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Abstract: The red alga Neopyropia yezoensis undergoes polarized elongation and asymmetrical cell
division of the apical stem cell during tip growth in filamentous generations of its life cycle: the
conchocelis and conchosporangium. Side branches are also produced via tip growth, a process
involving the regeneration and asymmetrical division of the apical stem cell. Here, we demonstrate
that auxin plays a crucial role in these processes by using the auxin antagonist 2-(1H-Indol-3-yl)-4-
oxo-4-phenyl-butyric acid (PEO-IAA), which specifically blocks the activity of the auxin receptor
TRANSPORT INHIBITOR RESPONSE1 (TIR1) in land plants. PEO-IAA repressed both the regenera-
tion and polarized tip growth of the apical stem cell in single-celled conchocelis; this phenomenon
was reversed by treatment with the auxin indole-3-acetic acid (IAA). In addition, tip growth of the
conchosporangium was accelerated by IAA treatment but repressed by PEO-IAA treatment. These
findings indicate that auxin regulates polarized tip cell growth and that an auxin receptor-like protein
is present in N. yezoensis. The sensitivity to different 5-alkoxy-IAA analogs differs considerably
between N. yezoensis and Arabidopsis thaliana. N. yezoensis lacks a gene encoding TIR1, indicating that
its auxin receptor-like protein differs from the auxin receptor of terrestrial plants. These findings
shed light on auxin-induced mechanisms and the regulation of tip growth in plants.

Keywords: tip growth; apical stem cell; branch formation; auxin; auxin antagonist; Neopyropia yezoensis

1. Introduction

Tip growth is a highly polarized mode of growth involving the establishment of a
single growing point at the apex of the cell, resulting in directional elongation [1,2]. Tip
growth has been observed in a variety of eukaryotic taxa including fungi, oomycetes, green
and brown algae, and terrestrial plants [1,3–6]. Filamentous organisms exhibit two types of
tip growth: the single-cell type involving polarized elongation of a single filamentous cell
(such as in root hairs and pollen tubes of angiosperms) [7–10] and the hyphae type involving
continual production of new tip cells through polarized elongation and the subsequent
asymmetrical division of the apical cell (such as in protonemata and rhizoids of streptophyte
algae, bryophytes (liverworts, hornworts, and mosses), and ferns) [4,11–14]. The regulatory
mechanisms of tip growth have been extensively investigated using root hairs and pollen
tubes as single-cell models. These mechanisms involve ion flux, the asymmetric distribution
of F-actin, phosphoinositides, membrane trafficking of membrane and cell wall materials,
the production of reactive oxygen species, and plant hormones [15–25].

The hyphae of fungi and protonemata of mosses are multicellular, uniseriate, cylindri-
cal structures whose growth occurs only in the tip cells. Tip cell elongation is restricted to
the apex, and asymmetric division of an elongated tip cell produces a new apical tip cell
and a basal nondividing cell [15,26,27]. Since these events occur at the apex of the growing
cells, a single growing point is established at the apex and the growth direction is polarized,
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a process responsible for tip growth. During hyphae-type tip growth in the protonema of
the moss Physcomitrium patens, the tip cell functions as a stem cell, as it produces two types
of cells with each division: a new apical cell and a differentiated non-dividing cell [12].
Such filamentous organisms also produce side branches by generating new tip-growing
apical cells from nondividing differentiated cells; these new apical cells are then maintained
as stem cells during the tip growth of the side branches [4,12]. Thus, the regeneration of
apical stem cells from non-stem cells results in the formation of branched colonies.

The plant hormone auxin plays important roles in tip growth. Exogenous treatment
with the auxin indole-3-acetic acid (IAA) stimulates the tip growth of moss protonema
and angiosperm pollen tubes [28–30]. Mutants in auxin signaling exhibit repressed root
hair growth. By contrast, overexpressing genes involved in the perception, transport,
and metabolism of auxin leads to enhanced root hair growth [22,31,32]. In addition, IAA
induces the degradation of AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) transcriptional
repressors. Specifically, IAA binds to TRANSPORT INHIBITOR RESPONSE (TIR1), an
auxin receptor that functions as the F-box subunit of the ubiquitin ligase complex AUXIN
SIGNALING F-BOX (SCFTIR1/AFB), thereby releasing Aux/IAA from auxin-responsive
transcription factors (ARFs) to activate IAA-inducible gene expression [33–35].

