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Abstract

Microscopic examination of blood smears remains the gold standard for laboratory inspection and diagnosis of
malaria. Smear inspection is, however, time-consuming and dependent on trained microscopists with results varying
in accuracy. We sought to develop an automated image analysis method to improve accuracy and standardization of
smear inspection that retains capacity for expert confirmation and image archiving. Here, we present a machine
learning method that achieves red blood cell (RBC) detection, differentiation between infected/uninfected cells, and
parasite life stage categorization from unprocessed, heterogeneous smear images. Based on a pretrained Faster
Region-Based Convolutional Neural Networks (R-CNN) model for RBC detection, our model performs accurately,
with an average precision of 0.99 at an intersection-over-union threshold of 0.5. Application of a residual neural
network-50 model to infected cells also performs accurately, with an area under the receiver operating characteristic
curve of 0.98. Finally, combining our method with a regression model successfully recapitulates intraerythrocytic
developmental cycle with accurate lifecycle stage categorization. Combined with a mobile-friendly web-based
interface, called PlasmoCount, our method permits rapid navigation through and review of results for quality
assurance. By standardizing assessment of Giemsa smears, ourmethodmarkedly improves inspection reproducibility
and presents a realistic route to both routine lab and future field-based automated malaria diagnosis.
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Impact Statement

Microscopy inspection of Giemsa-stained thin blood smears on glass slides has been used in the diagnosis of
malaria and monitoring of malaria cultures in laboratory settings for >100 years. Manual evaluation is, however,
time-consuming, error-prone, and subjective with no currently available tool that permits reliable automated
counting and archiving of Giemsa-stained images. Here, we present a machine learning method for automated
detection and staging of parasite infected red cells from heterogeneous smears. Our method calculates para-
sitemia and frequency data on the malaria parasite intraerythrocytic developmental cycle directly from raw
images, standardizing smear assessment, and providing reproducible and archivable results. Developed into a
web tool, PlasmoCount, this method provides improved standardization of smear inspection for malaria research
and potentially field diagnosis.

1. Introduction

Malaria is an infectious disease caused by protozoan parasites from the genus Plasmodium, of which
Plasmodium falciparum is the most common and lethal to humans(1). Despite advances in rapid point-of-
care diagnostics, the most widely used method for diagnosing malaria remains the manual counting of
parasites within infected red blood cells (RBCs) from microscopic inspection of Giemsa-stained blood
films(2); amethod that has remained largely unchanged in nearly 120 years(3). Besides diagnosingmalaria,
Giemsa staining is also the cornerstone of laboratory research that involves parasite tissue culture(4),
including drug and vaccine efficacy trials. However, the identification and counting of parasites is a time-
consuming process that requires trained microscopy technicians(5). Moreover, manual evaluation can be
erroneous and varies between slide readers(6–8).

Recent advances in machine learning (ML) have provided an opportunity to explore automating the
detection of parasites from cytological smears(9). In general, these efforts focus on some or all of a
sequence of computational tasks: (a) cell segmentation (partitioning a digital image into multiple
segments such as pixels) and the detection of individual RBCs, (b) parasite identification and discrim-
ination between infected and uninfected cells, and (c) subclassification of the different stages of parasite
development. Early efforts mostly applied methods based on histogram thresholding and morphological
operations, extracting hand-crafted features, and classification using traditional ML methods(10–15).
Recently, there has been a general trend toward using deep learning methods for feature computa-
tion(16–20) as well as cell segmentation(21–23).

Despite significant improvements in model performance, however, there is currently no widely used
tool for the automated detection and staging of malaria parasites. Making models available to the wider
community would enable their use in routine malaria research, where standards of parasite nomenclature
and parasitemia count vary between users and groups and provide a route to field testing to advance the
automated clinical diagnosis of malaria from smears. A major caveat that has held back automated
approaches to date is the absence of standardization in the preparation of thin blood films, which results in
extensive staining and lighting variations between laboratories(24). Moreover, introducing a usable
method requires a processing pipeline from the raw image to result, with only a few studies focused on
all aspects of the pipeline. For example, most studies have developed methods for datasets of images of
single segmented RBCs(20). This method requires manual cell segmentation by a microscopist and
neglects the effect of dust, debris, staining artefacts, or neighboring cells on parasite detection. Only a
few studies have also combined parasite detection with the classification of the different stages of the
intraerythrocytic development cycle (IDC). Furthermore, treating parasite development as a classification
problem disregards information on progression within and between the individual stages; progression
through the IDC is a continuous process, and experts disagree on the boundaries between the different life
stages(10,21,25,26). Automation has the potential to save time and add to the number of RBCs sampled for
both diagnosis and lab usage; however, its usage in diagnosis would require confidence in the analysis
process; if results are accessible for review post-analysis by amicroscopist, such a system ismore likely to
be implemented as a robust decision support tool.
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Here, we present an ML method that combines cell segmentation, parasite detection, and staging in
P. falciparum. We use a combination of residual neural networks (ResNets) with transfer learning to
quantify parasitemia and categorize IDC stages in both an accurate and standardized manner. Moreover,
we present the first application of a regression model to order life stage categorization that accurately
recapitulates the progression of the IDC. Bringing these approaches together, we have built a web tool
prototype, called PlasmoCount, which allows for versatile detection and stage categorization of malaria
parasites from Giemsa-stained images with an interactive assessment of the results. We test the perfor-
mance of the tool with independent test sets and observe high performance across all models. We
demonstrate that the web tool can be used in conjunction with mobile devices from image capture to
assessment, opening up new opportunities for rapid, low-cost automated diagnosis from gold-standard
smears. We believe this approach can bring new rigor to Plasmodium biology studies based on the
inspection of smears and potentially as a future platform for on-the-go support in clinical settings where
Giemsa-based cytological smears are used as the primary tool for confirming diagnosis of malaria.

