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Background: Thyroid cancer is the most common endocrine malignancy. However, the molecular mechanism involved in its
pathogenesis is not well characterized.
Purpose: The objective of this study is to identify key cellular pathways and differentially expressed genes along the thyroid cancer
pathogenesis sequence as well as to identify potential prognostic and therapeutic targets.
Methods: Publicly available transcriptomics data comprising a total of 95 samples consisting of 41 normal, 28 non-aggressive and 26
metastatic papillary thyroid carcinoma (PTC) cases were used. Transcriptomics data were normalized and filtered identifying 9394
differentially expressed genes. The genes identified were subjected to pathway analysis using absGSEA identifying PTC related
pathways. Three of the genes identified were validated on 508 thyroid cancer biopsies using RNAseq and TNMplot.
Results: Pathway analysis revealed a total of 2193 differential pathways among non-aggressive samples and 1969 among metastatic
samples compared to normal tissue. Pathways for non-aggressive PTC include calcium and potassium ion transport, hormone signaling,
protein tyrosine phosphatase activity and protein tyrosine kinase activity. Metastatic pathways include growth, apoptosis, activation of
MAPK and regulation of serine threonine kinase activity. Genes for non-aggressive are KCNQ1, CACNA1D, KCNN4, BCL2, and PTK2B
and metastatic PTC are EGFR, PTK2B, KCNN4 and BCL2. Three of the genes identified were validated using clinical biopsies showing
significant overexpression in aggressive compared to non-aggressive PTC; EGFR (p < 0.05), KCNN4 (p < 0.001) and PTK2B (p < 0.001).
DrugBank database search identified several FDA approved drug targets including anti-EGFR Vandetanib used to treat thyroid cancer in
addition to others that may prove useful in treating PTC.
Conclusion: Transcriptomics analysis identified putative prognostic targets including EGFR, PTK2B, BCL2, KCNQ1, KCNN4 and
CACNA1D. EGFR, PTK2B and KCN44 were validated using thyroid cancer clinical biopsies. The drug search identified FDA
approved drugs including Vandetanib in addition to others that may prove useful in treating the disease.
Keywords: thyroid cancer, BIG data analytics, absolute GSEA, pathway analysis, pharmacotranscriptomics, RNAseq, FFPE clinical
biopsies

Introduction
Thyroid cancer was ranked as the most common endocrine malignancy.1 Globally, thyroid cancer incidence has been on
the rise over the past three decades. Between 2006 and 2012, the annual incidence rate was 6.5% in women and 5.4 in
men.2,3 In the United States between 2000 and 2009, thyroid cancer incidence rate was the highest among all cancers.4

The mortality rate of thyroid cancer is considered to be low, whilst the reoccurrence and persistence of the disease is still
considered high.5

International Journal of General Medicine 2022:15 3097–3120 3097
© 2022 Almansoori et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/
terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing

the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.
For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

International Journal of General Medicine Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 6 November 2021
Accepted: 25 February 2022
Published: 18 March 2022

http://orcid.org/0000-0002-5158-4590
http://orcid.org/0000-0002-1402-0868
https://www.dovepress.com/terms.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
http://www.dovepress.com/permissions.php
https://www.dovepress.com


Morphologically, thyroid cancers are classified into different cellular subtypes such as papillary, follicular, medullary
and anaplastic. Differentiated papillary thyroid carcinoma (PTC) form is the most common type comprising more than
80% of all thyroid cases as shown in Table 1. Genetic mutations have been associated with PTC.6

Whilst many genomic mutational screening studies were carried out on thyroid cancer in general and PTC in
particular, only few have identified mutated genes that are correlated with progression of PTC including TP53 and
KRAS/BRAF7. However, although such studies suggested that thyroid cancer has high degree of intra-tumoral
heterogeneity,8 the mutations identified did not provide clear insights into the molecular mechanism of thyroid cancer
phenotypes and progression. Thus, for better clinical outcomes, there is a compelling need to actively study alterations in
cellular pathways linked to the underlying mechanism of thyroid cancer initiation and progression.