This TIR1-mediated auxin-induced activation of ARFs was recently shown to function
in tip growth. High endogenous auxin levels in the root hair differentiation zone triggered
the expression of ARF19 under low phosphate conditions, which stimulate root hair pro-
duction and elongation [36]. In addition, ARF7 and ARF19 interact with the promoter of
ERULUS (ERU) and activate its expression; ERU encodes a plasma membrane-localized
receptor-like kinase that is involved in fine-tuning cell wall composition in root hairs in
Arabidopsis thaliana [37]. These findings point to a direct link between auxin signal trans-
duction and tip growth.

The marine red alga Neopyropia yezoensis is a representative species used for nori
aquaculture in Asian countries such as Japan, South Korea, and China [38]. Despite the
successful establishment of industrial large-scale aquaculture systems for N. yezoensis at
the sea surface, our biological understanding of this alga is limited, and the regulatory
mechanisms of its growth, life cycle, development, and environmental stress responses are
mostly unknown. We recently demonstrated that tip growth is essential for maintaining
the proliferation of the filamentous generations of N. yezoensis, including the conchocelis
(sporophyte generation) and conchosporangium (conchosporophyte generation) [39–42].
In these generations, only the apical tip cell undergoes elongation and division, which
results in the production of two different cell types: a copy of the apical cell at the tip of the
filament and a neighboring differentiated nondividing cell [39–41].

Like the tip cells of P. patens protonema [12], the tip cells of the conchocelis and con-
chosporangium of N. yezoensis are also thought to be stem cells, suggesting that these fila-
mentous generations are ideal models to explore the mechanisms regulating tip growth and
the regeneration of tip-growing apical cells in seaweeds. Therefore, elucidating the mecha-
nisms underlying the production and maintenance of the apical stem cell in N. yezoensis
would be beneficial for understanding tip growth as a growth strategy in marine filamen-
tous photosynthetic organisms.

Here, we established novel experimental systems to study tip growth and investigated
the role of auxin in tip growth in conchocelis and conchosporangium filaments using
artificially synthesized auxin-derived compounds [33,43–45]. Our results demonstrate the
critical role of auxin in tip growth in the filamentous generations of N. yezoensis.

2. Materials and Methods
2.1. Algal Materials and Culture Conditions

Two filamentous generations in the life cycle of N. yezoensis (strain U-51), conchocelis
(sporophyte) and conchosporangium (conchosporophyte), were maintained in sterilized artifi-
cial seawater as described by [46]. The cultures were grown under 60 µmol photons m−2 s−1

light with a long-day photoperiod (14-h light/10-h dark) at 15 ◦C and aerated with air
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filtered through a 0.22-µm filter (Whatman, Maidstone, UK). The culture medium was
changed weekly.

2.2. Synthesis of Chemical Compounds

Auxin antagonists PEO-IAA [2-(1H-Indol-3-yl)-4-oxo-4-phenyl-butyric acid], 4-Cl-
PEO-IAA [2-(1H-Indol-3-yl)-4-oxo-4-(4-chlorophenyl)-butyric acid], and BH-IAA [8-(tert-
Butoxycarbonylamino)-2-(1H-indol-3-yl)octanoic acid], and 5-alkoxy-IAAs were synthe-
sized according to the methods described in [33,43–45].

2.3. Preparation of Single-Celled Conchocelis and Conchosporangium

To excise single-celled conchocelis and conchosporangium, these multicellular filamen-
tous structures were chopped with a razor blade, filtered through a 10-µm nylon mesh to
remove large pieces, and incubated in 9-cm dishes (Asnol dish 90 mm (diameter) × 20 mm
(height), As One, Osaka, Japan) containing 30 mL seawater at 15 ◦C for 10 min. Cells
whose adjacent cells disappeared were picked up with micropipettes under an Olympus
IX73 light microscope equipped with an Olympus DP22 camera, transferred into 96-well
plates (one cell/well containing 200 µL artificial seawater with or without chemicals, as
indicated), and analyzed after 1 week of culture under the conditions described above but
without aeration. The branching rate was calculated as the number of cells producing a
branch as a percentage of total number of cells observed.