2. Methods

2.1. Ethical approval

The work described requires the use of human RBCs for the propagation of P. falciparum in in vitro
culture. Baum laboratory research grade RBCs are purchased from the National Health Service Blood and
Transplant (NHSBT). These RBCs are given anonymously with no clinical history. Sourcing of RBCs in
this manner, including informed consent, is entirely handled by NHSBT. Imperial College London has
determined that this does not represent human subjects research, so no independent ethical approval is
required. Use of RBCs sourced from the NHSBT is approved by the Imperial College London BioSafety
Committee. Human RBCs for use by theWilson and Boyle Laboratories were provided by the Australian
Red Cross Blood Bank with ethics approval for use of the cells obtained from the University of Adelaide
Human Ethics Committee and the Human Research and Ethics Committee of the QIMR-Berghofer
Institute of Medical Research, respectively. Human RBCs for use by the Uthaipibull Laboratory were
obtained from donors after providing informed written consent, following a protocol approved by the
Ethics Committee, National Science and Technology Development Agency, Pathum Thani, Thailand.
Anonymous human RBCs for Plasmodium culture in the Petter Laboratory were purchased from the
German Red Cross Service (Blutspendedienst des Bayerischen Roten Kreuzes) while anonymous human
RBCs used by the Dvorin Laboratory were obtained from a commercial vendor (Valley Biomedical,
Winchester, Virginia, USA). Commercial provision is not deemed as human subjects research and
therefore does not require ethical approval. All procedures involving Plasmodium chabaudi in the Reece
Laboratory were carried out in accordance with the UK Home Office regulations (Animals Scientific
Procedures Act 1986; project license number 70/8546) and approved by the University of Edinburgh.

2.2. Sample preparation

An image dataset was collected by each research center according to the protocol as follows without
further instructions to allow for experimental variation. VariedP. falciparum parasites (strains 3D7,NF54,
DD2, andD10 depending on the research group)were culturedwith a parasitemia of around 5% according
to standard protocols in the individual laboratories. Thin blood films were prepared and air-dried for 1–
2 min. Smears were then fixed in methanol for 30 s and stained by flooding the slide for 15 min in a fresh
Giemsa solution of 10% Giemsa stain in a phosphate-buffered solution. The smear was then washed in
water and air-dried. Slides were imaged under 100% oil immersion with a 100� objective and saved in
TIFF format. For phone capture, images were taken as JPEG files with 2� optical zoom on an iPhone 8 by
manually aligning the phone camera with the microscope eyepiece. Details on sample and imaging
specifications from each dataset can be found in Supplementary Table 1 (Supplementary Figure S1
[example images]).
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2.3. Labeling pipeline

We used amodel-assisted approach for labeling using the LabelBox platform(27), as this greatly improved
labeling speed and performance. Each labeling round contained ~100 raw images of Giemsa smears. To
aid the first labeling round, we trained our object detection model on a dataset of Plasmodium vivax-
infected blood smears from the Broad Bioimage Benchmark Collection(28). Predictions on our
P. falciparum dataset were then uploaded as prelabels using the LabelBox Python SDK. For each of
the following labeling rounds, the RBC detection model and malaria identification classifier were trained
on all the previous labeled datasets to generate new labels. Annotators could correct, add, and delete
bounding boxes around each RBC, and choose from three labels: infected, uninfected, and unsure.At this
stage, each image was corrected only by one annotator. RBCs labeled as either infected or unsure were
automatically uploaded to a second labeling round as crops alongside the original image. Annotators
could choose one label from ring, trophozoite, and schizont to mark infections approximately 0–12, 12–
36, and 36–48 hr post-infection for asexual development; gametocyte to mark sexual development;
multiple infections to mark more than one parasite per infected RBC; uninfected cell, not a cell (e.g.,
debris andmerozoites) to flagmislabeled cases from the object detection labeling round; or unsure.RBCs
labeled as ring, trophozoite, or schizont were resubmitted for a third labeling round where annotators
could choose multiple labels: early ring, late ring, early trophozoite, late trophozoite, early schizont, late
schizont, multiple infections, and unsure. For both labeling rounds, each RBC was labeled by three
different annotators using random allocation. All images were labeled five times by five designated
annotators from three different research centers for the test set.

