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This paper provides the reader with an overview of our current knowledge of hypothalamic-pituitary-thyroid feedback from
a cybernetic standpoint. Over the past decades we have gained a plethora of information from biochemical, clinical, and
epidemiological investigation, especially on the role of TSH and other thyrotropic agonists as critical components of this complex
relationship. Integrating these data into a systems perspective delivers new insights into static and dynamic behaviour of thyroid
homeostasis. Explicit usage of this information with mathematical methods promises to deliver a better understanding of
thyrotropic feedback control and new options for personalised diagnosis of thyroid dysfunction and targeted therapy, also by
permitting a new perspective on the conundrum of the TSH reference range.

1. Introduction

As thyroid hormones play a critical role for metabolism,
growth, and tissue differentiation, exact and robust regula-
tion of hormone levels is required. Although a thyrotropic
hormone from anterior pituitary has first been described
at the beginning of the 20th century [1, 2], it was not
before 1940 that Salter postulated the existence of a control
loop linking the pituitary and thyroid gland [3]. This idea
was inspired by the then recent description of the two
gonadotropic feedback control loops [4–7]. Only a few years
later, Astwood and Hoskins independently could demon-
strate both existence and pathophysiological relevance of this
thyrotropic feedback control system [8–10].

Apart from a deeper insight into fundamental physio-
logical principles, both diagnostic evaluation and dosage of
substitutive therapy benefit from this knowledge. However,
growing complexities of the respective relations increasingly
question the validity of predictions that try to map reactions
of the feedback loop to certain parameter changes. Addi-
tionally, there is an increasing gap between molecular and

systems-level insights and a similar hiatus between findings
of basic research and clinical applications.

Systems theoretic models try to incorporate both data
from a molecular level and those from a systemic perspective
on the level of the whole organism in an integrative way.
Depending on their design principles the resulting cybernetic
models may facilitate medical decision making and deliver
hypotheses that may again serve as a basis for ongoing
research.

2. Physiology of Thyrotropic Feedback Control

From a systems biologic perspective, thyroid homeostasis
is a processing structure whose signalling is implemented
by two different mechanisms, conversion and relaying [11].
Examples of relaying are the control of T4 secretion by
TSH or of TSH secretion by TRH. Central and peripheral
deiodinases convert T4 to the active hormone T3 and further
to inactive iodothyronines. Another example of conversion
processes is transport of thyroid hormones by plasma and
transmembrane transporters.

mailto:johannes.dietrich@ruhr-uni-bochum.de


2 Journal of Thyroid Research

2.1. Classical Pituitary-Thyroid Axis (Astwood-Hoskins Loop).
Apart from pituitary and thyroid, key components of the
classical feedback control loop are the hypothalamus, and
other organs like liver, brown adipose tissue, skeletal muscle
and kidney that are capable of deiodination, as well as
peripheral and central compartments, where iodothyronines
distribute, act and are catabolised [12, 13]. Plasma trans-
porters like TBG and membrane transporters like MCT8
facilitate convey of thyroid hormones in body fluids and
through membranes and the blood-brain barrier [14–
18].

Due to the long half-life of iodothyronines the reaction
of the thyroid to stimulating TSH pulses from the pituitary
is slow. A large portion of thyroxine binds reversibly to
plasma proteins. Only a small free fraction (0.02% to
0.03%) is available for conversion to T3 and transport to
cytoplasm. T3 is formed from T4 by 5′ deiodination at
the outer ring by type 1 deiodinase predominantly in liver,
kidney, and thyroid. Type 2 deiodinase mediates intracellular
deiodination in glial cells, pituitary, brown adipose tissue,
skeletal muscle, and placenta [19]. Obviously, intracellular
deiodination facilitates feedback at the pituitary level by
providing a mainly T4-dependent mechanism, which is
faster than one that would depend on T3 from systemic
circulation [20]. In addition, T3 is regulated by nonthyroidal
factors, first of all peripheral deiodination [19, 21–25] that
is subject of multiple metabolic control inputs [19, 26–30],
which would also render a primarily T3-dependent feedback
mechanism ineffective. High pituitary DIO2 expression rate
ensures operative feedback despite T4-induced ubiquitina-
tion of type 2 deiodinase [31].

TSH is secreted in a pulsatile manner [32] with a mean
pulse amplitude of 0.6 mU/L and a frequency of 5 to 20
per 24 hours [33]. Experiments suggested that there is no
correlation among pulsatile secretion of TRH and TSH
[34].

TSH pulses are superimposed by a 24 hour rhythm that
leads to maximum TSH secretion shortly after midnight
[35]. Interestingly, the interaction seems to be more than
pure addition as the amplitude of short TSH pulses also rises
in the second half of night. Therefore, unlike the frequency
of fast pulses, their amplitude and that of diurnal rhythm of
TSH seem to be controlled by TRH, as demonstrated in rat
hypothalamic slices [36].

2.2. Ultrashort-Loop Control of Thyrotropin Incretion
(Brokken-Wiersinga-Prummel Loop). Patients suffering from
Graves’ disease may continue to show decreased TSH levels
despite normal or even low FT4 and FT3 levels and despite
being clinically euthyroid over long time periods [37, 38].
A similar constellation was described in patients with both
familiar [39] and sporadic [40] activating TSH receptor
mutations and in an infant born to a mother with Graves’
disease [41]. This and the fact that ultrashort loop feedback
control of thyrotropin secretion had been observed in
rabbits [42, 43] led to the discovery of TSH receptors on
folliculostellate cells of anterior pituitary lobe [44–46] and
consecutive confirmation of a similar autocrine or paracrine

effect in humans [47, 48]. This feedback loop might prevent
excessively high TSH levels and also be a source of TSH
pulsatility, as suggested by investigations based on fractal
geometry [49].

The existence of this loop may be a challenge for inter-
pretation of laboratory results, especially in patients with
Graves’ disease, where TRAbs may suppress TSH secretion
independently from current FT4 levels [50] resulting in TSH
levels being lower than expected in relation to current FT4
levels (see Section 4.3).

2.3. Long Feedback Control (Fekete-Lechan Loop). As early as
1969 DiStefano postulated the existence of two-loop feed-
back of thyroid hormones targeting both hypothalamus and
pituitary [51]. Based on control theoretical considerations,
he had concluded that a model including proportional feed-
back at the hypothalamic level and rate (differential) feed-
back at the level of the pituitary provides best performance.
At this time, unidirectional signalling from hypothalamus to
pituitary resulting in stimulation of thyroid output had been
described [52–54], but the existence of a long feedback loop
was yet to be confirmed by experimental methods.

The presence of this additional long feedback loop that
links iodothyronine levels in CNS with TRH release could be
later confirmed in animal experiments [55–60].

Due to limitations in research methods this relationship
cannot be directly investigated in humans. However, obser-
vations in animal models with induced nonthyroidal illness
syndrome and phenomenologically similar observations in
critically ill humans suggest this feedback loop is also effec-
tive in human physiology [61]. With current methodology
the relative contribution of direct inhibition of TSH release
by iodothyronine feedback and of indirect TSH reduction
by suppressed TRH signalling cannot be isolated. More and
more hints, however, indicate a central role of the TRH
neuron in energy homeostasis, where thyroid signalling is
a critical component [62, 63].

2.4. Alternative Mechanisms of Thyroid Control. The men-
tioned classical feedback mechanism controls the level of
thyroid hormones via T4 formation and release. Additional
mechanisms of homeostasis include autoregulation, where
clearance of iodothyronines increases with their plasma levels
[64–66], increased degradation of TSH in hyperthyroidism
[67], possible ultrashort feedback control of TRH secretion,
[68] and numerous mechanisms involving control of thyroid
hormone transporters and receptor density [15, 17, 69–
73]. Moreover, iodothyronines are subject to enterohepatic
circulation that is a target of additional control signals
[16, 74] and due to the prokinetic effects of iodothy-
ronines possibly including thyroid hormones themselves [75,
76].

