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Background: The gut microbiota plays an important role in the early stages of human life. Our previous
study showed that the abundance of intestinal flora involved in galactose metabolism was altered and
correlated with increased serum bilirubin levels in children with jaundice. We conducted the present
study to systematically evaluate alterations in the meconium metabolome of neonates with jaundice
and search for metabolic markers associated with neonatal jaundice.
Methods: We included 68 neonates with neonatal hyperbilirubinemia, also known as neonatal jaundice
(NJ) and 68 matched healthy controls (HC), collected meconium samples from them at birth, and per-
formed metabolomic analysis via liquid chromatography-mass spectrometry.
Results: Gut metabolites enabled clearly distinguishing the neonatal jaundice (NJ) and healthy control
(HC) groups. We also identified the compositions of the gut metabolites that differed significantly
between the NJ and HC groups; these differentially significant metabolites were enriched in aminyl
tRNA biosynthesis; pantothenic acid and coenzyme biosynthesis; and the valine, leucine and isoleucine
biosynthesis pathways. Gut branched-chain amino acid (BCAA) levels were positively correlated with
serum bilirubin levels, and the area under the receiver operating characteristic curve of the random forest
classifier model based on BCAAs, proline, methionine, phenylalanine and total bilirubin reached 96.9%,
showing good potential for diagnostic applications. Machine learning-based causal inference analysis
revealed the causal effect of BCAAs on serum total bilirubin and NJ.
Conclusions: Altered gut metabolites in neonates with jaundice showed that increased BCAAs and total
serum bilirubin were positively correlated. BCAAs proline, methionine, phenylalanine are potential
biomarkers of NJ.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Neonatal hyperbilirubinemia, also known as neonatal jaundice,
Jaundice is common in the neonatal period, occurring in 60%–84%
of full- and near-full-term neonates, and hyperbilirubinemia
occurs in approximately 8%–11% of newborns [1], accounting for
49.1% of hospitalized neonates [2]. Severe hyperbilirubinemia can
lead to bilirubin encephalopathy and severe sequelae, imposing a
heavy burden on society and families [3,4].

Studies on neonatal hyperbilirubinemia have shown that the
enterohepatic circulation plays an important role in bilirubin
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excretion [5] and that the gut microbiota is involved in the devel-
opment of several liver diseases via the gut-liver axis [6,7]. We pre-
viously performed a metagenomic analysis of neonatal jaundice,
which showed that changes in the gut microbiotas of patients with
jaundice were mainly characterized by significantly decreased
abundances of Bifidobacteria and galactose-metabolizing bacteria
and suggested that Bifidobacteria may be involved in bilirubin
metabolism via the galactose-metabolizing pathway [8]. Few stud-
ies have been published on neonatal metabolomics, and those
studies mainly assessed metabolomics from serum samples [9].
Serum metabolite studies in neonates with jaundice have sug-
gested abnormalities in amino acid metabolism in these patients
[10] and identified biomarkers that can be used for early diagnosis
of biliary atresia, a potential cause of jaundice [9,11]. Studies on
gut metabolomics in neonates with jaundice are lacking.

Previous studies suggested that gut metabolites may play
important roles in jaundice and that the gut microbiota is associ-
ated with serum bilirubin. In this study, we further investigated
the possible mechanisms underlying the development of NJ and
bilirubin encephalopathy by examining the differences in gut
metabolomics between neonates with and without jaundice.
2. Methods

2.1. Participants and sample collection

All patients were from a tertiary general hospital in Shenzhen,
China. The diagnostic criteria for neonatal hyperbilirubinemia
referred to the American Academy of Pediatrics Guidelines for
Neonatal Jaundice Intervention [12] and the Expert Consensus on
the Diagnosis and Treatment of Neonatal Hyperbilirubinemia of
the Neonatology Group of the Chinese Medical Association Pedi-
atrics Branch [13]. Inclusion criteria were no high-risk factors in
the mother before birth and no fetal defecation after birth before
enrollment. Exclusion criteria were mothers with high-risk factors,
antibiotic use within 2 weeks before delivery, newborns who were
younger than gestational age, and newborns with severe infections
or congenital malformations confirmed after admission. The first
meconium samples (3–5 g) excreted by the newborns included in
the study after birth were collected in sterile containers by
researchers with gloves, avoided inadvertent pollution, then were
placed in a � 80℃ freezer immediately. The neonates were
grouped into either the NJ or healthy control (HC) group based
on their serum bilirubin levels such as TBIL: total bilirubin (UniCel
DxC800 Synchron automatic biochemical analysis instrument from
Beckman Coulter Co., LTD) during hospitalization. Specimens from
patients whose basic data (e.g., sex, gestational age, birth weight
and birth mode) did not significantly differ (P > 0.05) were further
analyzed. The hospital’s medical ethics committee approved the
study protocol, which was performed in accordance with the Dec-
laration of Helsinki. Each child’s parents provided written informed
consent.
2.2. Liquid chromatography-mass spectrometry (LC-MS)