2.4. Observation of Naturally Produced Conchosporangia

Single-celled conchocelis were statically cultured in wells containing sterilized artificial
seawater under the conditions described above except that they were aerated. Swelling tip
cells of conchocelis side branches were then detected by microscopy, and their growth and
side-branch formation were monitored for 7 days using an Olympus IX73 light microscope
equipped with an Olympus DP22 camera. The branching rate was calculated as the number
of cells producing a branch as a percentage of the total number of cells observed.

2.5. Chemical Treatment of Isolated Cells and Naturally Produced Conchosporangia

Pharmacological treatments with auxins, auxin antagonists, or 5-alkoxy-IAAs were per-
formed by incubating isolated cells and naturally produced conchosporangium filaments
at 15 ◦C in wells containing 200 µL artificial seawater. Auxin treatment was performed
by incubating the cells for 1 week in 5, 10, 30, 50, or 100 µM IAA (Nakalai Tesque, Ky-
oto, Japan), NAA (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany), or 2,4-D (Nakalai
Tesque, Kyoto, Japan) in 200 µL artificial seawater in wells. Three types of auxin antagonists,
PEO-IAA, 4-Cl-PEO-IAA, and BH-IAA [33,43], were added to the artificial seawater in the
wells to generate 10, 20, 30, 40, or 50 µM solutions, followed by incubation of the cultures
for 1 week. For co-treatment with auxins and PEO-IAA, different concentrations of IAA,
NAA, or 2,4-D (5, 10, 20, or 30 µM) and a single concentration of PEO- IAA (30 µM) were
used. Five derivatives of 5-alkoxy-IAAs, named 1a to 5a [45], were used at a concentration
of 30 µM for the assays, whereas the other experiments employed 10 µM 5-alkoxy-IAAs
or IAA in the presence of 30 µM PEO-IAA for 2 weeks. Cells treated with chemicals for
2 weeks in static culture were observed and photographed using an Olympus IX73 light
microscope equipped with an Olympus DP22 camera to evaluate the effects of chemicals on
tip growth and the formation of side branch initials. Branching rate was calculated as the
number of cells producing a branch as a percentage of the total number of cells observed.

2.6. Statistical Analysis

Mean values ± SD were calculated from triplicate experiments. A statistically signifi-
cant interaction was detected between the duration of incubation with various combinations
of chemicals and the regeneration of apical stem cells, as determined by one-way ANOVA
with the Tukey–Kramer test (p < 0.05). Significant differences for each set of treatments
were determined using a cutoff value of p < 0.05.
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3. Results
3.1. Generation of Apical Stem Cells from Single-Celled Conchocelis to Observe Tip Growth

Since side branches develop from differentiated nondividing cells in conchocelis
filaments (see Figure 1B of [47]), we reasoned that tip growth, with the production and
maintenance of an apical stem cell, could be observed by examining the formation of a
side branch from a single-celled conchocelis. Thus, we prepared single-celled conchocelis
(Figure 1B) by chopping sporophyte filaments (Figure 1A) with a razor blade and examined
branching from these isolated cells. As expected, approximately 90% of nonbranched single
cells produced side branches after culturing for 7 days (Figure 2G); the positions of side
branch initials in the cylindrical conchocelis cells appeared to be random (Figure 1C–E).
Therefore, the single-celled conchocelis provides a novel, simple experimental system
for addressing the regulatory mechanisms of tip growth of the filamentous sporophyte
generation of N. yezoensis.
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Figure 1. Generation of tip-growing side branches from single-celled conchocelis filaments. (A) 
Conchocelis filaments maintained in the laboratory; (B) a single-celled conchocelis; (C–E) side 
branches produced at various positions on single-celled conchocelis. Arrows indicate side branches. 
Scale bars: 100 μm in (A); 25 μm in (B–E). 