Few transcriptomic analyses were carried out on PTC identifying some of the cellular pathways involved in its
pathogenesis9. However, such studies were generally carried out on small number of patients using standard bioinfor-
matics analysis focusing on list of differentially expressed genes. This provided limited insights into the molecular basis
of PTC without clear association to diagnostic, prognostic and therapeutic targets.

In this study, we carried out comprehensive and systematic in silico pathway analysis of PTC using in-house bioinfor-
matics pipeline that has shown good ability to identify the transcriptomic profiles and related differentially expressed genes
between different subtypes of the same disease.10 The aim of this study is to attempt to identify the key transcriptomic
signatures that drive non-aggressive and metastatic PTC as well as using such signature to identify putative drug targets for
PTC. Such approach can provide insights into some of the molecular mechanisms involved in PTC progression and facilitate
the identification of key prognostic and therapeutic targets that might help provide better ways for patient management of PTC.

Methods
Publicly Available Data Sets for Papillary Thyroid Carcinoma
Discovery Set
In order to identify the cellular pathways and differentially expressed genes related to papillary thyroid carcinoma, PTC
gene sets were searched and retrieved from gene expression omnibus (GEO). Datasets inclusive of patient’s matched

Table 1 List of Subtypes of Thyroid Carcinoma and the Current Treatment Provided

Tumor Subtype88 Origin89 % of Other
Subtypes90

Survival91 Treatment92,93

Papillary Follicular thyroid

cells

80–90 10-year survival:

74–93%

Total thyroidectomy/131I administration/Thyroid-

stimulating hormone suppression with thyroxine

Follicular Follicular thyroid

cells

10–15 10-year survival

43–94%

Total thyroidectomy/131I administration/Thyroid-

stimulating hormone suppression with thyroxine

Medullary Parafollicular

thyroid cells-
C cells

2–3 65–89%94 Total Thyroidectomy/palliative chemotherapy/

teleradiotherapy and substitutive doses of L-thyroxine95

Anaplastic Follicular thyroid
cells

2–3 4–5 months from
diagnosis

Surgery: tracheostomy/Chemotherapy

Follicular Thyroid
Adenoma

Follicular thyroid
cells

Benign - Thyroid lobectomy and isthmusectomy

Poorly differentiated
thyroid cancer (PDTC)

Follicular thyroid
cells

5–10 - Surgery, radioactive iodine and/or radiation therapy

Thyroid Primary
Lymphoma

Lymphocytes <1 82%88 Chemotherapy/radiation therapy

Metastasis to Thyroid
gland from other organs

Non thyroid cells <1 - Total thyroidectomy and substitutive doses of
L-thyroxine95
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normal thyroid tissue transcriptome were considered for analysis. In order to eliminate platform bias, the gene sets
obtained were from the Affymetrix Human Genome U133 Plus 2.0 Array platform. Three gene sets that met such criteria
were downloaded. Those were GSE6004, GSE60542, and GSE3678 (Table 2). In total 95 cases were identified and the
raw CEL files corresponding to these gene sets were extracted and further processed for Gene Set Enrichment Analysis
(GSEA).

Validation Set
In order to validate the pathways and genes identified from the discovery set, an independent validation set was
constructed from 3 independent gene sets from different populations; Ukraine GSE35570 with 51 normal and 32 thyroid
cancer tissue biopsies, Brazil GSE50901 with 4 matched normal thyroid and tumor samples and 57 unmatched thyroid
tumor biopsies and South Korea GSE129562 with 8 matched normal and thyroid tumor samples (Table 2). The analysis
for this study was approved by the Research Ethics Committee of University Hospital Sharjah (UHS); the ethical
approval number of the study is UHS-HERC- 011-10062019.