LC-MS was performed as previously described [14,15]. The col-
lected stool samples were freeze-dried to remove water, then
approximately 30 mg of the stool was weighted and added to
600 lL of 50% acetonitrile/water extract containing 5 lM chloro-
sulfonylurea (internal standard), mixed thoroughly and sonicated
at room temperature for 30 min. To better remove impurities from
the stool, an equal volume of the extract was added to 200 lL of
supernatant from the first centrifugation, vortexed and centrifuged
at 18,000 r/min for 25 min. The supernatant was then sampled for
analysis. An Ultimate 3000 LC system (Thermo Scientific, Waltham,
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MA, USA) coupled with an Acquity UPLC HSS T3 column (2.1 mm
� 100 mm, 1.8 lm; Waters Corporation, Milford, MA, USA) was
used to separate the metabolites. MS was then performed using
an Orbitrap Elite mass spectrometer (Thermo Scientific) in electron
spray ionization-positive and -negative modes (ESI + and ESI � )
per the manufacturer’s instructions.

2.3. Metabolomics analysis

Regarding the methodology of metabolomic analysis, we
mainly refer to our previous publication [14,15] and the raw data
were preprocessed by Compound Discoverer software (Thermo-
Fisher Scientific, USA) for LC/MS data （detailed in Supplementary
Appendix),in short, the extracted data normalized to the sum of the
peak area before analysis, multivariate statistical analysis was per-
formed using SIMCA-P Software (Umetrics AB, Umea, Sweden),
including PCA analysis, PLS-DA analysis and OPLS-DA analysis. Dif-
ferential metabolites were screened by OPLS-DA model VIP (vari-
able weight) value > 1 and T-test P value (P < 0.05). After
screening the differential compounds, HMDB and KEGG database
were used to match the corresponding mass-charge ratio
(PPM < 10) to list the candidate compounds. Final matching and
identification by the secondary fragment corresponding to the dif-
ferential compound, Then using KEGG and MetaboAnalyst https://
www.metaboanalyst.ca/ https://www.genome.jp/kegg/ commer-
cial database to analyze the metabolite pathways.

2.4. Machine learning and causal inference

Machine learning was performed as previously described
[14,16] to determine which meconium metabolites could be used
as neonatal hyperbilirubinemia biomarkers. As the random forest
method allows for ranking the importance of the selected fea-
tures.We used the Random Forest Classifier function of scikit learn
(version 0.23.1) to determine the importance of the meconium
metabolites. We used the train_test_split function (parameter,
test_size = 0.4) to split the samples into training and validation
sets, then used Random Forest Classifier to train and validate the
model for neonatal hyperbilirubinemia classification and used
the roc_curve function to plot the receiver operating characteristic
(ROC) curve to obtain the area under the ROC (AUROC).

Machine learning-based causal inference was performed using
the Microsoft DoWhy (https://github.com/microsoft/dowhy) and
EconML (https://github.com/econml/) libraries following the soft-
ware manual as detailed in another manuscript [16] (detailed in
Supplementary Appendix). Briefly, meconium metabolites might
lead to NJ was encoded into a causal model and represented by a
graph, with each arrow in the graph indicating a causal relation-
ship. Second, Dowhy’s backdoor.linear_regression method was
used to check whether meconium metabolites could estimate the-
level of TBIL. Third, EconML’s machine-learning method was used
to construct the estimator using gradient-boosting trees to learn
the relationship between the outcome and confounders and the
relationship between the intervention and confounders and finally
compare the residuals between the outcome and intervention.
Finally, placebo_treatment_refuter and data_subset_refuter tests
were used to evaluate the model’s robustness.
3. Results

3.1. Gut metabolomics clearly distinguished neonates with jaundice
from HCs

Sixty-eight neonates with hyperbilirubinemia were included in
this study: 38 males and 30 females, of whom, 55 were delivered
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vaginally, and 13 were delivered via cesarean section, mean birth
weight of (3144 ± 386) g, mean TBIL of (275.0 ± 64.0) umol/L.
Sixty-eight matched HCs were also included: 35 males and 33
females, of whom, 44 were delivered vaginally, and 24 were deliv-
ered via cesarean section, mean birth weight of (3096 ± 466) g,
mean TBIL of (150.6 ± 40.7) umol/L (Supplementary Table 1). There
was no significant difference between the two groups except for
serum bilirubin (P < 0.05).