2.4. Data analysis

A ResNet-50 architecture(29) pretrained on ImageNet(30) was used for the backbone of the Faster R-CNN
object detection model and all classification models. For regression of the life stage development, we
adopted a smaller ResNet-34 model(29) pretrained on ImageNet to avoid overfitting. We pooled and
flattened the final convolutional layer using average and maximum pooling and extended the model with
two fully connected (FC) layers (1024, 512; ReLu activated) preceded with batch normalization and
dropout (p= .5) and a final FC layer(16). The output of the 512-neuron FC layer feeds into a final FC layer
of 16 neurons to measure the life stage. Training data were split into training and validation sets by 80/20
with random sampling. The validation set was used during the training phase to set the learning rate and
determine early stopping. Data augmentation methods were used to increase the variety of our training
data. For the object detection model, we applied random horizontal flipping (p = .5), vertical flipping
(p = .5), Gaussian blurring (sigma = (0,15), p = .5), contrast changes (pixel value (v) scaling by
127 þ alpha*(v-127) with alpha = (0.75, 1.25)), brightness changes (image multiplication using
range = (0.75, 1.25), once per channel for 20% of images), and saturation multiplication (range = (0.5,
1.25)). For the other models, we applied random horizontal flipping (p = .5), vertical flipping (p = .5),
rotation (range = (�10,10 degrees), p = .75), contrast changes (pixel multiplication by loguniform(0.8,
1.2), p = .75), and brightness changes (image addition using logit(uniform(0.8, 1.2)), p = .75). For life
stage assessment, we increased the brightness changes (image addition using logit(uniform(0.25, 1.75))),
and randomized RGB channels (scale below threshold = 0.3, p = .1). For the Faster R-CNN model, we
used stochastic gradient descent for optimization and a learning rate of 0.01 with stepwise learning rate
decay. For all other models, we used the Adam optimization algorithm(31) and adopted a one-cycle
learning rate policy(32).

2.5. Web application architecture

PlasmoCount is a beta version, available on www.plasmocount.org (access details are available at http://
www.baumlab.com/plasmocount). The web server was built on a Flask framework and provides appli-
cation programming interface endpoints to connect the front-end interface to the ML models. The front
endwas developed using the React web application framework and the Plotly interactive graphing library.
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The results are stored in cloud storage using Google Storage. When a user uploads their images, a unique
job gets created, data are submitted to the backend, and the user is redirected to the job-associated results
page. The user also receives an email at the email address providedwith a nonexpiring link to this page for
future reference. The Flask backend listens to updates in the cloud storage; once the analysis is completed,
the results get returned to the front end where they are visualized with interactive components using React
and Plotly.

3. Results

3.1. Data

Given the inherent inconsistencies of manual inspection, counting, and staging of malaria parasites by
Giemsa-stained cytological smear, we sought to develop an ML-based approach that could automate
analysis of standard laboratory-acquired images of Plasmodium cultures. Six datasets of microscopy
images of thin blood films of P. falciparum cultures were generated using a standardized Giemsa protocol
described in the Methods section. Each dataset was collected by a different research center with one
dataset left out for testing (Figure 1a, Supplementary Table 1, and Supplementary Figure S1). Datasets
were labeled in five labeling rounds by 10 expertmalaria researchers, familiar withGiemsa-smears, across
two different laboratories. Labeling was split into two steps: marking out bounding boxes around
uninfected and infected RBCs and subsequent life stages classification.

To facilitate bounding box demarcation, we used amodel-assisted labelingworkflow via the LabelBox
platform(27). A new dataset was made available with bounding boxes drawn on uninfected and infected
RBCs in images by the model after every training round. Annotators were then asked to correct model
predictions made on the P. falciparum dataset (Figure 1b) and annotate RBCs according to standard IDC
asexual stage nomenclature (ring/immature trophozoite, trophozoite/mature trophozoite, and schizont)
and gametocytes. Moreover, annotators could label RBCs as “unsure.” While comprehensive, this
classification task resulted in only 60% unanimous agreement between all annotators when labeling

Figure 1. Data collection workflow. (a) Example images of the P. falciparum dataset. Datasets were
collected by six different research centers resulting in staining and lightning variations. (b) Model-
assisted labeling workflow. At each labeling round, model predictions were imported and loaded as
editable annotations on an image. These annotations were corrected by annotators and added to the
training data for a new training round. This process was then repeated with the retrained object detection
and malaria classification models. (c) Example of disagreement between annotators on parasite stage
classification (R, ring; T, trophozoite; S, schizont). Whereas the first labeling round (LR1) only captures
the disagreement between two stages, the second round (LR2) reveals that this is due to the parasite

existing between these two stages (LT, late trophozoite; ES, early schizont). The final value for the image
is calculated by averaging labels across all annotators.
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the training set, with most disagreements occurring at the boundaries between IDC stages, particularly
between trophozoite and schizont stages. Annotators never labeled the same image twice, so no data were
collected on intra-annotator consistency; however, 9% of the collected labels were “unsure” unveiling
intra-annotator uncertainty. To address the disagreements caused by the ambiguity of the life cycle stage
boundaries, life stage assessment was repeated a second time for IDC stages but this time allowing
annotators to select multiple values to account for uncertainty at boundaries. In addition, each IDC stage
was subdivided into early and late stages (Figure 1c). For example, a parasite between the ring and
trophozoite stages could be annotated by selecting both “late ring” and “early trophozoite.” To provide a
numerical score associated with labels, classifications were converted to a numeric scale (ring = 1,
trophozoite= 2, and schizont= 3) and averaged across all annotators (Supplementary Figure S2). In total,
this led to a dataset with 38,000 different RBCs, of which 6% were infected.