Figure 1. Generation of tip-growing side branches from single-celled conchocelis filaments.
(A) Conchocelis filaments maintained in the laboratory; (B) a single-celled conchocelis; (C–E) side
branches produced at various positions on single-celled conchocelis. Arrows indicate side branches.
Scale bars: 100 µm in (A); 25 µm in (B–E).
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Figure 2. Effects of treatment with the auxin antagonist PEO-IAA on side-branch production in a 
single-celled conchocelis. (A–F) Photographs of typical effects of the auxin antagonist on the growth 
of side branches from single-celled conchocelis treated with 0, 10, 20, 30, 40, or 50 μM PEO-IAA for 
7 days. Arrows indicate side branches. Scale bars: 50 μm. (G) Changes in branching ratios following 
the treatment of single-celled conchocelis with various concentrations of PEO-IAA. Side branch 
formation was observed in single-celled conchocelis cultured in various concentrations of PEO-IAA 
for 7 days, and the number of conchocelis with branches at 2, 3, 4, 5, 6, and 7 days after treatment 
was counted under a microscopic to calculate the branching rate. Error bars indicate the standard 
deviation of triplicate independent experiments (n = 3), and different lowercase letters denote 
significant differences in branching rate, as determined by Tukey’s test (p < 0.05) for each set of 
incubation times. 
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Figure 2. Effects of treatment with the auxin antagonist PEO-IAA on side-branch production in a
single-celled conchocelis. (A–F) Photographs of typical effects of the auxin antagonist on the growth
of side branches from single-celled conchocelis treated with 0, 10, 20, 30, 40, or 50 µM PEO-IAA
for 7 days. Arrows indicate side branches. Scale bars: 50 µm. (G) Changes in branching ratios
following the treatment of single-celled conchocelis with various concentrations of PEO-IAA. Side
branch formation was observed in single-celled conchocelis cultured in various concentrations of
PEO-IAA for 7 days, and the number of conchocelis with branches at 2, 3, 4, 5, 6, and 7 days after
treatment was counted under a microscopic to calculate the branching rate. Error bars indicate the
standard deviation of triplicate independent experiments (n = 3), and different lowercase letters
denote significant differences in branching rate, as determined by Tukey’s test (p < 0.05) for each set
of incubation times.
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3.2. The Role of Auxin in the Generation and Tip Growth of Side Branches in Conchocelis

Since the exogenous application of auxin has positive effects on tip growth in terrestrial
plants [28–30], we first examined whether tip growth from a single-celled conchocelis could
be stimulated by the exogenous application of indole-3-acetic acid (IAA). However, no
effect was observed (data not shown), suggesting that if auxin is required for tip growth,
an adequate amount was already present in the isolated cells.

We next addressed the role of auxin in tip growth by examining the effect of mod-
ulating the activity of the auxin receptor, since the functions of auxin receptors can be
elucidated via chemical biology approaches using auxin receptor antagonists [33,43,44].
When isolated conchocelis cells were treated with the auxin receptor antagonist PEO-
IAA [33], the generation and tip growth of side branches were repressed in a concentration-
dependent manner (Figure 2). The repression of branch formation by treatment with 30 µM
PEO-IAA was recovered by the exogenous application of 5, 10, or 20 µM IAA (Figure 3).
Although 30 µM IAA had a negative effect on branch formation (Figure 3), this was likely
an off-target effect of a high concentration of IAA on growth, as observed in terrestrial
plants [48–51]. These findings indicate that auxin plays an important role in regulating
tip growth and that N. yezoensis contains an auxin receptor-like protein that regulates tip
growth in conchocelis filaments.
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Arrows indicate side branches. Scale bars: 50 µm. (B–D) Photographs of typical single-celled
conchocelis treated with 0, 5, or 10 µM IAA for 7 days in the presence of 30 µM PEO-IAA. Arrows
indicate side branches. Scale bars: 50 µm. (E) Changes in branching rate following treatment of
single-celled conchocelis with various concentrations of IAA in the presence of 30 µM PEO-IAA.
Error bars indicate the standard deviation of triplicate independent experiments (n = 3), and different
lowercase letters denote significant differences in the branching rate, as determined by Tukey’s test
(p < 0.05) for each set of incubation times.

3.3. Role of Auxin in Tip Growth and Side Branch Production in Conchosporangia

The conchosporangium, a structure representing the conchosporophyte generation
of the N. yezoensis life cycle [40], is produced on the conchocelis via the swelling of the
apical cell of a side branch [52], representing a type of tip growth [47]. Since nondividing
differentiated cells produce side branches (Figure S1), we expected that single-celled con-
chosporangium (as well as conchocelis) would be suitable to study tip growth. However,
most single cells did not produce side branches, unlike the single-celled conchocelis, as
described above (Figure 4A). Nonetheless, isolated cells derived from apical cells were able
to divide and generate side branch initials for their tip growth (Figure 4B). As shown in
Figure 4B, branch formation from the conchosporangium exhibited two unique characteris-
tics. First, the branches formed at the nondividing differentiated cell adjacent to the apical
tip cell. Second, the width of the branch and the length of the nondividing cell were similar,
resulting in the production of thick, cylinder-shaped outgrowths.
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Cells 2022, 11, 2652 8 of 16

show different isolated cells that failed to grow. The numbers above the panels indicate the duration
of incubation (days). (B) Growth and production of a side branch by a single apical cell. The numbers
in each panel indicate the duration of incubation (days). The apical cell and side branch after 3 days
of culture are indicated by arrows. Scale bars: 25 µm.