The OPLS-DA model was built, and the R2 and Q2 values were
used to test the overfitting of the model and assess its statistical
significance. The original model (R2Y) was closer to 1, indicating
that the established model was more consistent with the real situ-
ation of the sample data. The original model (Q2) was close to 0.5,
indicating that adding a new sample to the model yielded a more
approximate distribution, and the original model better explained
the differences between the two sample groups (Fig. 1A). Thus, the
original model had good robustness, with no overfitting, and the
fecal metabolomic analysis results showed good stability for the
samples and instruments in both positive- and negative-ion mode.
The metabolites clearly distinguished NJ from HC (Fig. 1B).

Based on the good robustness of the study model and the like-
lihood that metabolites can clearly distinguish the NJ group from
the HC group, we further visualized the differential metabolites.
First, we measured the relative levels of the metabolites at the
same level based on z-scores (Fig. 2A), and the metabolite groups
varied largely across the groups. The z-scores ranged from � 2 to
8 relative to those of the HC group.

We constructed a volcano plot to visualize the metabolites that
differed. 82 metabolites differed significantly between the NJ and
HC groups, of which, 61 were significantly enriched in the NJ
group, including valine, leucine, isoleucine, methionine, and
phenylalanine, and 21 were significantly enriched in the HC group.
Supplementary Tables 2–4 shows the specific metabolites that
differed.
3.2. Gut metabolomic characteristics of NJ

To understand the metabolomic characteristics of NJ, we con-
ducted an in-depth analysis of the metabolites that differed
between the NJ and HC groups. First, we performed a correlation
analysis of the differential metabolites (Fig. 3A). After obtaining
the pathway information for the differential metabolites by map-
ping them against metabolite databases such as KEGG and Pub-
Chem, we performed metabolic pathway enrichment analysis
using MetaboAnalyst (Fig. 3B). ESI-positive-mode results showed
high enrichment of histidyl tRNA biosynthesis; pantothenic acid
and coenzyme A biosynthesis; and valine, leucine and isoleucine
biosynthesis in the NJ group. ESI-negative-mode pathway enrich-
ment results showed high enrichment of valine, leucine and isoleu-
cine biosynthesis; pyrimidine metabolism; pyruvate metabolism;
and valine, leucine and isoleucine degradation (Supplementary
Appendix).
3.3. Value of gut metabolites for clinical applications

To further assess the value of clinical applications for gut
metabolites that differ significantly between neonates with jaun-
dice and HCs, we performed an in-depth analysis based on a ran-
dom forest machine-learning model. The AUROC score for the
differential metabolites (i.e., valine, leucine, and proline) was
0.874; the AUROC score for the combination of methionine and
phenylalanine in addition to the above amino acids was 0.86,
and the AUROC score for the combination of valine, leucine, pro-
line, methionine, phenylalanine, and bilirubin was 0.969 (Fig. 4).
Therefore, the combination of valine, leucine, proline, methionine,
1780
phenylalanine and bilirubin represents a potential biomarker for
diagnosing NJ.

To further understand the biological significance of the metabo-
lomic features of NJ, we evaluated the causal effect of treatment on
outcomes based on a machine-learning causal inference approach
using differential metabolites as the treatment and important clin-
ical indicators, such as serum bilirubin levels, as outcomes. Nota-
bly, the branched-chain amino acids (BCAAs), valine, leucine, and
isoleucine, were positively correlated with serum bilirubin
(Fig. 5A–C), and the BCAAs, leucine and isoleucine, had a direct
causal effect on serum bilirubin and thus an indirect causal effect
on NJ (Fig. 5D–E).
4. Discussion

LC-MS is used in metabolomic studies of stool, serum, and other
samples to identify metabolites associated with diseases such as
genetic metabolic disorders, autism, diabetes, and cancer [17,18].
Previously, we conducted a study of the gut microbiotas of neo-
nates with jaundice and found that changes in the gut microbiotas
in these patients were mainly characterized by significantly
decreased abundances of Bifidobacteria and gut bacteria involved
in galactose metabolism and were positively correlated with
increased serum bilirubin levels. To further investigate the roles
and mechanisms of the gut microbiota in neonatal hyperbiliru-
binemia, we conducted the present study to know the gut metabo-
lomics features of neonatal hyperbilirubinemia.