3.2. Red blood cell detection

Having developed a standardized dataset, we next trained a Faster R-CNN object detection model(33) to
detect both uninfected and infected RBCs in microscopy images of thin blood smears. Faster R-CNN is a
state-of-the-art object detection network that consists of a region proposal network and a Faster R-CNN
network that classifies the proposed regions(34). This approach has recently shown some promising results
in cell segmentation in blood smears of P. vivax(23). We used a Faster R-CNN model pretrained on the
COCO dataset(35), fine-tuned on a concatenation of our P. falciparum dataset and the aforementioned
P. vivax dataset resulting in a dataset of 1491/241 images with 108573/14989 RBCs for training/testing
with an 80/20 training/validation split. The classification task was not included at this first stage, instead
focusing only on cell segmentation, aiming to make the model robust to variations between laboratories.
False positives in the form of debris, merozoites (generally smaller than RBCs), or leukocytes (generally
larger than RBCs) were excluded by applying a cutoff based on the area distribution of the detected
bounding boxes with those four standard deviations above the mean area across the image discarded.
Finally, cells that touched the border of the crop were excluded. A nonmaximum suppression was applied
using an intersection over union (IOU) threshold of 0.5 to exclude overlapping bounding boxes. The
average precision (AP) at an IOU threshold of 0.5 was 0.98 on the P. vivax test set and 0.99 on our
P. falciparum test set (Figure 2). Thus, we can extract individual RBCs from the background effectively as
an input for further classification.

Figure 2.Object detection of red blood cells (RBCs) on thin smear images.Ground truth labels are shown
in orange, and predictions are shown in blue. Examples shown for P. vivax (left) and P. falciparum (right)
test data. The object detection model detects individual RBCs with high precision despite the presence of

dust, residual stain, and overlap with other cells.
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3.3. Infected and uninfected red blood cell differentiation

Having shown our ability to isolate RBCs with high precision, we next turned our attention to the
delineation of infected versus uninfected cells. From this point onward, we only trained on our
P. falciparum dataset and removed cases labeled as unsure. This resulted in a dataset of 27529/9006
RBCs for training/testing with an 80/20 training/validation split. RBCs were cropped and scaled to
70� 70-pixel resolution.We trained aResNet-50 architecture(29) pretrained on the ImageNet dataset(30) to
classify infected RBCs. To address the heavy class imbalance, training data were undersampled at each
epoch (the number of times that the learning algorithm works through the entire training dataset) to
generate a 1:1 ratio of infected:uninfected RBCs. Using this approach, we obtained an accuracy of 0.998
with an area under the receiver operating characteristic curve of 0.979 on the test set with only RBCs that
all annotators agreed on included (99% of RBCs; Table 1 and Supplementary Figure S3). Most mis-
classifications observed were false positives due to debris on top of an uninfected RBC or the presence of
neighboring infected cells. The model was also more likely to call an RBC infected than uninfected when
annotators disagreed, and this likelihood generally increased as more annotators agree on infection
(Supplementary Figure S4). Moreover, compared to cases where all other annotators agreed, three
annotators achieved accuracies of 0.998, two of 0.999, and one of 1.000, demonstrating that our model’s
error is indistinguishable from the error of an annotator.

3.4. Life cycle stage classification

Having established a model for the classification of infected versus uninfected RBCs in cropped images,
we next sought to further classify infected cells into the different parasite IDC stages and gametocytes.
Rather than expanding our existing classifier to include the stages as discrete classes, we instead
approached progression through the IDC as a continuous process where the stage exists on a numeric
scale (ring = 1, trophozoite = 2, and schizont = 3). To achieve this, we adapted a pretrained ResNet-34
classifier(28) to a regression model as described in the Methods section. We then trained on a dataset of
1022/356 RBCs (80/20 training/validation) with cases marked as unsure or multiple infections by one of
the annotators discarded. Using this model, we achieved a root-mean-square error of 0.23 in the test set,
with most errors observed between late trophozoite stages and early schizont stages (Figure 3a). High
levels of disagreement were found between annotators (Figure 3a and Supplementary Figure S5), and
most of the model predictions generally fell within these label boundaries. Moreover, the model provided
an ordering of the infected RBCs following the IDC (Figure 3b). Thus, we are able to describe the IDC
with more detail than with a three-class classification approach.

3.5. PlasmoCount: A web tool for automated parasite detection and staging

Having demonstrated high performance across models on an independent test set of Giemsa-stained thin
blood films, we next sought to generate a user interface that would allow ourML approach to be applied in
different lab settings. Toward this, we developed PlasmoCount: an online web tool that can take as input
multiple raw images of a Giemsa-stained thin blood film and outputs measures of parasitemia and parasite
life stage development (https://plasmocount.org; Figure 4). The images are run through the object
detection model; the resulting RBCs are run through the malaria detection and staging models sequen-
tially. The output contains two interactive sections: a summary section that reports parasitemia and the

Table 1. Performance of ResNet-50 model on malaria detection in images of segmented red blood
cells. Metrics were calculated only for images on which all annotators agreed.