Ultrashort-loop feedback control mechanism at the site
of the thyroid may exist in form of direct inhibition of TSH
signalling by high levels of thyroid hormones [77–80], but
from current scientific knowledge it is unclear if such a mech-
anism exists in humans.
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Posttranslational modifications of TSH may be a possible
important, but still understudied mechanism of auxiliary
thyrotropic control. Like other glycoprotein hormones TSH
contains asparagine-linked biantennary and triantennary
oligosaccharide structures with a terminal N-acetylgalactos-
amine (GalNAc) sulfate signal and varying sialic acid content
[81–83]. Plasma half-life of sialylated TSH is markedly
prolonged, whereas asialo-TSH with terminal mannose,
galactose, GalNAc sulfate, N-acetylglucosamine or fucose
moieties is rapidly captured by hepatocyte asialoglycoprotein
receptors and, in consequence, subject to degradation [82].
However, bioactivity of sialylated TSH seems to be reduced
[84, 85]. This could be related to prolonged half-life and
resulting desensitization of TSH receptors [86] by virtue of
reduced TSH pulsatility. Different TSH glycoforms may con-
tribute to overall control of thyroid homeostasis, as suggested
by increased sialo-TSH content in hypothyroidism [87, 88]
and decreased sialylation in nonthyroidal illness syndrome
[89]. Glycosylation patterns of TSH may also be one of the
reasons for concentration-independent modulation of TSH
bioaction, as represented by a lack of correlation between
TSH levels and FT4 concentration in central hypothyroidism
[90].

In addition to TSH, sialylation of other components
of thyrotropic feedback control like thyroglobulin [91] and
TSH receptor [92] was observed. The effect of the above
mechanisms however on overall homeostasis is still less well
understood.

2.5. Mathematical and Simulative Models of Thyroid Home-
ostasis. Cybernetic models of thyrotropic feedback control
help to understand the relation between structure and
behaviour of the system and to predict dynamical responses
to input signals and loads. Occasionally, these models may
also be used as generators of hypotheses and even diagnostic
procedures.

As early as 1968 Panda and Turner delivered a first
quantitative description of the relation of thyroxine and TSH
levels that was derived from empirical observations [115].
The first theoretically based mathematical models of thyroid
homeostasis, however, had already been developed in the
preceding decade [93, 94]. While these early and also some
more recent models relied on a pure phenomenological
approach usually on the ground of linear or polynomial
relations [95, 106], improved models gradually shifted to
a more and more parametrically isomorphic description,
trying to map results of physiological and molecular research
to a cybernetic description of the information processing
structure [11, 49, 96, 97, 99, 101–103, 105, 108, 110, 111, 113]
(Table 1).

As a result of increased confidence in modelling results,
attempts have been made to apply some of the newer
approaches [11, 23, 49, 113, 116] to clinical research [23,
117–119] and medical decision making [11, 116, 120].

The standard model of thyroid homeostasis (Figure 1)
postulates a logarithmic relationship between FT4 levels and
pituitary TSH release [105, 121]. This theory complies with
empirical distributions of thyroid hormones in different
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Figure 1: Information processing structure of the logarithmic
standard model of thyroid homeostasis [105, 121].

populations [122, 123] and also with changes in FT3 levels in
patients on substitution therapy [124]. Clinical applications
try to exploit this postulated relation for diagnosis of
pituitary disorders [120, 125, 126]. Recently, however, several
population-based studies revealed discrepancies of bihor-
monal distributions from the standard logarithmic model in
both euthyroidism and thyroid dysfunctions [127–129].

Alternative parametrically isomorphic models (e.g., the
nonlinear model depicted in Figure 2) result from “bottom-
up” modelling based on molecular, cellular, and pharma-
cokinetic data. Not surprisingly, their mathematical theory is
a great deal more complex. Therefore, computer simulations,
for example, the open-source software SimThyr (Figure 3
[130]) have been developed to allow for a more intuitive
understanding of the system’s reactions and its temporal
dynamics. The advantage of this kind of modelling approach
is that parameters are well founded in thyroid biology and
that resulting models therefore help to deliver hypotheses
even in pathological conditions [49, 112].

“Small” models of thyroid homeostasis confine them-
selves to well-defined parts of the information processing
structure. Examples are compartment-analytical models of
iodine metabolism [131–134], kinetics of thyroid hormones
[135] including their plasma protein binding [136], uptake
of radioiodine [137–150], and intracellular dynamics of
iodothyronine synthesis [110] and effect [151, 152].

Most models rely on parameters that have been obtained
from humans. Only a minority deals with control of
iodothyronine metabolism in animals, for example, cattle
[133], sheep [132, 133], and rats [112].

Today, modelling of pituitary-thyroid axis is faced with
the challenge of newly discovered complexities in the
information processing structure, like ultrashort and long
feedback loops and temporal dynamics of iodothyronine
transporters. Although our knowledge benefits from excel-
lent molecular and clinical studies, the growing intricacy of
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Table 1: Overview of published models of thyrotropic feedback control. Applications for research refer to any scientific exploitation outside
of the modelling context itself, for example, for reasoning in clinical trials or generation of hypotheses.

Authors Year Transfer characteristics
Type of modelling

approach
Applications
for research

Clinical
applications

Reference

Danziger and
Elmergreen

1956 Linear Phenomenological − − [93]

Roston 1959 Linear with basal secretion Phenomenological − − [94]

Norwich and Reiter 1965 Linear Phenomenological − − [95]

DiStefano and Stear 1968 Linear with basal secretion
Phenomenological,

partly parametrically
isomorphic

− − [96]

DiStefano and Chang 1969, 1971 Linear with basal secretion
Phenomenological,

partly parametrically
isomorphic

− − [97, 98]

DiStefano et al. 1975 N/A
Parametrically

isomorphic
− − [99]

Sudova and Langer 1975
Exponential with

compartment-analytical
components

Phenomenological,
partly parametrically

isomorphic
− − [100]

Saratchandran et al. 1976 Logarithmic and linear
Phenomenological,

partly parametrically
isomorphic

− − [101]

Seif 1977 Logarithmic and linear
Phenomenological,

partly parametrically
isomorphic

− − [102]

Wilkin et al. 1977 Limit elements
Phenomenological,

partly parametrically
isomorphic

− − [103]

Hatakeyama and Yagi 1985
Linear with first order time

constants
Phenomenological − − [104]

Cohen 1990 Logarithmic Phenomenological + + [105]

Li et al. 1995, 1994 Complex polynoms
Phenomenological,

partly parametrically
isomorphic

− − [106, 107]

Dietrich et al. 1997
Linear and

Michaelis-Menten kinetics

Phenomenological,
partly parametrically

isomorphic
− − [108]

Dietrich et al. 2002, 2004

Michaelis-Menten kinetics,
noncompetitive divisive

inhibition, first order time
constants

Parametrically
isomorphic

(parameters for adult
humans)

+ + [11, 49]

Falaschi et al. 2004 Linear Phenomenological − − [109]

Degon et al. 2008
Based on compartment and

flux analysis

Phenomenological,
partly parametrically

isomorphic
− − [110]

Leow 2007

2nd order Bernoulli
differential equations,

hysteresis,
inverse exponential power

law of TSH response

Phenomenological,
partly parametrically

isomorphic
− − [111]

Mclanahan et al. 2008

Michaelis-Menten kinetics,
noncompetitive divisive

inhibition, first order time
constants

Parametrically
isomorphic

(parameters for adult
rats)

− − [112]

Eisenberg et al. 2008, 2010
Based on earlier models by

DiSefano et al.

Phenomenological,
partly parametrically

isomorphic
+ − [113, 114]
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Figure 2: Information processing structure of a nonlinear parametrically isomorphic model based on Michaelis-Menten kinetics,
noncompetitive divisive inhibition, and pharmacokinetic data [11]. Modified with permission from [49].
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Figure 3: SimThyr, a continuous simulation program for thyrotropic feedback control [11].

resulting models turns out to be an obstacle for continued
modelling attempts.

3. Allostatic and Pathological Conditions

In general, pathological dysregulations may result from a dis-
connected feedback loop or from feed-in of autonomously
generated signalling substances. The processing structure
may be interrupted at virtually any site, with resulting
characteristic patterns that usually allow for an estimate of
where the disturbance is located.

Unlike dysregulations, allostatic responses may provide
life-saving adaptation mechanisms in extreme situations, for
example, in critical illness, starvation, or hibernation.

In euthyroid subjects and in most cases of thyroid dys-
function the equilibrium point that is defined by steady-state
levels of TSH and FT4, often in an oversimplifying manner
referred to as setpoint, emanates from the intersection of
characteristic curves of pituitary and thyroid (Figure 4).