Chopping the conchosporangia did not produce enough free apical cells to allow us
to perform experiments. Thus, we improved the experimental system using single-celled
conchocelis. In these structures, the formation of conchosporangia was observed in some
branches after about 2 weeks of culture. This spontaneous production of conchosporangia
enabled us to monitor tip growth more easily compared to examining isolated apical cells
obtained by chopping. As shown in Figure 5A,B, we were able to confirm the same pattern
of tip growth and branch formation in these conchosporangia as we had observed in
single-celled conchosporangia (Figure 4B).
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Figure 5. Effects of IAA on the tip growth of conchosporangia produced on conchocelis filaments.
(A,B) The pattern of tip growth and side branch formation in a conchosporangium cultured for 2 (A)
and 3 (B) days, after swelling of the tip of the side branch from a single-celled conchocelis. The apical
cells and side branches are indicated by arrows. Scale bars: 25 µm. (C,D) Effects of exogenously
supplied IAA on the growth of side branches from single-celled conchosporangia, including total
length (C) and cell number (D) after 7 days of culture. Error bars indicate the standard deviation
of triplicate independent experiments (n = 3), and different lowercase letters denote significant
differences, as determined by Tukey’s test (p < 0.05).

We employed our novel experimental system to investigate the role of auxin in the tip
growth of conchosporangia. When the tips of side branches that formed on conchocelis
filaments began to swell, which we took as a signal of conchosporangium development,
we treated the filaments with 5, 15, or 30 µM IAA and observed growth after 3, 5, and
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7 days of culture. In contrast to conchocelis, the tip growth of conchosporangium was
accelerated by exogenously supplied auxin. The greatest increases in both the length and
cell number of branches occurred following 15 µM IAA treatment, although 5 and 30 µM
IAA treatments had lesser but significant effects equally (Figure 5C,D). By contrast, treating
the swelling tips of side branches with 5, 10, or 20 µM PEO-IAA resulted in the repression
of tip growth in a concentration-dependent manner (Figure 6). These findings indicate that
auxin regulates tip growth in conchosporangia.
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Figure 6. Effects of PEO-IAA on the tip growth of conchosporangia produced on conchocelis filaments.
(A) Photographs of typical conchosporangia treated with 0, 5, 15, or 30 µM PEO-IAA for 7 days.
Scale bars: 25 µm. (B,C) Effects of exogenously supplied IAA on the growth of side branches from
single-celled conchosporangia, including the total length (B) and cell number (C) after 7 days of
culture. Error bars indicate the standard deviation of triplicate independent experiments (n = 3), and
different lowercase letters denote significant differences, as determined by Tukey’s test (p < 0.05).

3.4. Characterization of a Unique Auxin Receptor in N. yezoensis Using IAA Derivatives

The auxin receptor antagonist PEO-IAA repressed the regeneration and tip growth of
apical tip cells in side branches from both conchocelis and conchosporangium, suggesting
the presence of functional auxin receptors in N. yezoensis. However, in previous studies, we
failed to identify genes encoding homologs of the auxin receptor TIR1 or auxin-responsive
factors (ARFs) in the N. yezoensis genome [53,54]. We therefore predicted that N. yezoensis
might contain a novel, unknown auxin receptor-like protein. To test this hypothesis, we
utilized chemical biology approaches.

First, we assessed the binding of auxin to an unknown auxin receptor by examining
the reversal by auxins of the repression of side branch formation by 30 µM PEO-IAA. The
native auxin IAA exhibited potent auxin activity in the promotion of branch formation
(Figure 7), whereas 5 to 30 µM 2,4-D or NAA showed weak activity in branch formation in
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the presence of PEO-IAA (Figure S2). These findings indicate that both native and synthetic
auxins function in N. yezoensis, demonstrating the presence of an auxin receptor-like protein
in this alga.