We are aware that classical machine learning methods aim to
find feature variables that can be used for disease classification
and in this study we used a random forest model mainly because
of its ability to rank metabolites. However, once metabolites have
been found for disease classification, there is a need to further
elaborate on whether there is a potential causal link between
metabolites and neonatal hyperbilirubinemia/important clinical
features, such as TBIL. The study of causal inference is becoming
a current hot topic in artificial intelligence research, and we devel-
oped an algorithm for machine learning causal inference, which we
found in a preliminary study to identify oral microbes with causal
associations with autism from omics data [19]. Based on this, fol-
lowing the identification of potential biomarkers of neonatal
hyperbilirubinemia, we performed a machine learning causal infer-
ence assessment to further elucidate the molecular mechanisms
that are involved in neonatal hyperbilirubinemia occurrence.

We revealed the intestinal metabolomic profile of neonatal
hyperbilirubinemia via LC-MS/MS and found that neonates with
hyperbilirubinemia and HCs could be clearly distinguished based
on their intestinal metabolome via OPLS-DA. For further analysis
of differential metabolites, heat map of correlation coefficient of
differential metabolites and KEGG annotation were made. Finally,
pathway analysis was conducted ESI-positive-mode and
negative-mode results both showed high enrichment valine, leu-
cine and isoleucine biosynthesis in the NJ group. Notably, NJ group
manifested as a significant elevation of intestinal BCAAs (include
leucine, isoleucine and valine, which are nutritionally essential
amino acids), proline, methionine, phenylalanine and were posi-
tively correlated with elevated total serum bilirubin.

Previous studies have shown that elevated valine, leucine,
lysine, isoleucine and alanine levels reflected abnormal amino acid
metabolism in patients with neonatal jaundice [10], and revealed
transient high serum methionine levels and hypermethioninemia
helped distinguish the various causes of obstructive jaundice in
these infants [20]. Additionally, altered serum phenylalanine,
ornithine, isoleucine and leucine metabolism in neonates is closely
associated with the presence of combined bilirubin encephalopa-
thy in neonates with hyperbilirubinemia [21], which is consistent



Fig. 1. OPLS-DA model to evaluate metabolomic data. A, Permutation test of the OPLS-DA model for the NJ vs HC groups. The original model (R2Y) was closer to 1, indicating
that the established model was more consistent with the real situation of the sample data. The original model (Q2) was close to 0.5, indicating that adding a new sample to the
model yielded a more approximate distribution and that the original model better explained the differences between the two sample groups. B, Scatter plot of the OPLS-DA
model scores for the NJ vs. HC groups; the two groups of sample metabolites can be clearly distinguished.

Fig. 2. Visualization of metabolites that differed significantly between the NJ and HC groups. A, z-score plots showing the extent of variation in the differentially significant
metabolites between the NJ and HC groups. z-score plots show that the metabolites were highly variable across the groups, with z-scores ranging from � 2 to 8 relative to
those of the HCs. B, Volcano diagram showing the metabolites that differed significantly between the NJ and HC groups. Each point represents a metabolite; the horizontal
coordinate represents the fold change of the group comparing each substance (taken as the logarithm with a base of 2). The vertical coordinate represents the P-value of the
Student’s t-test (taken as the negative logarithmwith a base of 10), and the scatter size represents the VIP value of the OPLS-DA model, with a larger scatter indicating a larger
VIP value. The scatter color represents the final screening results, with significantly upregulated metabolites in red, significantly downregulated metabolites in blue, and non-
significantly different metabolites in gray. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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with the results of our study. Whether the results of our gut meta-
bolomic may help distinguish neonates with hyperbilirubinemia
from HC and as metabolic markers for NJ requires further
investigation.

BCAAs are involved in the synthesis of cholesterol, ketone bod-
ies and glucose as the basic units of synthetic peptide chains [22–
25]; and also affect protein metabolism, especially leucine and its
metabolites [26]. Increased BCAA levels in a group of pregnant
women with gestational diabetes mellitus were positively corret-
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lated with glucose metabolism and lipid metabolism disorders
[27–29], which could be used to objectively reflect the severity
of gestional diabetes or as early biomarkers of disease onset [30].
Our study showed abnormalities in BCAA metabolism in NJ group,
suggesting that BCAAs in the meconium could also be a potential
risk factor for neonatal hyperbilirubinemia.

