014).

	10.	 Haberman, Y. et al. Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying 
disease severity and treatment response. Nat. Commun. 10, 38. https​://doi.org/10.1038/s4146​7-018-07841​-3 (2019).

	11.	 Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662. https​://
doi.org/10.1038/s4158​6-019-1237-9 (2019).

	12.	 Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 
43, e47. https​://doi.org/10.1093/nar/gkv00​7 (2015).

	13.	 Szklarczyk, D. et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, 
D447-452. https​://doi.org/10.1093/nar/gku10​03 (2015).

	14.	 Amberger, J. S. & Hamosh, A. Searching online mendelian inheritance in man (OMIM): a knowledgebase of human genes and 
genetic phenotypes. Curr. Protocols Bioinform. 58, 1.2.1-1.2.12. https​://doi.org/10.1002/cpbi.27 (2017).

	15.	 Chin, C. H. et al. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8(Suppl 4), 
S11. https​://doi.org/10.1186/1752-0509-8-s4-s11 (2014).

https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.1016/s0140-6736(16)32126-2
https://doi.org/10.1136/gut.2005.082909
https://doi.org/10.1097/01.Mib.0000437045.26036.00
https://doi.org/10.1097/01.Mib.0000437045.26036.00
https://doi.org/10.1007/s10620-015-3700-2
https://doi.org/10.1111/j.1399-0039.2008.01031.x
https://doi.org/10.4161/cc.26808
https://doi.org/10.1038/s41467-018-07841-3
https://doi.org/10.1038/s41586-019-1237-9
https://doi.org/10.1038/s41586-019-1237-9
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1002/cpbi.27
https://doi.org/10.1186/1752-0509-8-s4-s11


9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5669  | https://doi.org/10.1038/s41598-021-85000-3

www.nature.com/scientificreports/

	16.	 Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 
13, 2498–2504. https​://doi.org/10.1101/gr.12393​03 (2003).

	17.	 Dweep, H., Sticht, C., Pandey, P. & Gretz, N. miRWalk–database: prediction of possible miRNA binding sites by “walking” the 
genes of three genomes. J. Biomed. Inform. 44, 839–847. https​://doi.org/10.1016/j.jbi.2011.05.002 (2011).

	18.	 Wong, N. & Wang, X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 
43, D146-152. https​://doi.org/10.1093/nar/gku11​04 (2015).

	19.	 Hsu, S. D. et al. miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res. 39, 
D163-169. https​://doi.org/10.1093/nar/gkq11​07 (2011).

	20.	 Han, H. et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic 
Acids Res. 46, D380-d386. https​://doi.org/10.1093/nar/gkx10​13 (2018).

	21.	 Li, J. H., Liu, S., Zhou, H., Qu, L. H. & Yang, J. H. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA 
interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42, D92-97. https​://doi.org/10.1093/nar/gkt12​48 (2014).

	22.	 Zahn, A. et al. Transcript levels of different cytokines and chemokines correlate with clinical and endoscopic activity in ulcerative 
colitis. BMC Gastroenterol. 9, 13 (2009).

	23.	 Buanne, P. et al. Crucial pathophysiological role of CXCR2 in experimental ulcerative colitis in mice. J. Leukocyte Biol. 82(5), 
1239–1246 (2007).

	24.	 Williams, E. J. et al. Distribution of the interleukin-8 receptors, CXCR1 and CXCR2, in inflamed gut tissue. J. Pathol. J. Pathol. Soc. 
G. B. Ireland 192(4), 533–539 (2000).

	25.	 Bizzarri, C. et al. ELR+ CXC chemokines and their receptors (CXC chemokine receptor 1 and CXC chemokine receptor 2) as new 
therapeutic targets. Pharmacol. Ther. 112, 139–149 (2006).

	26.	 MacDermott, R. P., Sanderson, I. R. & Reinecker, H. C. The central role of chemokines (chemotactic cytokines) in the immu-
nopathogenesis of ulcerative colitis and Crohn’s disease. Inflam. Bowel Dis. 4, 54–67 (1998).

	27.	 Lakatos, G. et al. The behavior of matrix metalloproteinase-9 in lymphocytic colitis, collagenous colitis and ulcerative colitis. 
Pathol. Oncol. Res. 18, 85–91 (2012).

	28.	 Sheikh, S. et al. P-308 identification of miR-31 as a molecular stratifier of clinical Crohn’s disease phenotypes. Inflam. Bowel Dis. 
23, S98–S99 (2017). 

	29.	 Valmiki, S., Ahuja, V. & Paul, J. J. W. MicroRNA exhibit altered expression in the inflamed colonic mucosa of ulcerative colitis 
patients. World J. Gastroenterol. 23, 5324 (2017).

Author contributions
L.L. and H.L. conceived study and performed research; L.L., H.L., Z.R. and Q.F. analyzed the data, interpreted 
the results. L.L., H.L. and J.S. wrote the manuscript.

Funding
Supported by grants from National Natural Science Foundation of China (Nos. 81770545, 81701746 & 81670497) 
and MDT Project of Clinical Research Innovation Foundation, Renji Hospital, School of Medicine, Shanghai 
Jiaotong University (PYI-17-003).

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https​://doi.
org/10.1038/s4159​8-021-85000​-3.

Correspondence and requests for materials should be addressed to J.S. or Z.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

https://doi.org/10.1101/gr.1239303
https://doi.org/10.1016/j.jbi.2011.05.002
https://doi.org/10.1093/nar/gku1104
https://doi.org/10.1093/nar/gkq1107
https://doi.org/10.1093/nar/gkx1013
https://doi.org/10.1093/nar/gkt1248
https://doi.org/10.1038/s41598-021-85000-3
https://doi.org/10.1038/s41598-021-85000-3
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Multi-factor mediated functional modules identify novel classification of ulcerative colitis and functional gene panel
	Materials and methods
	Data resources. 
	DEG analysis. 
	UC-related genes. 
	WGCNA. 
	GO and KEGG pathway enrichment analyses. 
	Identification of hub module genes. 
	Interaction between miRNA, lncRNA, TF and mRNA. 
	Mapping hub genes to samples and UC classification analysis. 

	Results
	Identification of DEGs between UC samples and normal samples. 
	WGCNA. 
	GO and KEGG analyses of module genes. 
	Identification of hub genes and construction of the PPI and UC multi-factor networks. 
	Identification of module genes for UC disease classification. 

	Discussion
	Conclusion
	References


