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Davies et al. (1) presented work aimed at predicting the
ice-nucleating ability of several interfaces by means of a
ready-to-use deep learning tool.

Ice Nucleation in Nature Happens Heterogeneously
Water freezes in a wide variety of low-temperature natu-

ral environments, ranging from atmospheric clouds to soil
and biological cells. When supercooled below the melting
temperature, crystallites start homogeneously nucleating
until liquid water completely transforms into ice (2, 3). The
transition of liquid water into ice is relevant to atmospheric
science, geology, and microbiology. Ice crystallization is
also relevant to ecology, where ice-nucleating bacteria can
damage plants via frosting, or to material science, where
novel materials for controlled interfacial freezing can be
designed.

Ice nucleation in nature cannot occur from mildly super-
cooled bulk water. When liquid water is supercooled down
to 20° below melting, the ice nucleation rate is slower than
the rate corresponding to one ice nucleus appearing in all
water in the hydrosphere during the age of the universe
(4). For this reason, ice nucleation has to happen heteroge-
neously, induced by the presence of interfaces of solid
impurities operating as nucleating agents.

Heterogeneous nucleation of ice on aerosols of various
origins is the main mechanism of ice formation in the
atmosphere (5). This leads to the development of ice-rich
clouds, which play an important role in mediating the
amount of solar radiation reaching the Earth. Atomically
flat carbon surfaces have been shown to promote hetero-
geneous ice nucleation, inducing layering in the nearby
interfacial water (6).

Cold-adapted organisms are capable of producing anti-
freeze/ice-nucleating proteins to prevent/promote ice for-
mation at temperatures below melting (7).

In the surroundings of Pseudomonas syringae bacteria,
ice nucleation is enhanced by ad hoc ice-active sites with
unique hydrophilic–hydrophobic patterns. Not only is ice
nucleation efficiency promoted by the presence of ice-like
or anchored clathrate motifs (8), but also, the hydrogen
bonding at the water–bacteria contact imposes a structural
ordering on the adjacent water network.

Which Structural Features Should Characterize an
Interface for It to be Considered a Good Ice Former?

Even though experimental or numerical studies on sev-
eral materials have so far led to a deeper understanding of
the mechanism behind heterogeneous ice nucleation (9),
predicting the ice-nucleating abilities of a substrate based
on its properties still remains an unattainable goal.

We are probably living in the golden age of machine
learning (10), deeply connected with condensed matter

physics, where an important goal is unraveling atomistic
insights of many-body systems (11). To overcome time-
scale limitations of ab initio techniques and accuracy
issues with force field methods (12), machine learning
tools have been developed to provide accurate model
potentials (13) for complex aqueous systems (14) ranging
from water under nanoconfinement to water in contact
with different surfaces.

To design materials capable of controlling ice formation,
predicting ice-nucleating abilities of several substrates
would be desirable. Recently, machine learning techniques
have been tailored for a quantitative understanding of
heterogeneous ice nucleation on several substrates (15).
Intrinsic surface properties (i.e., the match between the
surface’s lattice to the low-index face of ice and the
adsorption energy) together with features of interfacial
water (i.e., a local ordering induced by the surface and a
density decrease) were shown to play a key role in the ice-
nucleating ability of a substrate.

To date, it remained unclear how to a priori predict the
ice nucleation ability of a given material, and expensive
computer simulations or experiments were needed to
unravel the efficacy of an ice-nucleating agent.

Machine Learning for Predicting Ice Nucleation Abil-
ities of Surfaces

Davies et al. (1) have tackled this issue by developing a
ready-to-use deep learning tool: “IcePic.”

Making use of an in silico image of room temperature
water in contact with several substrates, IcePic allows us to
infer the nucleation ability far better than human predictions.

Interestingly, the numerical tool confirmed the rele-
vance of the structure of contact water in affecting the
nucleation properties, as predicted by experiments (16)
and costly simulations (17, 18), and it provides physical
insights on interfacial water.

This tool opens up avenues for investigating ice nucle-
ation, with relevance in atmospheric science, geology, and
microbiology.
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