Not surprisingly, the location of the equilibrium point
may be modulated by changes in virtually any component
of the feedback loop resulting in distortions of pituitary
or thyroid characteristic curves. For instance, alterations of
the setpoint have also been described in patients suffering
from mutations of thyroid hormone transporters, first of
all MCT8 [154–161], and in several polymorphisms of
deiodinases [154, 162–167]. Additionally polymorphisms of
thyroid hormone receptors [168, 169] and transcriptional
cofactor heterogeneity [170, 171] may determine the location
of the setpoint, but this association is still understudied.

3.1. Primary Thyroid Dysfunction. Primary functional dis-
orders, marked by partial or complete disconnection of the
feedback loop at the site of the thyroid, result from substan-
tially reduced or increased thyroid’s secretory capacity (GT),
that is, the maximum stimulated amount the thyroid can
produce in a given time unit. Common reasons for reduced
GT are autoimmune or silent thyroiditis and iatrogenic
causes including thyroid surgery or radioiodine ablation.
Increased GT frequently ensues from heterostimulation of
TSH receptors in Graves’ disease or activating mutations
of TSH receptors in toxic adenoma and toxic multinodular
goitre [11, 116].

As shown in Figure 5 the FT4 component of the equi-
librium point sinks while the TSH dimension rises with
decreasing GT . It is the nonlinear form of the response
curves that gives rise to the evolution of subclinical and overt
patterns of hypothyroidism.

It may astonish that the range of GT resulting in
subclinical hypothyroidism is rather small in the plot,
although in clinical practice subclinical thyroid disorders are
very common. In vivo, these effects may be synergistically
augmented by proliferative effects of slightly reduced FT4
levels on thyrotrophs, thus effectively broadening the zone
of subclinical disorders [172–174]. Other synergistic effects
widening the window of subclinical hypothyroidism include
long feedback and the above-mentioned alternative modes of
thyroid control.

Apart from alterations in GT , which reflect mainly
variations in the mass of functional thyroid tissue, primary
heterostasis may also ensue from modified transduction
properties of the TSH receptor by virtue of alterations in
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of TSH incretion to varying FT4 levels; the continuous blue line
represents the thyroid’s response to TSH. Note that for the response
curve of the thyroid—contrary to convention—the ordinate (TSH)
is the independent axis, while the dependent axis is the abscissa
(FT4). This uncommon notation facilitates superposition of both
characteristic curves. Marked is a normal equilibrium point (also
referred to as setpoint) defined by the intersection of both 50%
percentiles. Response curves were calculated from percentiles for
secretory capacities of pituitary (GH) and thyroid (GT) using the
mathematical model displayed in Figure 2. Structure parameters
were derived from a subgroup of subjects included in the NOMO-
THETICOS trial [153].

its dissociation constant (DT), for example, by nonpolymor-
phic mutations [175–182]. However this mechanism that
underlies nonautoimmune isolated hyperthyrotropinemia is
assumed to be a comparably rare condition, [183, 184].
Things are even more complex since it is expected that
chronic understimulation of the thyroid by mutations in the
TSH receptor eventually leads to reduced thyroid mass and
thus lower GT [185–187].

3.2. Secondary and Tertiary Thyroid Dysfunction. Central
hypothyroidism or thyrotropic insufficiency, defined as
reduced thyroid hormone secretion resulting from deficient
stimulation of an intrinsically normal thyroid gland by TSH
[188], may be of pituitary (secondary) or hypothalamic
(tertiary) origin. On the basis of hormone levels and even
of TRH stimulation tests, secondary and tertiary forms are
nearly indistinguishable without utilization of additional
information, for example, from imaging studies. To add
further confusion, TSH secretion may be impaired not only

quantitatively but also qualitatively resulting from secretion
of biologically inactive TSH [189, 190], as discussed above.

On a phenomenological level, however, two forms may
be distinguished. In partial thyrotropic insufficiency FT4 is
decreased while TSH is normal (but inadequately low in
relation to reduced FT4 levels), and in complete thyrotropic
insufficiency levels of both hormones are decreased. These
phenotypes may be explained by nonlinear response curves
of pituitary and thyroid (Figure 6).

Central hyperthyroidism, for example, resulting from
TSH secreting pituitary adenomas [191] or central thyroid
hormone resistance [189, 192, 193] (see Section 3.4), is a
very rare condition. Interestingly, in both cases TSH levels
may be excessively high, while peripheral thyroid hormone
concentrations are only mildly elevated [191]. This is a
consequence of nonlinear action of thyrotropin at TSHr
that is well explained by the Michaelis-Menten-like input-
output relation at the thyroid in some of the recent models
of feedback control [11, 49].

3.3. Thyroid Allostasis in Critical Illness, Tumours, Uraemia,
and Starvation (TACITUS). In 1973, two independent study
groups described alterations of thyroid metabolism in the
starving organism [194, 195]. Later it was demonstrated that
similar alterations are also common in critically ill patients
and that they are associated with increased morbidity and
mortality [22, 196–200].

This complex constellation, referred to as euthyroid
sick syndrome or nonthyroidal illness syndrome (NTIS), is
characterised by three components that may occur singly
or in combination: low TSH and normal or low FT4
levels phenomenologically similar to central hypothyroidism
(transient thyrotropic adaptation, occasionally leading to
low-T4 syndrome) [201], impaired protein binding of
thyroid hormones [202, 203], and reduced formation of
T3 with simultaneously increased conversion to rT3 (low-
T3 syndrome) [22–24]. Few observations report that the
iodothyroacetic acids TRIAC and TETRAC are increased in
NTIS and starvation [204–206]. Currently, little is known
about the role of thyronamines [207] in NTIS. The fact
that thyronamines are able to induce hypothermic torpor
[208] and that they are a possible source of iodothyroacetate
formation [209] suggests them to be increased in critical
illness.

Different explanations have been proposed for the evo-
lution NTIS. Up to now, in essence five hypotheses are
discussed in the literature [22, 23].

(i) All observed abnormalities are the result of test
artefacts by flawed assays in the presence of plasmatic
interference factors. In reality, the patients are euthy-
roid.

(ii) The changes in the levels of peripheral thyroid hor-
mones mirror the effect of certain binding inhibitors
that influence either laboratory determinations only
or also the transfer of thyroid hormones into tissue
of diseased persons and thus diminish binding of
iodothyronines to T3 receptors.
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Figure 5: Successive development of hypothyroidism as a consequence of decreasing GT . Beginning with a hypothetical “sublatent” form
defined by reduced GT and still normal levels of TSH and FT4 (panel b), further steps are subclinical hypothyroidism with increased TSH
levels and FT4 still in the lowest fraction of the reference region (panel c) and overt hypothyroidism where both parameters have left their
reference region (panel d). See text for additional information.

(iii) Due to increased local deiodination, T3 levels are
normal in the pituitary gland while they are low in
the rest of the organism.

(iv) Levels of peripheral thyroid hormones are actu-
ally low so that affected patients are biochemically
hypothyroid. However, this useful physiological func-
tion should not be interfered with.

(v) NTIS is a form of central hypothyroidism. The
resulting tissue hypothyroidism should be treated
with appropriate substitution therapy.

Today, NTIS is still poorly understood from an integrative
view. As similar alterations are observed with very differ-
ent assay techniques and a comparable phenotype is also

observed in starving or hibernating organisms [210–214]
it seems to be more than only the result of flawed assays.
Obviously, it is an extreme form of a more general allostatic
response ensuring survival in certain stress situations. We
therefore propose the more neutral term thyroid allostasis in
critical illness, tumours, uraemia, and starvation (TACITUS)
for this form of adaptation taking place in a broader context
of physiological extremes.

Provided that patients with NTIS are faced with poor
prognosis, several trials have been conducted to evaluate
the question of a possible treatment [22, 197]. However,
their results were ambiguous. Some studies could show
a benefit of substitution therapy with thyroid hormones,
for example, regarding the incidence of atrial fibrillation
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Figure 6: Partial and complete thyrotropic insufficiency as results of nonlinear interaction of pituitary and thyroid. TSH axis is
logarithmically scaled in order to zoom small values. GH values are given in percent from normal values. See text for additional information.

[22, 197, 215, 216] and hemodynamic parameters [217, 218]
while others could not observe relevant differences in
outcome between treated and untreated patients [219–221]
or even described detrimental effects of substitution therapy
[222–225].

Today, more and more investigations reveal a funda-
mental, albeit not exclusive, role of central components in
the evolution of TACITUS [22–24, 61, 226]. This may even
apply to hypodeiodination leading to low-T3 syndrome,
as TSH is able to stimulate D2 expression via cAMP [26,
227–230]. Conversely, central hyperdeiodination may lead
to suppressed TSH levels, as both evidenced by animal
experiments [61, 231] and computer simulations (Figure 7).