Cells 2022, 11, x  11 of 17 
 

 

native auxin IAA exhibited potent auxin activity in the promotion of branch formation 
(Figure 7), whereas 5 to 30 μM 2,4-D or NAA showed weak activity in branch formation 
in the presence of PEO-IAA (Figure S2). These findings indicate that both native and 
synthetic auxins function in N. yezoensis, demonstrating the presence of an auxin receptor-
like protein in this alga.  

 
Figure 7. The effects of auxin and the auxin-antagonistic activity of 5-alkoxy-IAAs in N. yezoensis. 
(A) Comparison of the effects of 30 μM PEO-IAA and 30 μM 5-alkoxy-IAAs on the production of 
side branches. Side branch formation was observed in single-celled conchocelis cultured with each 
chemical for 2 weeks, and the number of conchocelis with branching was counted by microscopy 
observation at 2, 3, 4, 5, 6, 7, and 14 days to calculate the branching rate. (B) Activities of 5-alkoxy-
IAAs. Isolated conchocelis cells were incubated in the presence of auxin derivatives 1a to 5a for 2 
weeks, and the effects of these 5-alkoxy-IAAs on side branch formation were observed using a 
microscope at 1, 2, 3, 4, 5, 6, and 7 days. Error bars indicate the standard deviation of triplicate 
independent experiments (n = 3), and different lowercase letters denote significant differences in 
branching rate, as determined by Tukey’s test (p < 0.05) for each set of incubation times. 

We then examined the binding of another auxin antagonist, the PEO-IAA derivative 
4-Cl-PEO-IAA [33,43], to the auxin receptor-like protein. As shown in Figure S3A, 4-Cl-l-
PEO-IAA acted as an auxin antagonist for side branch formation, indicating that the IAA 
moiety of PEO-IAA is recognized by an unknown auxin receptor-like protein in N. 

Figure 7. The effects of auxin and the auxin-antagonistic activity of 5-alkoxy-IAAs in N. yezoensis.
(A) Comparison of the effects of 30 µM PEO-IAA and 30 µM 5-alkoxy-IAAs on the production of
side branches. Side branch formation was observed in single-celled conchocelis cultured with each
chemical for 2 weeks, and the number of conchocelis with branching was counted by microscopy
observation at 2, 3, 4, 5, 6, 7, and 14 days to calculate the branching rate. (B) Activities of 5-alkoxy-
IAAs. Isolated conchocelis cells were incubated in the presence of auxin derivatives 1a to 5a for
2 weeks, and the effects of these 5-alkoxy-IAAs on side branch formation were observed using a
microscope at 1, 2, 3, 4, 5, 6, and 7 days. Error bars indicate the standard deviation of triplicate
independent experiments (n = 3), and different lowercase letters denote significant differences in
branching rate, as determined by Tukey’s test (p < 0.05) for each set of incubation times.

We then examined the binding of another auxin antagonist, the PEO-IAA derivative
4-Cl-PEO-IAA [33,43], to the auxin receptor-like protein. As shown in Figure S3A, 4-Cl-l-
PEO-IAA acted as an auxin antagonist for side branch formation, indicating that the IAA
moiety of PEO-IAA is recognized by an unknown auxin receptor-like protein in N. yezoensis.
When the auxin receptor antagonist BH-IAA, which is a structural derivative distinct from
PEO-IAA and 4-Cl-PEO-IAA [33,43], was employed, it showed weak auxin-antagonistic
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activity on side branch formation in N. yezoensis (Figure S3B). These results indicate that an
auxin receptor-like protein recognizes the common IAA moiety of these auxin antagonists.

We next examined the auxin activity of 5-alkoxy-IAAs (see Figure 1 in [45]) against the
N. yezoensis auxin receptor-like protein. In A. thaliana, 5-alkoxy-IAAs such as 5-methoxy-IAA (1a),
5-ethoxy-IAA (2a), 5-propoxy-IAA (3a), and 5-butoxy-IAA (4a) showed auxin activity by
binding with TIR1 to induce auxin-responsive gene expression, whereas 5-pentoxy-IAA (5a),
5-hexyloxy-IAA (6a), and 5-benzoxyl-IAA (7a) lacked TIR1-binding activity [45]. Thus, we
examined the auxin activity of 1a to 5a in N. yezoensis. When isolated conchocelis cells
were incubated with 30 µM 5-alkoxy-IAAs for 2 weeks, branching and tip growth occurred
normally in the presence of 1a and 2a but was partially repressed by 3a and 4a (Figure 7A).
By contrast, 5a strongly repressed branching, as did PEO-IAA (Figure 7A).