Raw Microarray Normalization and Adaptive Filtering
Each Affymetrix microarray consists of > 54,000 probes. The raw CEL files for the 95 PTC patients obtained from the
GEO for normal, non-aggressive and metastatic thyroid samples were normalized using in house R script as described
previously.10 Briefly, Affymetrix microarray suite 5 (MAS5) and Gene Chip Robust Multiarray Averaging (GCRMA)
packages in R software were applied to normalize and remove the background noise. The invariant probes were removed
from the transcripts list, and non-specific filtering was performed to obtain the common set of variant probes. Adaptive
filtering was carried out using R script. Probes with MAS5 value >50 and coefficient of variation (CV) 10–100% in
GCRMA across all cases were generated and intersected to obtain probes with common variant probes set. The filtered
probes from all the samples were then mapped to gene list using Broad Institute software (http://software.broadinstitute.
org/gsea/downloads.jsp).11 The probes with maximum expression for each gene were chosen as the expression value for
the gene. Probes corresponding to housekeeping genes or not assigned to any gene were excluded.

Pathway Analysis Using Gene Set Enrichment Analysis
The mapped gene expression list was subjected to Gene set enrichment analysis (GSEA) to identify the activated and
enriched cellular pathways in non-aggressive (NAG) and metastatic papillary thyroid carcinoma (PTC) samples in
comparison to normal tissue. Absolute GSEA search was carried out on the expression data using around 20,500
annotated cellular pathways obtained across seven well annotated gene sets C1 to C7 obtained from the Broad
Institute’s database (https://www.gsea-msigdb.org). The significantly activated pathways in different types of PTC
samples were selected based on p < 0.05 and FDR < 0.25 as previously described.10,12 The selected pathways were

Table 2 List of Gene Sets Included in the Study

S No. Gene Set ID Population Type of Sample

Normal Non-Aggressive Metastatic

1 GSE600496 Ukraine 4 7 7 Discovery set

2 GSE6054297 Belgium and France 30 14 19

3 GSE3678 USA 7 7 0

Total 41 28 26 Grand Total = 95

4 GSE35570 Ukraine 51 32 Validation set

5 GSE50901 Brazil 4 61

6 GSE129562 South Korea 8 8
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further processed to identify differentially enriched genes between the normal versus non-aggressive and normal versus
metastatic PTC cases. This was followed by reducing the set of available genes by identifying the frequency of gene
occurrence across differentially activated cellular pathways.

Differential Gene Expression in PTC Samples Compared to Normal Thyroid Tissue
The differential gene expression analysis was carried out using two approaches in order to obtain information based on
pathway enrichment as well as microarray gene expression. Firstly, the significantly enriched pathways for each sample
set were used to obtain genes occurring frequently across all the enriched pathways using R script as described
previously.10 Using statistical analysis, the 95-percentile cut-off was calculated for each sample. Secondly, the differen-
tially expressed genes in both non-aggressive and metastatic samples were obtained by calculating the average expression
value across each sample set for each gene and a fold change value based on normal tissue expression was determined.
Genes with fold change >1.5 were considered as upregulated and fold change <0.5 as downregulated.

In vitro Validation of the Pathways and Genes Identified by GSEA in Independent
Cohort
Metascape Analysis
In order to validate the pathways identified by GSEA, the most frequent genes from non-aggressive and metastatic
samples were considered. The commonly occurring genes with high frequency amongst both groups were inputted in the
Metascape software (https://metascape.org/)13 to identify significantly activated cellular pathways.

Drug Bank Database Search
The genes differentially expressed and enriched with high frequency in GSEA in NAG and metastatic PTC were used to
search in drug bank database to identify the potential drug targets for papillary thyroid carcinoma. Pharmacoinformatics
search using the differentially expressed genes identified as targets to search for matching drug using DrugBank
repository14 was carried out. Among these, the approved drugs used to treat thyroid cancer were sorted and novel
drug targets were listed for the ones not prescribed.

In order to determine the putative therapeutic targets based on different populations, the most upregulated unique
genes from each population were used to search DrugBank for associated drugs.