Thyrotropic adaptation is a challenge affecting clinical
practice, as it is nearly indistinguishable from latent (sub-
clinical) hyperthyroidism—although pathophysiology and
therapeutic implications are opposed [196, 232].

3.4. Rare Conditions of Thyroid Function. In most cases
high-T3 syndrome and T3 thyrotoxicosis result from T4
hyperthyroidism with consecutive surplus substrate supply
for deiodinases. Isolated high-T3 syndrome with normal or
even low FT4 levels is a rare form of NTIS that is caused
by hyperdeiodination. Cases of high-T3 syndrome have been
described in toxic adenoma [233], Graves’ disease [234],
nodular goitre [233], follicular thyroid carcinoma [235,
236], and systemic sclerosis [237]. Increased TSH signalling
in the first two conditions gives further evidence for the
relevant role of thyrotropin in control of deiodinase activity
[238].

Thyroid hormone resistance is usually caused by muta-
tion of the nuclear thyroid hormone receptor beta gene (TR-
beta), with a resulting hormone pattern similar to central
hyperthyroidism and a split phenotype of clinical thyrotox-
icosis with regard to peripheral organs and heterogeneous
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Figure 7: Computer simulation of thyrotropic adaptation in critical
illness. A gradual increase of central type 2 deiodinase activity over
several days with subsequent restoration to normal values has been
simulated with SimThyr using the mathematical model shown in
Figure 2. Note the temporarily increased TSH values after day 17
that are occasionally observed also in vivo in patients recovering
from nonthyroidal illness syndrome.

manifestations at the site of the central nervous system
[192, 239].

Recently, the first case of thyroid hormone receptor alpha
mutation was reported. The phenotypical pattern consisted
in skeletal abnormalities, microsomia, constipation, and
hyperdeiodination [240].

The existence of acquired partial thyroid hormone resis-
tance has been postulated [241, 242], but this condition may
be rare or underrecognised. In NTIS, however, disruption
of thyroid hormone signalling by cytokines, metabolites,
toxins or drugs may contribute substantially to the clinical
phenotype of affected patients [242]. Possible mechanisms
of acquired thyroid hormone resistance include impairments
of transmembrane transport [15, 16, 243], deiodination
[19, 227, 228, 244], entry into nucleus [245, 246], recep-
tor binding [243, 247–253], and nongenomic effects of
iodothyronines [28, 254–264]. Similar effects may ensue
from exposure to endocrine disruptors [265] like phthalates
[266–268], brominated flame retardants [266, 267, 269],
perfluorinated compound [266, 267, 270], polychlorinated
biphenyls [271–276], bisphenol A [254, 266–269, 274], or
bisphenol F [277].

Some environmental toxins may also act as thyroid hor-
mone agonists, as demonstrated for certain polychlorinated
biphenyls [278, 279].

3.5. Calculated Structure Parameters as Diagnostic Methods
Beyond Univariate Hormone Determinations. Decision mak-
ing based on TSH levels alone may lead to misinterpretations
of serious impact, especially in cases of possible overt thyroid
heterostasis [127–129] and even more in potential central
dysregulations [280]. However, introducing FT3 or FT4

levels while leaving the process of diagnostic reasoning in
a univariate manner does not prove to be helpful due to the
lack of combination rules and low diagnostic sensitivity of
peripheral thyroid hormone levels [11].

Combining hormone levels with model-based calcula-
tions delivers structure parameters of thyroid homeostasis
that may in certain conditions add valuable information
for clinical research and differential diagnosis of thyroid
disorders, even beyond of classical primary and secondary
heterostasis.

The simplest and probably earliest method to exploit
existing knowledge about thyroid homeostasis for diagnostic
purposes is calculating T3/T4 ratio. It can be calculated from
either total or free thyroid hormones. T3/T4 ratio has been
applied in numerous publications, and it was shown that this
parameter is elevated in certain thyroid disorders [234, 236,
281, 282] and iodine deficiency [283], while it is reduced
in nonthyroidal illness [284, 285]. Furthermore, T3/T4 ratio
mirrors nutritional [286] and drug effects on deiodination
[287], and it may be useful to distinguish thyroiditis from
other causes of thyrotoxicosis [288]. Reduced T3/T4 ratio in
central hypothyroidism is another hint for the stimulating
role of TSH for deiodination [289].

The T3/T4 ratio ignores fundamental biochemical prin-
ciples by implying a linear relationship between T3 and T4.
This is corrected by an alternative approach, calculating sum
activity of peripheral deiodinases (GD, also referred to as
SPINA-GD) with

̂GD = β31(KM1 + [FT4])(1 + K30[TBG])[FT3]
α31[FT4]

(1)

from free T4, free T3, and parameters for protein binding,
dissociation, and hormone kinetics (Table 2) [11, 23]. The
equation had been derived from a nonlinear model of
thyrotropic feedback control by solving the transfer equation
for GD under the condition of equilibrium [49]. It could
be demonstrated that GD correlates with body mass index
[11]. Additionally, the parameter was observed to be reduced
in certain forms of NTIS including renal failure [290] and
inflammatory bowel diseases [291].

The T3/rT3 ratio is a measure of relative contributions
of type 2 and type 3 deiodinases on deiodination of T4. It
was observed to be decreased in critical illness [296, 297]
and hyperthyroidism [298], and to be increased in insulin
resistance [299].

Theoretical thyroid’s secretory capacity (GT or SPINA-
GT) denotes the maximum amount of thyroxine the thyroid
can produce in a given time unit under stimulated condi-
tions. Formally similar to GD, it can be calculated in vivo with

̂GT = βT(DT + [TSH])(1 + K41[TBG] + K42[TBPA])[FT4]
αT[TSH]

(2)

from TSH levels, FT4 levels, and constant parameters for
kinetics and protein binding (Table 2) [23]. GT has been
observed to correlate with thyroid volume as determined
by ultrasonography and to be elevated in hyperthyroidism
and reduced in hypothyroidism [11, 116]. Furthermore,
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Table 2: Constant parameters for diagnostic calculations.

Symbol Explanation Value Reference

β Correction coefficient for log-linear model −0.1345 [120]

αT Dilution factor for T4 (reciprocal of apparent volume of distribution) 0,1 L−1 [11, 23]

βT Clearance exponent for T4 1,1 ∗ 10−6 sec−1 [11, 23, 292]

DT EC50 for TSH 2,75 mU/L [11, 23, 293]

K41 Dissociation constant T4-TBG 2 ∗ 1010 L/mol [11, 23, 106]

K42 Dissociation constant T4-TBPA 2 ∗ 108 L/mol [11, 23, 106]

α31 Dilution factor for T3 0,026 L−1 [11, 23]

β31 Clearance exponent for T3 8 ∗ 10−6 sec−1 [11, 23]

KM1 Dissociation constant of type 1 deiodinase 5 ∗ 10−7 mol/L [11, 23, 294]

K30 Dissociation constant T3-TBG 2 ∗ 109 L/mol [11, 23, 295]

Table 3: Test-retest reliability measures of TSH, FT4, FT3,
SPINA-GT, and SPINA-GD from repeated measurements with
at least one month interval in 20 healthy volunteers from the
SPINA network [11, 116]. e: repeatability = (interindividual vari-
ance)/(intraindividual variance + interindividual variance) [300].
Larger figures denote higher reliability.

Parameter e R2

TSH 0.63 0.16

FT4 0.71 0.35∗∗

FT3 0.68 0.36∗∗

SPINA-GT 0.73 0.42∗∗

SPINA-GD 0.64 0.36∗∗

∗∗P < 0.01.

GT correlates with creatinine clearance suggesting a negative
influence of uremic toxins on thyroid biology [290]. In
healthy volunteers GT showed a higher reliability compared
with TSH, FT4, or FT3 (Table 3) [11]. These results imply
that, unlike GD or univariate hormone levels that mirror
acute regulation, GT might represent a constant parameter
of thyroid homeostasis.

Recently, a small study that has been published as abstract
revealed calculating GT to be beneficial in differential
diagnosis of NTIS with thyrotropic adaptation and latent
(subclinical) hyperthyroidism [301].