Accuracy Sensitivity Specificity AUC F1

0.998 0.995 0.998 0.979 0.976

Abbreviation: AUC, area under the receiver operating characteristic curve.
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IDC stage distribution in the sample and a table with results on the individual images. The interactive
component within the summary section allows users to change the histogram bin size of the histogram and
click on the individual bins to display the corresponding RBCs for interpretation of the life stage
discrimination. The table describes, for each image, the number of RBCs, parasitemia percentage, and
the number and fractions of the different IDC and gametocyte stages of the parasite, and data can be
exported in CSV format. Moreover, the user can click on the individual rows to display the model
predictions for each image as a measure of quality assurance. The web tool has been optimized for mobile
phones in conjunction with images directly taken with the phone camera or a cell phone microscope
system. Beta-testing with users from different labs, testing for accuracy and utility, was found to perform
well using conventional images (Supplementary Figure S6) or using a mobile phone looking down the
microscope even without an adaptor (Supplementary Figure S7). Combining the ML model approach
with the utility of a mobile interface-based web tool demonstrates the power of ML for identifying and
classifying parasites and its ability to rapidly assist in the assessment of parasite cultures via cytological
smears.

4. Discussion

Here, we present an ML approach and a user-orientated web tool for the detection and staging of
P. falciparum from Giemsa-smeared cytological smears. Using this simple approach, we obtain state-
of-the-art performance in cell segmentation and detect parasites with high performance on an independent
test set. Our object detection model can detect RBCs with an AP of 0.99 on our P. falciparum test set and

Figure 3.Model prediction on parasite intraerythrocytic cycle (IDC) development. (a) Model predictions
are marked with a black dot. Labels were converted to a numeric scale (ring = 1, trophozoite = 2, and
schizont= 3) and averaged across all annotators to set a ground truth (GT) label. Boxplots show the label
distribution across annotators with error bars determined by the outermost data values. Density plot
shows the predicted life stage distribution within the sample. Colors represent progression through the
IDC as defined by the GT. (b) After learning from the averaged GT labels, the model successfully orders
all detected infected RBCs in the independent test set based on its intraerythrocytic cycle (IDC) life stage
predictions (left to right; top to bottom). Color bar represents progression through the IDC as predicted
by the model. Top and bottom black lines represent the arbitrary cutoff points used by PlasmoCount
between the ring and trophozoite (cutoff = 1.5) and trophozoite and schizont (cutoff = 2.5) stages,

respectively.
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anAP of 0.98 on aP. vivax dataset previously tested with the novel Keras R-CNNmodel (mAP= 0.78)(23)

and a CellProfiler pipeline (mAP = 0.61)(23,36) at an IOU threshold of 0.5. Moreover, our classification
model of infected RBCs reaches a near-perfect accuracy with a sensitivity of 0.995 and a specificity of
0.998, respectively; this is comparable to state-of-the-art methods for the classification of segmented
RBCs(20,37,38). Indeed, we could further improve our method by replacing our object detection method
with a Mask R-CNN model where each cell is overlaid with segmentation masks rather than bounding
boxes. This approach has been successfully applied in nucleus segmentation(39,40) and would reduce the
confounding of neighboring cells on parasite detection. Finally, we have introduced a staging model that
recapitulates IDC progression of the parasite and allows for more refined interpretation when reading
slides. Recent studies have aimed to enhance IDC life stage classification by adding early, mid, and late
substages(25). Using a regression model, we are able to differentiate the IDC stage of the parasite more
precisely and prevent penalizing predictions that have been classified as a different substage of the
parasite but are developmentally not far removed.

We have shown that whereas experts disagree on parasite stages, using an automated approach to
malaria detection enables robust standardization in the evaluation of Giemsa smears, providing quanti-
tative measures, for example, when applied to high-throughput experiments. We have defined the ground
truth (GT) as a summary of labels from multiple annotators and laboratories. Using this method, our
model is able to generally order the developmental stages of individual cells and recapitulate the IDC life

Figure 4. PlasmoCount, a mobile friendly tool for automated assessment of Giemsa-stained cytological
smears. In the upload form, users can attach their images of Giemsa-stained thin blood films. The client
sends the data to the server to be passed to themodels; the results then get sent back and are displayed in a
summary section and a table. The summary section is divided into parasitemia pie charts and a histogram

of the IDC life stage distribution. The rows in the table correspond to individual images and are
selectable; this will display the corresponding image with overlaying model predictions. The user

interface is optimized for mobile phone dimensions, allowing users to use a mobile device for both image
acquisition and data analysis. Every job has a unique ID associated with it; this allows users to come back

to their results from multiple devices at any time.
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cycle of P. falciparum. However, the GT could be further refined by including more annotators and
allowing annotators to select from a wider range of stages. Moreover, our pipeline could be supplemented
by asking annotators to order cells as part of the labeling process as this has been shown to improve
consensus among annotators in fluorescent imaging data ofP. falciparum(26). It should be noted, however,
that there is as yet nomethod of validating this GT; ultimately, it is defined by the experts who evaluate the
slides, and this phenomenon has led groups to correct standard datasets(41). Methods will have to establish
“gold standard” slide/image sets, not only for the assessment of reader competency, but also to ensure a
better benchmark for the design of automated methods.