In treating single-celled conchocelis with 30 µM PEO-IAA plus 10 µM 5-alkoxy-IAAs
for 2 weeks, treatment with 1a and 2a allowed the recovery from the inhibited branching
and tip growth induced by PEO-IAA, and by 10 µM IAA (Figure 7B). However, 3a and 4a
did not counteract the effects of PEO-IAA, and 5a showed additive antagonistic activity
with PEO-IAA (Figure 7B). Thus, 1a and 2a acted as auxins, while 3a, 4a, and 5a displayed
auxin-antagonistic activity, indicating that 3a, 4a, and 5a act differently in N. yezoensis than
in A. thaliana. Notably, although 5a apparently bound to an auxin receptor-like protein
in N. yezoensis and functioned as an auxin antagonist, a previous study showed that this
compound did not affect TIR1 function in A. thaliana [45]. Therefore, based on the results of
our auxin structure-based experiments, we conclude that the auxin-recognition site of the
auxin receptor-like protein of N. yezoensis is different from that of the A. thaliana TIR1/AFB
receptor. Thus, auxin regulates side branch formation and tip growth in N. yezoensis via an
unknown auxin receptor.

4. Discussion

We performed chemical biology studies to explore the mechanisms underpinning tip
growth of the conchocelis and conchosporangium in the red seaweed N. yezoensis. Our
novel experimental procedures allowed us to successfully demonstrate the critical role of
auxin in tip growth of two filamentous generations in the N. yezoensis life cycle: conchocelis
(sporophyte) and conchosporangium (conchosporophyte). Despite the presence of auxin in
N. yezoensis and ‘Bangia’ sp. ESS1 [53,54], the physiological roles of auxin in Bangiales have
not yet been elucidated. Thus, our results provide the first evidence for the physiological
function of auxin in Bangiales. Since auxin was already shown to be involved in tip growth
in the brown alga Ectocarpus siliculosus [5], it is plausible that role of auxin in regulating tip
growth is conserved in seaweeds.

As shown in Figure 1, the positions of branches in single-celled conchocelis were
different from those in the protonema of P. patens, whose branch initials are produced at
the apical ends of filamentous differentiated cells [55]. Our findings indicate that polar
regulation does not determine the branching position in isolated conchocelis cells. Since it
is unknown whether the isolation of single cells affects the positioning of apical stem cell
production, it is important to examine branch formation in natural filamentous conchocelis
to address whether polar regulation affects branch formation in N. yezoensis.

While the conchocelis and conchosporangium both expanded via tip growth and
branching in N. yezoensis, our observations indicate that their growth processes are dif-
ferent, especially their branching patterns. In conchocelis filaments, thin hyphae-type
outgrowths are produced in nondividing mature cells distant from the tip cell in the pri-
mary filament. Since the nondividing cell is longer than the width of cells in the primary
filament, branching usually involves tubular filamentous extensions, similar to branch
formation in protonema of the moss P. patens [4,12,56]. By contrast, branching in conchospo-
rangia involves the production of thick outgrowths whose diameters are nearly identical to
the length of the nondividing cell (Figures 4 and 5), like in E. siliculosus [4,5]. These findings
point to the different mechanisms by which branching is achieved in the conchocelis and
conchosporangium: The former requires the side branch initial to be positioned some-
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where along the longitudinal side of the cell, but the latter does not. Although common
protein factors function in tip growth in both protonema and caulonema in P. patens [56],
perhaps the regulatory machinery of tip growth is basically similar but not identical in
the conchocelis and conchosporangium. Thus, further characterizing the factors involved
in the generation of the novel apical stem cell in branching initials will help uncover the
differences in the branching systems of these two generations of the N. yezoensis life cycle.