Additionally, specific thyroid’s secretory capacity (GTS)
had been defined by calculating a ratio of GT and thyroid
volume, as determined, for example, by ultrasonography
[11]. This structure parameter denotes the maximum
amount of thyroxine that can be produced by 1 mL of
thyroid tissue under stimulated conditions. In one study
a significant positive correlation between body mass or BMI,
respectively, and thyroid volume was observed, while in the
same population the correlation between body mass and
GTS was negative, suggesting reduced functional quality of
thyroid tissue in obesity [11].

Thyrotroph T4 Sensitivity Index (TTSI)

TTSI = 100[TSH][FT4]
lu

(3)

with lu being the upper limit of the reference interval
for FT4 has been suggested as a screening parameter for

thyroid hormone resistance [302]. However up to now, this
parameter has not been widely adopted. TSH-FT4 product,
a similar measure, was demonstrated to have a significant
heritable component in a large cohort of twin pairs [303].

An alternative method to assess thyrotropic function of
anterior pituitary is Jostel’s TSH index [120]. This calculated
parameter is based on the logarithmic standard model of
thyroid homeostasis. Calculating

TSHI = ln [TSH]− β[FT4] (4)

delivers a raw value. A second standardised form of TSHI is
based on mean values (2.7) and standard deviations (0.676)
of TSHI

sTSHI = TSHI− 2.7
0.676

. (5)

TSHI predicts the risk of failure in dynamic pituitary testing
and correlates with functional measures of other anterior
pituitary axes [120].

Although calculated structure parameters may add value
to the determination of classical univariate hormone values,
their informative value depends in a critical manner on the
quality of the assays used for underlying hormone measure-
ments. Although assays for TSH, free, and total peripheral
thyroid hormones have been continually improved over the
previous decades [304–312], some indeterminacy persists
[307, 313–315]. Additionally, if certain input parameters,
for example, TBG and binding constants for calculation
of GT and GD, are not biochemically determined but, as
usual, replaced by standard values, some bias may ensue.
Therefore, GT and GD will be overestimated in NTIS, where
plasma protein levels are reduced [202, 203]. Although this
will usually not pose problems in differential diagnosis, as
the impairment of protein binding affects all investigated
groups, the person calculating structure parameters and
interpreting their results should at least be aware of these
difficulties. Of course, the same considerations also apply
to empirical parameters like TTSI and TSHI, the more,
as here the origin of bias is less obvious, since protein
levels and binding constants are not explicitly stated in the
equations.
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4. Alternative Thyrotropic Agonists

TSH is one of five related glycoprotein hormones consisting
of two noncovalently bound chains. TSH, LH, FSH, and
HCG share a common alpha subunit that is encoded on
human chromosome 6 and contains a protein core of 92
amino acid residues in humans [316, 317]. The specific infor-
mation is encoded by the beta subunit that has a different
amino acid sequence for each hormone, and especially
a certain “seat belt” region, where the beta chain wraps
around the alpha chain [318, 319]. Free alpha or beta
subunits are devoid of bioactivity. A fifth glycoprotein
hormone, thyrostimulin (TSH 2) with a similar molecular
structure, has been described. It contains both a different
alpha and beta subunit [320].

Gene expression of both alpha and beta subunits are con-
trolled positively by a PKA/PKC-CBP-CREB pathway that is
stimulated by TRH and AVP and inhibited by Dopamine.
Additionally, expression of both subunits is inhibited by a
negative thyroid hormone response element (nTRE) that is
dependent on TR-beta receptor [316] signalling.

TSH and thyrotropic agonists bind to the TSH receptor
(TSHr), a heptahelical G-protein-coupled receptor that has
homologies to FSHr and LH/CGr [321] (Figure 8). Like in
TSH (see Section 2.4), variable sialylation of glycosylated
side-chains modifies bioactivity of glycoprotein hormones
[81, 85, 91, 322], for example, by affecting cooperative effects
of individual TSH domains in receptor activation [317].

Due to the above-mentioned considerations it is not sur-
prising that considerable crosstalk exists between thyrotropic
and gonadotropic feedback controls. In addition, TSHr
antibodies [323] as well as small molecule “drug-like” ligands
[324, 325] may stimulate or block signal transduction.

4.1. HCG. Although in human embryos the thyroid is able
to produce T3 and T4 in the 10th or 11th week, and pituitary
thyrotrophs are detectable in the 13th week, maturation of
functional thyrotropic feedback control is not effective before
the 18th to 20th week [326, 327].

Therefore, the embryo is dependent from maternal
supply with thyroid hormones in the first half of pregnancy.
This and the fact that the binding of iodothyronines to TBG
is increased in pregnancy require some upregulation of T4
biosynthesis.

Sequence similarities between TSH and HCG, and
between their receptors, allow for some promiscuous acti-
vation of TSHr by HCG in the first trimester of pregnancy
[321].

Stimulation of the thyroid gland by HCG in pregnancy
accounts for an inverse relationship between serum con-
centrations of TSH and HCG [328]. In cases of extremely
elevated HCG levels, for example, in hydatidiform mole
or chorionic carcinoma, overt hyperthyroidism and even
thyroid storm may ensue [329–331]. The same pathomech-
anism may lead to hyperthyroidism in embryonal testicular
carcinoma [332, 333].

Interestingly, heterostimulation of TSHr by HCG is
a matter of both quantity and quality. In Chinese hamster

ovary cells transfected with human TSHr enhanced thy-
rotropic activity was observed in sera from women with
trophoblastic disease. If CHO cells were transfected with
LH/CGr, however, cAMP production was higher in sera from
women with normal pregnancy. These diverging results may
ensue from microheterogeneity of hCG, for example, in form
of different carbohydrate modifications [334, 335].

Mutations of TSH receptor leading to increased sensi-
tivity to HCG may lead to overt hyperthyroidism even in
normal pregnancy [336].

Theoretically, HCG should also be able to activate pitu-
itary TSH receptors and lead to suppression of TSH secretion
via the Brokken-Wiersinga-Prummel loop. Although this
possibility could be useful for targeted therapy of hypothy-
roidism in pregnancy, up to now no data are available from
clinical trials.

4.2. Thyrostimulin. Based on GenBank searches Nakabayashi
et al. identified two additional human glycoprotein hormone
subunit-like genes with structural similarity to the genes of
the common alpha subunit and the beta chain for TSH,
respectively. Using a yeast two-hybrid assay they found the
two units to be able to heterodimerize and finally they
confirmed their colocalization in the anterior pituitary and
the ability of the resulting heterodimeric protein to bind
and activate human TSH receptors, but not LH and FSH
receptors [320]. Consequently, they named the A2/B5 het-
erodimeric glycoprotein thyrostimulin; other designations
are TSH 2 or corticotroph-derived glycoprotein hormone
(CGH), as both chains are expressed in corticotrophs of
anterior pituitary [337].

Today, the physiological role of thyrostimulin is still
not well understood. It has been proposed to play a role
for Brokken-Wiersinga-Prummel loop [338] or in paracrine
effects within the pituitary [320]. It has also been hypoth-
esised that thyrostimulin may be responsible for thyroid
heterostimulation in cases of diffuse thyroid autonomy
[339], but this assumption has not been proved up to now.
Expression of thyrostimulin subunits was observed in pitu-
itary, central nervous system, adrenal gland, gastrointestinal
organs, retina, skin, and testes [340]. LPS and inflammatory
cytokines are able to upregulate thyrostimulin expression
[338, 341], which may be another factor in the pathogenesis
of thyrotropic adaptation in NTIS.

4.3. Thyrotropin Receptor Antibodies. Classical Graves’ dis-
ease (autoimmune thyroiditis type 3A) is caused by for-
mation of stimulating TSH receptor antibodies (sTRAbs,
also referred to as thyroid stimulating antibodies, TSAbs)
by intrathyroidal B cells with resulting hyperthyroidism.
Retroorbital TRAb formation leads to endocrine ophthal-
mopathy, and it is assumed that other manifestations of
Graves’ disease derive from extrathyroidal TRAb effects,
too.

As mentioned above sTRAbs may suppress TSH secretion
independently from FT4 levels by activation of the Brokken-
Wiersinga-Prummel loop [47]. Therefore, in Graves’ disease
low TSH levels may persist despite even low FT4 levels [50].
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heptahelical transmembrane domain, while TSH, HCG, and TRAbs bind primarily to the TSHr amino-terminal ectodomain.