In this work, we have focused on discriminating between the IDC stages of the parasites as these
asexually replicating stages cause symptoms in patients and are the main focus of clinical studies(42) as
well as providing the source population for gametocyte investment(43). As a proof of concept, we have
shown that we are also able to discriminate between asexual andmature sexual blood-stage parasites using
ML methods. In the future, we would like to extend our regression approach to the sexual stages of the
parasite, including progression through the five distinct stages of gametocyte development and differ-
entiation intomales and females.We have also not addressed caseswheremultiple parasites invadeRBCs,
which is likely to confound the IDC stage prediction. Possible solutions include adding a local classifier
formultiplicity, multilabel classification with the IDC stages, and object detection for detecting individual
parasites.

Although we have developed PlasmoCount to detect P. falciparum, it is by no means limited to one
species ofPlasmodium. Preliminary testing suggests that the tool can also be applied to the study of round-
the-clock blood samples from infections with rodent malaria parasites (P. chabaudi adami, clone DK),
although this will need to be validated against a GT based on expert annotations (Supplementary
Figure S8). Leukocytes are not typically present in our laboratory smears of P. falciparum, which
generally use only processed RBCs from donated whole blood. We have, however, aimed to address
the possibility of leukocyte presence by including a threshold based on the size distribution of cells in the
sample, but a more sensitive ML-based method could be added in the future. Such an approach will be
fundamental, aswe aim to extend ourmethod to the clinical diagnosis of humanmalariawhere leukocytes,
other components of whole blood (e.g., platelets), and even other pathogens may add further classes of
non-RBC material to smears.

Automated methods can speed up the evaluation of thin blood smears; however, the bottleneck of
image acquisition remains. In this study, we sought to provide a solution to the speed of acquisition by
developing a tool that works in conjunction with mobile devices from image acquisition to assessment.
If coupled with low-cost and portable microscope systems(44–46), this has the potential to increase
screening throughput markedly and opens up opportunities for thin blood smears as a tool for
qualitative diagnosis in the field where thick smears are preferred due to their higher sensitivity. Speed
of image acquisition via a mobile device will generally be a lot faster than manual counting and
recording of thin smears. There is also the possibility that PlasmoCount could be incorporated into
higher throughput image acquisition system workflows (e.g., slide readers) to speed up accurate parasite
quantification in a hospital/laboratory-based setting. It can also be downloaded and locally installed for
regions where Internet stability is an issue (Supplementary Figure S9, Supplementary Dataset S10 [test
dataset], and Supplementary Table 2).

There are limitations to be considered especially in the use of ML methods in clinical practice.
Although we have tested a dataset from independent research centers, measuring generalization perfor-
mance remains challenging due to technical differences between laboratories, and performance will
heavily depend on data quality. Moreover, our method does not estimate uncertainty with its predictions
which would improve the reliability of the results. To this end, we have developed a web tool that lets the
user check their results for quality assurance and save them for traceability in the decision-making
process. This also opens up an opportunity for continuous improvement of the models; by collecting
feedback from the community, a human-in-the-loop labeling workflow could be implemented similar to
our model-assisted approach.
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Recent efforts have applied ML techniques to the detection of malaria parasites in microscopy images
of cytological smears. The aim of this workwas not only to further these developments, but also to provide
a tool that can be used by the malaria research community. Deep learning typically requires large amounts
of data, which are not always widely available for medical applications due to the expert knowledge
required. In this study, we have included data from six research centers and tested the tool’s functionality
with various others. In this way, we enhance robustness across laboratories and aim to drive a community-
wide effort to accelerate malaria research and ultimately adopt automated methods in a clinical diagnostic
context.

Acknowledgments. We would like to thank several colleagues for their help with expert labeling of data, including A. Churchyard,
D. Grimson, T. Blake, J. M. Balbin, and I. Henshall. We would also like to thank J. Hazard for his continuous support and help with
management of this collaborative project.

Funding Statement. This work was funded with support from the Bill & Melinda Gates Foundation (OPP1181199) with
additional support coming from Wellcome (Investigator Award to JB, 100993/Z/13/Z; PhD studentship to CAB 220123/Z/20/Z),
University of Adelaide scholarship to J.C., and Hospital Research Foundation Fellowship to D.W.W.

Competing Interests. The authors declare no conflicts of interest or competing interests.

Data Availability Statement. Original imaging data, experimental metadata, and pseudolabels are available from a publicly
accessible Data Repository (http://dx.doi.org/10.17632/j55fyhtxn4.1). Source code is available at https://github.com/thebaumla
boratory/PlasmoCount. Login details to access PlasmoCount are available at https://www.baumlab.com/plasmocount. To view
supplementary material for this article, please visit http://dx.doi.org/10.1017/S2633903X21000015.

Authorship Contributions. M.S.D. and J.B. designed the experiments and wrote the initial manuscript; S.Y., J.C., D.W.W., P.P.,
C.U.,M.D.J.,M.P., D.W.A.,M.J.B., P.G., J.D.D., A.J.O., and S.E.R. cultured parasites, and stained and acquired images;M.S.D., G.
W.A., M.D., and D.M.A. developed the imaging workflow;M.S.D., M.D., and D.M.A. optimized and carried out theMLworkflow
and data analysis. C.A.B. and K.A.C. undertook deployment of the web tool and migration of software to cloud-based services. All
authors contributed to writing and editing of the manuscript.

