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ABSTRACT Clostridium perfringens causes severe gastrointestinal diseases, which in-
clude necrotic enteritis (NE) in chickens, a deadly disease worldwide. We report here
the draft genome sequence of Clostridium perfringens strain TAMU, which was used
in developing an NE chicken challenge model. This C. perfringens TAMU genome se-
quence will aid in advancing potential intervention strategies to reduce NE patho-
genesis.

Clostridium perfringens, a Gram-positive spore-forming bacterium, is the causative
agent of an array of diseases in humans and agricultural animals due to diverse

toxins on its conjugative plasmids (1–4). One of these diseases is necrotic enteritis (NE),
which causes intestinal inflammation and necrotic regions in broiler chickens, leading
to high morbidity and mortality. C. perfringens has also been isolated from commercial
turkeys with cellulitis (5). NE is increasingly a significant burden on the poultry industry,
particularly with the banning of prophylactic antibiotic use (6). Here, we present the
draft genome sequence of C. perfringens strain TAMU, which was isolated in 2004 using
a brucella blood agar plate from the gut of a broiler chicken from Texas presenting NE
(7, 8). Since then, our group has successfully used the C. perfringens strain to reproduce
important aspects of NE pathogenesis using an in vitro digestive model (9) and in vivo
chicken challenge models (8, 10, 11).

C. perfringens TAMU was cultured overnight in tryptic soy broth with thioglycolate,
and DNA extraction was performed with a DNeasy UltraClean microbial kit (Qiagen LLC,
Germantown, MD). Genomic DNA was prepared for shotgun metagenome sequencing
using a Nextera XT DNA library preparation kit (Illumina, Inc., San Diego, CA) according
to the manufacturer’s instructions. Sequencing was performed at the University of
Illinois at Chicago Sequencing Core (UICSQC) using a NextSeq 500 instrument (Illumina,
Inc.) with 150-bp paired-end sequencing. In total, approximately 6.1 million reads were
generated. Trimming was performed in the software package CLC Genomics Work-
bench v11.0.1 (Qiagen). Trimming was performed using default parameters with a
threshold of Q20. Sequences demultiplexed in the BaseSpace cloud computing envi-
ronment provided by the UICSQC resulted in a 3,672,352-bp draft genome assembly
using SPAdes v3.11.1 (12) with 318 contigs more than 200 bp in length, an average
coverage of 205�, an N50 value of 46,751 bp, and a G�C content of 28.11%. Genome
assembly quality was determined by the QUAST quality assessment tool (13).

The draft genome was annotated with the Prokaryotic Genome Annotation Pipeline
from NCBI (14). Annotated features include 3,397 genes with 3,309 coding sequences
(CDS), 12 rRNAs (including 5S, 16S, and 23S rRNAs), 75 tRNAs, and 4 noncoding RNAs
(ncRNAs). Functional annotation with the Virulence Factors Database (VFDB) (15)
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predicted 25 open reading frames (ORFs) associated with virulence, including several
encoding enterotoxins (n � 3), hemolysins (n � 4), and adherence factors (n � 2), as
well as alpha-toxin (n � 1) and �2-toxin (n � 1). These data have been made available
on figshare (https://doi.org/10.6084/m9.figshare.11337245.v3). The Resistance Gene
Identifier in the Comprehensive Antibiotic Resistance Database (16) identified 3 genes
conferring resistance to peptide (n � 1) and tetracycline (n � 2) antibiotics based on
protein homology models of these genes sharing 97% or greater similarity to query
sequences (https://doi.org/10.6084/m9.figshare.11337311.v1). Default parameters were
used for all software unless otherwise specified. In conclusion, this C. perfringens TAMU
draft genome sequence will faciliate functional genomic analysis of virulence factors
associated with NE pathogenesis.

Data availability. This whole-genome shotgun project has been deposited at
DDBJ/EMBL/GenBank under the accession number VOVJ00000000. The version de-
scribed in this paper is version VOVJ01000000. The project data have been submitted
under BioProject accession number PRJNA558493 and raw sequences under SRA
accession number SRP218148.
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