Obviously, this also applies to children born to mothers with
Graves’s disease and high antibody load [41]. Immunogenic
TSH suppression may complicate diagnosis of thyroid status
and dosage of thyroid hormones or thyrostatic agents in
Graves’ disease.

Inhibiting TSH receptor autoantibodies (iTRAbs, or
TSH-stimulation blocking antibodies, TSBAbs) block signal
transduction at the TSH receptor. Up to now, their effect
on global thyroid homeostasis or ultrashort loop control of
TSH secretion has not been investigated, which may also be
a consequence of still limited availability of reliable sTRAb
and iTRAb assays for routine use. Over the time, the
proportion of stimulating or inhibiting TRAbs may change
in individual patients [342].

Synthetic TSH receptor antibodies are described below.

4.4. Orosomucoid. Orosomucoid, also referred to as alpha-
1-acid glycoprotein (AGP), is an acute-phase glycoprotein
that is synthesised primarily in hepatocytes. It is known to
act as a carrier of neutrally charged and basic lipophilic
molecules [343, 344]. AGP in low concentrations was
observed to stimulate the TSH receptor and intracellular
cAMP accumulation. On the other hand, high concentra-
tions of AGP inhibited TSH signalling [345]. Orosomucoid
might therefore play a role in the pathogenesis of NTIS,
but additional studies are needed to get a more thorough
understanding of its role in thyroid physiology.

4.5. Synthetic TSH Receptor Agonists and Antagonists.
Recently, a wide range of substances stimulating or blocking
signal transduction at the TSH receptor has been developed.
These agents may be divided in agonists (that activate recep-
tors), neutral antagonists (that inhibit receptor activation
by agonists, but do not display any activity on their own),
and inverse agonists (that both block receptor activation
by agonists and inhibit basal, constitutive signalling in
an agonist-independent manner). TSHr ligands have been

isolated in form of monoclonal antibodies, engineered
glycoprotein hormones, and small molecules.

The first attempts to obtain monoclonal TSH receptor
antibodies resulted in low-affinity and partly low-specific
MAbs [346–354]. In the past decade, however, different high-
affinity monoclonal TRAbs with agonist activity (TSMAbs 1–
3 [355], MS-1 [356], M22 [357], and K1-18 [358]), neutral
antagonist activity (Mab-B2 [359] and k1-70 [358]), and
inverse agonist activity (5C9 [360, 361]) have been isolated
[323, 362, 363]. These macromolecules helped to understand
important pathophysiological aspects of Graves’ disease and
to develop and validate TRAb test kits [364].

A series of superactive analogues of mammalian gly-
coprotein hormones has been designed by a combination
of evolutionary mechanisms, sequence comparisons, and
homology modelling. The resulting superagonists demon-
strated substantial increases in receptor binding affinity and
intrinsic activity [365, 366]. Similarly, increased bioactivity
was observed in a construct of TSH alpha and beta chains
fusioned to a single polypeptide [367].

Small molecule “drug-like” ligands (SMLs) exhibit dif-
ferent binding properties. Similar to MAbs, SMLs have
been developed with agonistic (NCGC00161870), neutral
antagonistic (NCGC00242595), and inverse agonistic activ-
ity (NCGC00161856, NCGC00229600, and Org 274179-0)
[324, 325], but unlike antibodies they bind to a pocket
within the transmembrane domain (Figure 8), thus also
being able to activate TSH receptors bearing mutations in
their ectodomain.

Agonistic TSHr ligands may be useful thyroid stimulators
in patients with thyroid cancer in place of rhTSH for radioio-
dine therapy, thyroid scan, or thyroglobulin determination.
Neutral antagonists could be beneficial for patients suffering
from Graves’ disease or endocrine ophthalmopathy, and
inverse agonists may be a perspective in the treatment of toxic
adenoma or thyroid cancer, in the latter case as an adjunct or
substitute to TSH suppression [323, 324].
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5. The TSH Reference Range—An
Ongoing Controversy

Measuring serum levels of TSH and total or free peripheral
thyroid hormones delivers univariate reference ranges that
are usually defined by a tolerance region covering 95% of
healthy individuals.

Recently, a new debate on the boundaries of TSH refer-
ence range has emerged [368, 369], since it was observed that
patients with TSH levels of more than 2.5 mU/L are exposed
to increased risk of developing overt hypothyroidism [370–
374]. Additionally, in this group of what we would suggest to
term “sublatent hypothyroidism,” elevated levels of thyroid
autoantibodies [375, 376] and increased frequency of hypoe-
chogenicity in thyroid ultrasound [377] were observed.
Moreover, there is evidence that the intraindividual variation
of TSH levels is narrower than the width of the population
based reference range [378, 379].

These findings may result from the effect of thyrotropic
feedback control in general and from nonlinear distortions
of the FT4-TSH relationships in euthyroid individuals and
patients with thyroid dysfunction [127–129].

Therefore, it has been postulated to lower the upper limit
of the TSH reference range from 4 mU/L to 2.5 mU/L [380–
382]. However, this suggestion is subject to disputation, as
lowering the reference range border would lead to a high
number of false positive results and an increase in health-care
expenses [383].

Alternative biomarkers to assess the supply of the
organism with thyroid hormones include resting heart
rate and other determinants of cardiac output [384, 385],
oxygen consumption [386, 387], respiratory quotient [388,
389], thermogenesis [26, 390–392], methylhistidine excre-
tion [393–397] and plasma levels of lipids [398, 399], SHBG
[400–405], sclerostin [406], ceruloplasmin [407], lead [408],
copper [407–410], arsenic [408], or MBL [411, 412]. These
parameters have not been well evaluated, however, and due
to the fact that they are subject to multiple extrathyroidal
influencing factors they are not expected to deliver superior
results as diagnostic tools.

A possible solution could be interpretation of laboratory
results based on a system’s level understanding of thyrotropic
feedback control. As shown in Figure 9 a complex reference
region based on percentiles of pituitary and thyroid response
has considerable overlap with conventional univariate ref-
erence values, but also significant deviations in the corners
of the respective regions. As a result, a TSH level of
6 mU/L may be normal if FT4 level is 13 pmol/L, but
a sign of primary hypothyroidism if FT4 level is 10 pmol/L.
Conversely, a TSH level of 0.5 mU/L would suggest central
hypothyroidism if FT4 is 11 pmol/L, but be normal if FT4 is
16 pmol/L.

Today, this is not more than a perspective for a more
differentiated method to-be for interpreting results of thy-
roid hormone determinations. Future studies evaluating this
approach in clinical settings are warranted.

Another challenge, especially for dosage of substitu-
tion therapy with levothyroxine, is the fact that the two-
dimensional location of the individual equilibrium point
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(setpoint) is unknown in the targetpopulation. Obviously,
the individual setpoint would be the ideal target for dosing
algorithms, but unfortunately, in clinical practice it is
impossible to infer its location from characteristic curves of
pituitary and thyroid gland, as the thyroid response curve is
either distorted or vanished in thyroid disorders. It is another
task for future clinical research to find a methodology
to reconstruct the setpoint from pituitary behaviour or
metabolic markers of thyroid signalling.

Lastly, substitution therapy may be complicated by
interindividual variations of deiodination. The question, if
monotherapy with T4 or a combination of T4 and T3
should be preferred, is for years subject of debate. Numerous
trials [413–422] did not lead to a standard recommendation.
Persons with abnormal sum activity of deiodinases, however,
might benefit from additional treatment with liothyronine
[414, 423], although this does not hold true for all polymor-
phisms of deiodinases [424]. Calculating GD or T3/T4 ratio
might help to stratify patients for an individualised therapy,
but the required trials are still to be designed.

6. Conclusions

Methodological advances in mathematical and simulative
modelling of thyroid homeostasis have led to a better
understanding of static and dynamic behaviour of thyroid
hormones in health and disease. Together with results
from molecular and clinical research on the central role of
TSH in thyroid homeostasis such progress has permitted
the development of advanced methods for interpretation
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of laboratory results that provide previously inaccessible
information on pituitary and thyroid function. A future
perspective overcoming the limits of univariate reference
ranges for TSH, FT4, and FT3 promises the development of
approaches for personalised diagnosis of thyroid homeostasis
that may also be a foundation for targeted dosing of thyroid
hormone substitution.
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Regulierung des Hypophysenvorderlappens [The hormonal
and neurogenic regulation of the function of the anterior
pituitary],” Klinische Wochenschrift, vol. 11, pp. 321–323,
1932.