References
1. WHO (2019) World Malaria Report 2019. World Health Organization.
2. Tangpukdee N, Duangdee C, Wilairatana P & Krudsood S (2009) Malaria diagnosis: a brief review. Korean J Parasitol 47,

93–102.
3. Barcia JJ (2007) The Giemsa stain: its history and applications. Int J Surg Pathol 15, 292–296.
4. Trager W & Jensen JB (1976) Human malaria parasites in continuous culture. Science 193, 673–675.
5. WHO (2016) Malaria Microscopy Quality Assurance Manual—Version 2. Geneva, Switzerland: World Health Organization.
6. O’Meara WP., McKenzie, F. E., Magill, A. J. et al. (2005) Sources of variability in determining malaria parasite density by

microscopy. Am J Trop Med Hyg 73, 593–598.
7. Durrheim DN, Becker PJ & Billinghurst K (1997) Diagnostic disagreement—the lessons learnt from malaria diagnosis in

Mpumalanga. S Afr Med J 87, 1016.
8. McKenzie FE, Sirichaisinthop J, Miller RS, Gasser Jr RA&Wongsrichanalai C (2003) Dependence of malaria detection and

species diagnosis by microscopy on parasite density. Am J Trop Med Hyg 69, 372–376.
9. Poostchi M, Silamut K, Maude RJ, Jaeger S & Thoma G (2018) Image analysis and machine learning for detecting malaria.

Transl Res 194, 36–55.
10. Ruberto CD, Di Ruberto C, Dempster A, Khan S & Jarra B (2002) Analysis of infected blood cell images using

morphological operators. Image Vis Comput 20, 133–146.
11. Tek FB, Dempster AG & Kale I (2006) Malaria parasite detection in peripheral blood images. In Proceedings of the 2006

British Machine Vision Conference, pp. 36.1–36.10 [M Chantler, B Fisher & M Trucco, editors]. Edinburgh, UK: BMVA
Press. https://doi.org/10.5244/c.20.36.

12. Ross NE, Pritchard CJ, Rubin DM & Dusé AG (2006) Automated image processing method for the diagnosis and
classification of malaria on thin blood smears. Med Biol Eng Comput 44, 427–436.

13. Díaz G, González FA & Romero E (2009) A semi-automatic method for quantification and classification of erythrocytes
infected with malaria parasites in microscopic images. J Biomed Inform 42, 296–307.

14. Tek FB, Dempster AG&Kale İ (2010) Parasite detection and identification for automated thin blood film malaria diagnosis.
Comput Vis Image Underst 114, 21–32.

Biological Imaging e2-11

http://dx.doi.org/10.17632/j55fyhtxn4.1
https://github.com/thebaumlaboratory/PlasmoCount
https://github.com/thebaumlaboratory/PlasmoCount
https://www.baumlab.com/plasmocount
http://dx.doi.org/10.1017/S2633903X21000015
https://doi.org/10.5244/c.20.36


15. Linder N, et al. (2014) A malaria diagnostic tool based on computer vision screening and visualization of Plasmodium
falciparum candidate areas in digitized blood smears. PLoS One 9, e104855.

16. Liang Z, et al. (2016) CNN-based image analysis for malaria diagnosis. In 2016 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), pp. 493–496. https://doi.org/10.1109/bibm.2016.7822567.

17. DongY, et al. (2017) Evaluations of deep convolutional neural networks for automatic identification ofmalaria infected cells.
In 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), pp, 101–104. https://doi.org/
10.1109/bhi.2017.7897215.

18. Gopakumar GP, Swetha M, Sai Siva G & Sai Subrahmanyam GRK (2018) Convolutional neural network-based malaria
diagnosis from focus stack of blood smear images acquired using custom-built slide scanner. J Biophotonics 11. https://
doi.org/10.1002/jbio.201700003

19. Bibin D, Nair MS & Punitha P (2017) Malaria parasite detection from peripheral blood smear images using deep belief
networks. IEEE Access 5, 9099–9108.

20. Rajaraman S, et al. (2018) Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite
detection in thin blood smear images. PeerJ 6, e4568.

21. Hung J & Carpenter A (2017) Applying faster R-CNN for object detection on malaria images. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pp. 56–61. openaccess.thecvf.com

22. Yang F, et al. (2020) Deep learning for smartphone-based malaria parasite detection in thick blood smears. IEEE J Biomed
Health Inform 24, 1427–1438.

23. Hung J, et al. (2020) Keras R-CNN: library for cell detection in biological images using deep neural networks. BMC
Bioinformatics 21, 300.

24. Dhorda M, et al. (2020) Towards harmonization of microscopy methods for malaria clinical research studies. Malar J 19,
324.

25. Abbas SS & Dijkstra TMH (2020) Detection and stage classification of Plasmodium falciparum from images of Giemsa
stained thin blood films using random forest classifiers. Diagn Pathol 15, 130.