Our results also indicate the presence of a novel, yet to be identified, auxin receptor in
N. yezoensis. Genes encoding the auxin receptor TIR1/AFB and the transcription factors
Aux/IAAs and ARFs have not been identified in the genomes of Bangiales species [53,54].
Thus, factors that participate in the auxin signal transduction pathway in N. yezoensis were
not previously identified and appear to be novel [53,54]. Our chemical biology studies
clearly demonstrated that the auxin receptor-like protein of N. yezoensis binds to the 1a
to 5a versions of 5-alkoxy-IAA used in the present study; this is markedly different from
A. thaliana TIR1/AFB, which does not recognize 5a [45].

Since 1a and 2a showed auxin activity and 5a, like 3a and 4a (Figure 7), acts as an
auxin antagonist, it appears that the N. yezoensis auxin receptor-like protein contains one
auxin-binding pocket. However, this hypothesis does not explain why treating single-celled
conchocelis with PEO-IAA and 5a together had additive effects repressing side branch
formation (Figure 7B). If these molecules competitively bind to the receptor-like protein
with the same affinity, the effects of their combined application should be identical to those
of PEO-IAA alone. Thus, the affinity of 5a for the N. yezoensis auxin receptor-like protein
should be higher than that of PEO-IAA. However, as shown in Figure 7A, PEO-IAA and 5a
had identical effects in terms of antagonizing side branching. It is therefore plausible that
N. yezoensis contains at least two auxin receptor-like proteins, one of which dominantly
binds to PEO-IAA and another to 5a. In this case, the additive effect of these chemicals in
the combined treatment of single-celled conchocelis could be explained by the combined
actions of two auxin receptor-like proteins binding separately to PEO-IAA and 5a. Indeed,
the TIR1/AFB families of terrestrial plants contain multiple, functionally diverse auxin
receptors [57–59]. Like N. yezoensis [53,54], E. siliculosus also lacks any factors homologous
to known auxin signal transduction components in terrestrial plants [60], indicating that
the modes of action of auxin in regulating tip growth in N. yezoensis and E. siliculosus
are different from those in terrestrial plants. Therefore, identifying and characterizing
auxin receptors and factors involved in the auxin signal transduction pathway in seaweeds
would enable us to define the novel regulatory mechanisms of auxin-directed tip growth in
photosynthetic filamentous organisms.

Notably, the N. yezoensis genome also lacks homologs of the genes encoding auxin
biosynthetic enzymes in A. thaliana [53,54]. Thus, the origin of the auxin in this appar-
ently non-auxin-producing seaweed must be clarified to understand how it obtains this
plant hormone to regulate tip growth in both the conchocelis and conchosporangium. A
variety of epiphytic bacteria have been isolated from N. yezoensis [61–66] and other red
seaweeds [67–70], some of which synthesize IAA [67,71]. Although the physiological
function of bacterial IAA has not yet been confirmed, it is possible that epiphytic bacteria
of N. yezoensis synthesize IAA and promote the generation of apical stem cells and their
expansion for tip growth in conchocelis and conchosporangium cells. Moreover, since
E. siliculosus can produce auxin [60] but hosts many types of epiphytic bacteria [72,73], the
supply of auxin from epiphytic bacteria might depend on the algal species. Therefore, the
origin and modes of action of auxin in N. yezoensis should be addressed to elucidate the
regulatory mechanisms of tip growth in seaweeds.

5. Conclusions

The tip growth in both conchocelis and conchosporangia filaments was repressed by
auxin antagonists and sensitivity to 5-alkoxy-IAAs was different between N. yezoensis and
A. thaliana. Thus, our chemical biology studies indicated that the tip growth of filamentous
generations of the N. yezoensis life cycle is regulated by auxin via a novel unknown auxin
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receptor-like protein. However, even though the outgrowth of secondary filaments in
both generations occurs via tip growth, their branching patterns differ. In addition, it
is unknown how N. yezoensis obtains auxin. To clarify the molecular basis of the auxin-
mediated regulation of tip growth in N. yezoensis, it is important to identify the auxin
receptor and factors that mediate auxin signaling as well as auxin-producing epiphytic
bacteria that might be involved in regulating tip growth.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11172652/s1, Figure S1. Conchosporangia of Neopyropia yezoensis.
Figure S2. Reversal of the inhibitory effects of PEO-IAA by exogenous treatment with 2,4-D or NAA.
Figure S3. Effects of treatment with the auxin antagonists 4-Cl-PEO-IAA and BH-IAA on the production
of side branches in single-celled conchocelis.
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