So we performed an indepth analysis based on a random forest
machine-learning model. Our study showed an AUROC score of
0.874 for the differential metabolites, valine, leucine, proline; and



Fig. 3. Metabolome characteristics of neonatal jaundice. A, Corrplot of correlations of differential metabolites; corr test P < 0.05 was considered significant. When the linear
relationship between two metabolites was enhanced, it tended to be near 1 for a positive correlation and � 1 for a negative correlation. B, Metabolic pathway enrichment
bubble plot: the vertical coordinate with the bubble indicates the P-value of the enrichment analysis, taking the negative logarithm of the natural number e as the base (i.e.,
for the -lnP-value, darker colors indicate a smaller P-value and a more significant enrichment).

Fig. 4. Random forest machine-learning model to assess the value of differential
metabolites for clinical applications.
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AUROC score of 0.969 for the combination of valine, leucine, pro-
line, methionine, phenylalanine and bilirubin was reliable in diag-
nosing neonatal hyperbilirubinemia. Hence, the combination of
valine, leucine, proline, methionine, phenylalanine and bilirubin
was reliable in diagnosing neonatal hyperbilirubinemia. Based on
machine learning, BACCs may play important roles in neonatal
hyperbilirubinemia and the ROC value may predict the diagnosis.

Here, we collected the first postnatal stool, which reflected the
prenatal and immediate postnatal metabolic status. Starvation
[31,32] and inadequate intake [33–35] or high blood glucose can
lead to increased BCAAs [36–38], suggesting that the increase in
fecal BCAAs may be due to maternal starvation, inadequate intake
or high blood glucose. Further studies on maternal illness and pre-
natal intake status are needed.
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Since serum BCAA abnormalities are potential disease
biomarkers. Previous studies show that high BCAA levels are
associated with excitotoxicity, energy deficiency and oxidative
stress in the brain [39,40], leading to severe neurological symp-
toms [41–43]. DNA damage in the hippocampus and striatum
was confirmed after administering BCAAs in an animal model
of maple syrup urine disease (MSUD) [29,44]. These studies sug-
gest that increased protein breakdown or decreased protein syn-
thesis [26,45,46] in the muscles and insulin resistance may
enhance BCAA levels. However, levels that are too high can dam-
age the nervous system. This may explain the predisposition to
brain damage in neonates with severe hyperbilirubinemia, lead-
ing to the development of bilirubin encephalopathy. This requires
further research.

And our previous study found that patients with NJ exhibited a
reduction in bifidobacteria [8], which are involved in amino acid
metabolism [47], although there is little evidence for the involve-
ment of bifidobacteria in branched-chain amino acids. Bifidobacte-
ria are part of the core microbiota of the healthy infant gut and
may form biofilms on intestinal epithelial cells, mucosa and food
particles [47]. Faizan et al. found that Bifidobacterium may be
involved in the metabolism of branched-chain amino acids, and
they found that relative to other non-bifidobacteria, bifidobacterial
biofilms involved in amino acid metabolism, particularly
branched-chain amino acid gene [48]. However, we need to
exclude other effects on branched-chain amino acid metabolism
such as starvation or blood glucose and further elaborate on the
potential mechanistic link between Bifidobacterium and BCAA pro-
duction/degradation capacity, which is our next step to be
undertaken.

This study identified an alteration in branched-chain amino
acid metabolism in neonatal jaundice and independent validation
is needed to determine whether this alteration is a biomarker for
neonatal jaundice. We will recollect samples and perform targeted
metabolomic analysis in future.



Fig. 5. Gut BCAAs have a causal effect on serum bilirubin. A–C, gut branched-chain amino acids isoleucine (A), leucine (B), valine (C) were positively correlated with serum
bilirubin levels; D–E, isoleucine, leucine had a direct causal effect on serum bilirubin levels and an indirect causal effect on NJ, birth mode (D) and preterm (E) are confounding
factors.
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5. Conclusion

Our results showed that the metabolome clearly distinguished
the NJ group from the HCs, with a model AUROC score of 96.9 %.
NJ manifests as an increase in intestinal BCAAs and was positively
correlated with serum bilirubin. BCAAs have a potential causal
effect on serum bilirubin and BCAAs (i.e., valine, leucine and isoleu-
cine) proline, methionine, phenylalanine are potential markers of
neonatal hyperbilirubinemia.
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