26. Ashdown GW, et al. (2020) A machine learning approach to define antimalarial drug action from heterogeneous cell-based
screens. Sci Adv 6, eaba9338.

27. Labelbox (2020) Labelbox: the leading training data platform for data labeling. https://labelbox.com/ (accessed October 26,
2020).

28. Ljosa V, Sokolnicki KL & Carpenter AE (2012) Annotated high-throughput microscopy image sets for validation. Nat
Methods 9, 637.

29. He K, Zhang X, Ren S & Sun J (2016) Deep residual learning for image recognition. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 770–778.

30. Deng J, et al. (2009) ImageNet: a large-scale hierarchical image database. In 2009 IEEEConference on Computer Vision and
Pattern Recognition, pp. 248–255.

31. Kingma DP & Ba J (2014) Adam: a method for stochastic optimization. Preprint, 2017, arXiv:1412.6980.
32. Smith LN (2018) A disciplined approach to neural network hyper-parameters: Part 1—learning rate, batch size, momentum,

and weight decay. Preprint, 2018, arXiv:1803.09820.
33. Ren S, He K, Girshick R& Sun J (2015) Faster R-CNN: towards real-time object detection with region proposal networks. in

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, 1 June 2017, doi: 10.1109/
TPAMI.2016.2577031.

34. Girshick R (2015) Fast R-CNN. Preprint, 2015, arXiv:1504.08083.
35. Lin T-Y, et al. (2014) Microsoft COCO: common objects in context. In Computer Vision—ECCV 2014. Lecture Notes in

Computer Science, 8693, pp. 740–755 [D Fleet, T Pajdla, B Schiele & T Tuytelaars, editors]. Cham: Springer.
36. McQuin C, et al. (2018) CellProfiler 3.0: next-generation image processing for biology. PLoS Biol 16, e2005970.
37. Rahman A, et al. (2019) Improving malaria parasite detection from red blood cell using deep convolutional neural networks.

Preprint, 2019, arXiv:1907.10418.
38. Rajaraman S, Jaeger S & Antani SK (2019) Performance evaluation of deep neural ensembles toward malaria parasite

detection in thin-blood smear images. PeerJ 7, e6977.
39. Jung H, Lodhi B & Kang J (2019) An automatic nuclei segmentation method based on deep convolutional neural networks

for histopathology images. BMC Biomed Eng 1, 24.
40. Johnson JW (2020) Automatic nucleus segmentation with Mask-RCNN. In Advances in Computer Vision. Advances in

Intelligent Systems and Computing, 944, pp. 399–407 [K Arai & S Kapoor, editors]. Cham: Springer.
41. Fuhad KMF, et al. (2020) Deep learning based automatic malaria parasite detection from blood smear and its smartphone

based application. Diagnostics (Basel) 10, 329.
42. Venugopal K, Hentzschel F, Valkiūnas G & Marti M (2020) Plasmodium asexual growth and sexual development in the

haematopoietic niche of the host. Nat Rev Microbiol 18, 177–189.
43. Carter LM, et al. (2013) Stress and sex in malaria parasites: why does commitment vary? Evol Med Public Health 2013,

135–147.

e2-12 Mira S. Davidson et al.

https://doi.org/10.1109/bibm.2016.7822567
https://doi.org/10.1109/bhi.2017.7897215
https://doi.org/10.1109/bhi.2017.7897215
https://doi.org/10.1002/jbio.201700003
https://doi.org/10.1002/jbio.201700003
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031


44. Diederich B, et al. (2020) A versatile and customizable low-cost 3D-printed open standard for microscopic imaging. Nat
Commun 11, 5979.

45. Orth A, Wilson ER, Thompson JG & Gibson BC (2018) A dual-mode mobile phone microscope using the onboard camera
flash and ambient light. Sci Rep 8, 3298.

46. Diederich B, Then P, Jügler A, Förster R & Heintzmann R (2019) cellSTORM—cost-effective super-resolution on a
cellphone using dSTORM. PLoS One 14, e0209827.

Cite this article: Davidson M. S, Andradi-Brown C, Yahiya S, Chmielewski J, O’Donnell A. J, Gurung P, Jeninga M. D,
Prommana P, Andrew D. W, Petter M, Uthaipibull C, Boyle M. J, Ashdown G. W, Dvorin J. D, Reece S. E, Wilson D. W,
Cunningham K. A, Ando D. Michael, Dimon M and Baum J (2021). Automated detection and staging of malaria parasites from
cytological smears using convolutional neural networks. Biological Imaging, 1: e2. doi:https://doi.org/10.1017/
S2633903X21000015

Biological Imaging e2-13

https://doi.org/10.1017/S2633903X21000015
https://doi.org/10.1017/S2633903X21000015

	Automated detection and staging of malaria parasites from cytological smears using convolutional neural networks
	Introduction
	Methods
	Ethical approval
	Sample preparation
	Labeling pipeline
	Data analysis
	Web application architecture

	Results
	Data
	Red blood cell detection
	Infected and uninfected red blood cell differentiation
	Life cycle stage classification
	PlasmoCount: A web tool for automated parasite detection and staging

	Discussion
	Acknowledgments
	Funding Statement
	Competing Interests
	Data Availability Statement
	Authorship Contributions
	References