[5] D. R. McCullagh, “Dual endocrine activity of the testes,”
Science, vol. 76, no. 1957, pp. 19–20, 1932.

[6] C. R. Moore and D. Price, “The question of sex hormone
antagonism,” Proceedings of the Society For Experimental
Biology and Medicine, vol. 28, pp. 38–40, 1930.

[7] C. R. Moore and D. Price, “Gonadal hormone functions,
and the reciprocal influence between gonads and hypophysis
with its bearing on the problem of sex hormone antagonism,”
American Journal of Anatomy, vol. 50, pp. 13–67, 1932.

[8] E. B. Astwood, “Mechanism of action of antithyroid com-
pounds,” Brookhaven Symposia in Biology, vol. 7, pp. 61–73,
1955.

[9] R. Hoskins, “The thyroid-pituitary apparatus as a servo
(feed-back) mechanism,” The Journal of Clinical Endocrinol-
ogy & Metabolism, vol. 9, pp. 1429–1431, 1949.

[10] M. M. Stanley and E. B. Astwood, “The response of the thy-
roid gland in normal human subjects to the administration of
thyrotropin, as shown by studies with I131,” Endocrinology,
vol. 44, pp. 49–60, 1949.

[11] J. W. Dietrich, “Der Hypophysen-Schilddrüsen-Regelkreis.
Entwicklung und klinische Anwendung eines nichtlinearen
Modells,” in Entwicklung Und Klinische Anwendung Eines
Nichtlinearen Modells, Logos, Berlin, Germany, 2002.

[12] S. Sam and L. A. Frohman, “Normal physiology of hypotha-
lamic pituitary regulation,” Endocrinology and Metabolism
Clinics of North America, vol. 37, no. 1, pp. 1–22, 2008.

[13] R. T. Zoeller, S. W. Tan, and R. W. Tyl, “General background
on the hypothalamic-pituitary-thyroid (HPT) axis,” Critical
Reviews in Toxicology, vol. 37, no. 1-2, pp. 11–53, 2007.

[14] E. C. H. Friesema, S. Ganguly, A. Abdalla, J. E. Manning
Fox, A. P. Halestrap, and T. J. Visser, “Identification of
monocarboxylate transporter 8 as a specific thyroid hormone
transporter,” The Journal of Biological Chemistry, vol. 278, no.
41, pp. 40128–40135, 2003.

[15] E. C. H. Friesema, J. Jansen, and T. J. Visser, “Thyroid
hormone transporters,” Biochemical Society Transactions, vol.
33, no. 1, pp. 228–232, 2005.

[16] J. W. Dietrich, K. Brisseau, and B. O. Boehm, “Resorption,
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Fettsäuren im Serum bei krisenhaften Erkrankungen:
Spielen sie eine Rolle bei der Proteinbindung von
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[289] G. Sesmilo, O. Simó, L. Choque, R. Casamitjana, M. Puig-
Domingo, and I. Halperin, “Serum free triiodothyronine
(T3) to free thyroxine (T4) ratio in treated central hypothy-
roidism compared with primary hypothyroidism and euthy-
roidism,” Endocrinologia y Nutricion, vol. 58, no. 1, pp. 9–15,
2011.

[290] D. Rosołowska-Huszcz, L. Kozłowska, and A. Rydzewski,
“Influence of low protein diet on nonthyroidal illness
syndrome in chronic renal failure,” Endocrine, vol. 27, no. 3,
pp. 283–288, 2005.

[291] S. Liu, J. Ren, Y. Zhao et al., “Nonthyroidal illness syndrome:
is it far away from Crohn’s disease?” Journal of Clinical
Gastroenterology. In press.

[292] M. Grußendorf, Metabolismus der Schilddrüsenhormone,
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Histologie,” in Schilddrüsenerkrankungen, G. R. Stuttgart,
Ed., pp. 3–15, Wissenschaftliche Verlagsgesellschaft, 2004.

[327] R. O’Rahilly, “The timing and sequence of events in the
development of the human endocrine system during the
embryonic period proper,” Anatomy and Embryology, vol.
166, no. 3, pp. 439–451, 1983.

[328] D. Glinoer, “The regulation of thyroid function in pregnancy:
pathways of endocrine adaptation from physiology to pathol-
ogy,” Endocrine Reviews, vol. 18, no. 3, pp. 404–433, 1997.

[329] J. W. Dietrich, “Thyreotoxische Krise [thyroid storm],” Med
Klin Intensivmed Notfmed, vol. 107, pp. 448–453, 2012.

[330] N. U. Chiniwala, P. D. Woolf, C. P. Bruno, S. Kaur, H.
Spector, and K. Yacono, “Thyroid storm caused by a partial
hydatidiform mole,” Thyroid, vol. 18, no. 4, pp. 479–481,
2008.

[331] L. Walkington, J. Webster, B. W. Hancock, J. Everard, and
R. E. Coleman, “Hyperthyroidism and human chorionic
gonadotrophin production in gestational trophoblastic dis-
ease,” British Journal of Cancer, vol. 104, no. 11, pp. 1665–
1669, 2011.

[332] M. A. Arrabal-Polo, A. Jimenez-Pacheco, M. Arrabal-Martin
et al., “Hyperthyroidism as a clinical manifestation of a
embryonal carcinoma of the testis,” Acta Clinica Belgica, vol.
67, pp. 214–216, 2012.

[333] S. A. Giralt, F. Dexeus, R. Amato, A. Sella, and C. Logothetis,
“Hyperthyroidism in men with germ cell tumors and high
levels of beta-human chorionic gonadotropin,” Cancer, vol.
69, no. 5, pp. 1286–1290, 1992.

[334] K. Kato, M. H. Mostafa, K. Mann, A. E. Schindler, and R.
Hoermann, “The human chorionic gonadotropin molecule
from patients with trophoblastic diseases has a high thy-
rotropic activity but is less active in the ovary,” Gynecological
Endocrinology, vol. 18, no. 5, pp. 269–277, 2004.

[335] R. Hoermann, S. Poertl, I. Liss, S. M. Amir, and K. Mann,
“Variation in the thyrotropic activity of human chorionic
gonadotropin in Chinese hamster ovary cells arises from
differential expression of the human thyrotropin receptor
and microheterogeneity of the hormone,” The Journal of
Clinical Endocrinology & Metabolism, vol. 80, no. 5, pp. 1605–
1610, 1995.

[336] P. Rodien, C. Brémont, M. L. R. Sanson et al., “Familial
gestational hyperthyroidism caused by a mutant thyrotropin
receptor hypersensitive to human chorionic gonadotropin,”
The New England Journal of Medicine, vol. 339, no. 25, pp.
1823–1826, 1998.

[337] S. L. Okada, J. L. Ellsworth, D. M. Durnam et al., “A
glycoprotein hormone expressed in corticotrophs exhibits
unique binding properties on thyroid-stimulating hormone
receptor,” Molecular Endocrinology, vol. 20, no. 2, pp. 414–
425, 2006.

[338] C. J. J. van Zeijl, O. V. Surovtseva, W. M. Wiersinga,
E. Fliers, and A. Boelen, “Acute inflammation increases
pituitary and hypothalamic glycoprotein hormone subunit
B5 mRNA expression in association with decreased thy-
rotrophin receptor mRNA expression in mice,” Journal of
Neuroendocrinology, vol. 23, no. 4, pp. 310–319, 2011.

[339] K. Ikekubo, M. Hino, Y. Saiki et al., “Immeasurably low and
non-TRH-stimulatable TSH associated with normal I-123
uptake in two goitrous euthyroid patients: possible existence
of other thyroid-hormone regulated thyroid stimulators
other than TSH,” Endocrine Journal, vol. 52, no. 1, pp. 61–68,
2005.

[340] C. Li, Y. Hirooka, S. Habu, J. Takagi, M. Gotoh, and T.
Nogimori, “Distribution of thyrostimulin in the rat: an
immunohistochemical study,” Endocrine Regulations, vol. 38,
no. 4, pp. 131–142, 2004.

[341] C. Suzuki, H. Nagasaki, Y. Okajima et al., “Inflammatory
cytokines regulate glycoprotein subunit β5 of thyrostimulin
through nuclear factor-κB,” Endocrinology, vol. 150, no. 5, pp.
2237–2243, 2009.

[342] N. Takasu and M. Matsushita, “Changes of TSH-stimulation
blocking antibody (TSBAb) and thyroid stimulating anti-
body (TSAb) over 10 years in 34 TSBAb-positive patients
with hypothyroidism and in 98 TSAb-positive Graves’
patients with hyperthyroidism: reevaluation of TSBAb and
TSAb in TSH-receptor-antibody (TRAb)-positive patients,”
Journal of Thyroid Research, vol. 2012, Article ID 182176, 11
pages, 2012.

[343] J. M. H. Kremer, J. Wilting, and L. H. M. Janssen, “Drug
binding to human alpha-1-acid glycoprotein in health and
disease,” Pharmacological Reviews, vol. 40, no. 1, pp. 1–47,
1988.

[344] S. Urien, F. Bree, B. Testa, and J. P. Tillement, “pH-
dependency of basic ligand binding to α1-acid glycoprotein
(orosomucoid),” Biochemical Journal, vol. 280, part 1, pp.
277–280, 1991.

[345] T. Zimmermann-Belsing, A. K. Rasmussen, U. Feldt-
Rasmussen, and T. C. Bog-Hansen, “The influence of alpha1-
acid glycoprotein (orosomucoid) and its glycoforms on the
function of human thyrocytes and CHO cells transfected
with the human TSH receptor,” Molecular and Cellular
Endocrinology, vol. 188, no. 1-2, pp. 241–251, 2002.

[346] T. Akamizu, F. Matsuda, J. Okuda et al., “Molecular analysis
of stimulatory anti-thyrotropin receptor antibodies (TSAbs)
involved in Graves’ disease. Isolation and reconstruction
of antibody genes, and production of monoclonal TSAbs,”
Journal of Immunology, vol. 157, no. 7, pp. 3148–3152, 1996.



Journal of Thyroid Research 27

[347] T. Akamizu, K. Moriyama, M. Miura, M. Saijo, F. Mat-
suda, and K. Nakao, “Characterization of recombinant
monoclonal antithyrotropin receptor antibodies (TSHRAbs)
derived from lymphocytes of patients with Graves’ disease:
epitope and binding study of two stimulatory TSHRAbs,”
Endocrinology, vol. 140, no. 4, pp. 1594–1601, 1999.

[348] N. G. Morgenthaler, M. R. Kim, J. Tremble et al., “Human
immunoglobulin G autoantibodies to the thyrotropin recep-
tor from Epstein-Barr virus-transformed B lymphocytes:
characterization by immunoprecipitation with recombinant
antigen and biological activity,” The Journal of Clinical
Endocrinology & Metabolism, vol. 81, no. 9, pp. 3155–3161,
1996.

[349] K. Moriyama, J. Okuda, M. Saijo et al., “Recombinant mon-
oclonal thyrotropin-stimulation blocking antibody (TSBAb)
established from peripheral lymphocytes of a hypothyroid
patient with primary myxedema,” Journal of Endocrinological
Investigation, vol. 26, no. 11, pp. 1076–1080, 2003.

[350] J. Okuda, T. Akamizu, H. Sugawa, F. Matsuda, L. Hua,
and T. Mori, “Preparation and characterization of mon-
oclonal antithyrotropin receptor antibodies obtained from
peripheral lymphocytes of hypothyroid patients with pri-
mary myxedema,” The Journal of Clinical Endocrinology &
Metabolism, vol. 79, no. 6, pp. 1600–1604, 1994.

[351] T. Yoshida, Y. Ichikawa, K. Ito, and M. Homma, “Monoclonal
antibodies to the thyrotropin receptor bind to a 56-kDa
subunit of the thyrotropin receptor and show heterogeneous
bioactivities,” The Journal of Biological Chemistry, vol. 263,
no. 31, pp. 16341–16347, 1988.

[352] L. D. Kohn, K. Suzuki, W. H. Hoffman et al., “Charac-
terization of monoclonal thyroid-stimulating and thyrot-
ropin binding-inhibiting autoantibodies from a Hashimoto’s
patient whose children had intrauterine and neonatal thyroid
disease,” The Journal of Clinical Endocrinology & Metabolism,
vol. 82, no. 12, pp. 3998–4009, 1997.

[353] W. A. Valente, P. Vitti, Z. Yavin et al., “Monoclonal antibodies
to the thyrotropin receptor: stimulating and blocking anti-
bodies derived from the lymphocytes of patients with Graves
disease,” Proceedings of the National Academy of Sciences of
the United States of America, vol. 79, no. 21 I, pp. 6680–6684,
1982.

[354] W. A. Valente, Z. Yavin, E. Yavin et al., “Monoclonal
antibodies to the thyrotropin receptor. The identification of
blocking and stimulating antibodies,” Journal of Endocrino-
logical Investigation, vol. 5, no. 5, pp. 293–301, 1982.

[355] J. Sanders, J. Jeffreys, H. Depraetere et al., “Thyroid-
stimulating monoclonal antibodies,” Thyroid, vol. 12, no. 12,
pp. 1043–1050, 2002.

[356] T. Ando, R. Latif, A. Pritsker, T. Moran, Y. Nagayama, and T.
F. Davies, “A monoclonal thyroid-stimulating antibody,” The
Journal of Clinical Investigation, vol. 110, no. 11, pp. 1667–
1674, 2002.

[357] J. Sanders, M. Evans, L. D. K. E. Premawardhana et al.,
“Human monoclonal thyroid stimulating autoantibody,” The
Lancet, vol. 362, no. 9378, pp. 126–128, 2003.

[358] M. Evans, J. Sanders, T. Tagami et al., “Monoclonal autoan-
tibodies to the TSH receptor, one with stimulating activity
and one with blocking activity, obtained from the same blood
sample,” Clinical Endocrinology, vol. 73, no. 3, pp. 404–412,
2010.

[359] J. Sanders, F. Allen, J. Jeffreys et al., “Characteristics of
a monoclonal antibody to the thyrotropin receptor that acts
as a powerful thyroid-stimulating autoantibody antagonist,”
Thyroid, vol. 15, no. 7, pp. 672–682, 2005.

[360] B. R. Smith, J. Sanders, and J. Furmaniak, “TSH receptor
antibodies,” Thyroid, vol. 17, no. 10, pp. 923–938, 2007.

[361] J. Sanders, M. Evans, C. Betterle et al., “A human monoclonal
autoantibody to the thyrotropin receptor with thyroid-
stimulating blocking activity,” Thyroid, vol. 18, no. 7, pp.
735–746, 2008.

[362] S. Costagliola, M. Bonomi, N. G. Morgenthaler et al.,
“Delineation of the discontinuous-conformational epitope of
a monoclonal antibody displaying full in vitro and in vivo
thyrotropin activity,” Molecular Endocrinology, vol. 18, no. 12,
pp. 3020–3034, 2004.

[363] J. A. Gilbert, A. G. Gianoukakis, S. Salehi et al., “Monoclonal
pathogenic antibodies to the thyroid-stimulating hormone
receptor in Graves’ disease with potent thyroid-stimulating
activity but differential blocking activity activate multiple
signaling pathways,” Journal of Immunology, vol. 176, no. 8,
pp. 5084–5092, 2006.

[364] C. Liu, D. Hermsen, J. Domberg et al., “Comparison of M22-
based ELISA and human-TSH-receptor-based luminescence
assay for the measurement of thyrotropin receptor antibodies
in patients with thyroid diseases,” Hormone and Metabolic
Research, vol. 40, no. 7, pp. 479–483, 2008.

[365] M. Grossmann, H. Leitolf, B. D. Weintraub, and M. W.
Szkudlinski, “A rational design strategy for protein hormone
superagonists,” Nature Biotechnology, vol. 16, no. 9, pp. 871–
875, 1998.

[366] M. W. Szkudlinski, N. G. Teh, M. Grossmann, J. E. Tropea,
and B. D. Weintraub, “Engineering human glycoprotein
hormone superactive analogues,” Nature Biotechnology, vol.
14, no. 10, pp. 1257–1263, 1996.

[367] N. Azzam, R. Bar-Shalom, and F. Fares, “Conversion of
TSH heterodimer to a single polypeptide chain increases
bioactivity and longevity,” Endocrinology, vol. 153, pp. 954–
960, 2012.

[368] C. M. Dayan, P. Saravanan, and G. Bayly, “Whose normal
thyroid function is better—yours or mine?” The Lancet, vol.
360, no. 9330, pp. 353–354, 2002.

[369] P. Laurberg, S. Andersen, A. Carlé, J. Karmisholt, N. Knud-
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