In vivo Validation from Early and Late Thyroid Cancer Tissue Biopsies
Sample Details
Six well characterized United Arab Emirates (UAE) patients biopsies from early and late thyroid cancer were recruited
for the study (Table 3). The formalin fixed paraffin embedded (FFPE) tissue biopsies from those cases were subjected to
microdissection to enrich the tumour content followed by RNA extraction using modified Recover All protocol as
previously described.10 The transcriptomic analysis for this study was approved by the Research Ethics Committee of
University Hospital Sharjah (UHS); the ethical approval number of the study is UHS-HERC- 011-10062019.

Table 3 Patient Characteristics for the Six Biopsies Collected from Thyroid Cancer Patients in UAE

S No Gender Age Nationality Subtype

1 Female 43 Egyptian Early Thyroid cancer
2 Male 65 UAE Early Thyroid cancer

3 Female 60 UAE Early Thyroid cancer

4 Female 33 Tunisian Late Thyroid Cancer
5 Male 43 Egyptian Late Thyroid Cancer

6 Female 33 Philippines Late Thyroid Cancer
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RNA Sequencing
Next Generation Sequencing (NGS) RNAseq was applied to the RNA extracted from the microdissected FFPE thyroid
samples using AmpliSeq Whole Transcriptome on S5 System (ThermoFisher) as previously described.15 Briefly, the targeted
RNA-seq library was prepared using Ion AmpliSeq Transcriptome Human Gene Expression Kit (Thermo Fisher Scientific)
which is designed to profile over 21,000 distinct human RNA targets. The prepared template libraries were then sequenced
on the Ion S5 XL Semiconductor sequencer using the Ion 540 Chip (Life Technologies Corporation, Carlsbad, CA).

Bioinformatic Analysis
RNAseq data were analyzed using the Ion Torrent Software Suite version 5.4. Alignment was carried out using the
Torrent Mapping Alignment Program (TMAP) optimized for Ion Torrent sequencing data for aligning the raw sequencing
reads against reference sequence derived from hg19 (GRCh37) assembly. Differential gene expression (DGE) analysis
was performed using R/Bioconductor package DESeq230 with raw read counts from RNA-seq data. Read count genes
with less than ten normalized read counts were excluded from further analysis. Differentially expressed genes were
selected at significance of p<0.05.

Cross Validation of the Molecular Targets on Large Cohort of Cases
Additional validation for the differentially expressed genes from in silico analysis was performed on a larger independent
cohort for thyroid cancer RNA-seq data obtained from The Cancer Genome Atlas Program (TCGA). The cohort
comprises of 502 non-metastatic thyroid tumor samples, 8 metastatic cases and 58 normal thyroid tissue. The analysis
was carried out using TNM plotter (https://tnmplot.com/analysis/)16 and Kruskal–Wallis test was used for statistical
comparison. p<0.05 was considered to be statistically significant.

Results
Normalization and Filtration of the Transcriptome Data for Papillary Thyroid
Carcinoma
The flow chart for the process of normalization and filtration is shown in Figure 1. From the total number of 54,675
probes in the Affymetrix Human Genome U133 Plus 2.0 Array, following MAS5 and GCRMA filter 15,801 probes were
extracted. These filtered probes were mapped to 9394 genes in GSEA as described in the methods section.

Gene Set Enrichment Analysis Identifies the Activated Cellular Pathways in
Non-Aggressive and Metastatic PTC Compared to Normal Tissue
The three groups; normal, non-aggressive and metastatic papillary thyroid cancer samples were processed using absolute
GSEA. The differentially activated significant pathways across the three different samples were identified by comparing
the cancer samples with normal tissue. Significantly differentially activated pathways were obtained based on p < 0.05 as
well as false discovery rate (FDR) < 0.05 cutoffs. The results identified around 1795 significantly differentially activated
pathways from the molecular functions and biological processes ontology gene sets (Table 4). The most significantly
enriched pathways include transforming growth factor beta receptor binding, phosphatase regulator activity, protein
tyrosine phosphatase activity, protein kinase activity and calcium dependent protein kinase activity in normal versus non-
aggressive set (Table 5). The complete list of pathways enriched can be seen in Supplementary Material.

Amongst the normal versus metastatic set, negative regulation of peptide hormone secretion, insulin like growth
factor receptor signaling pathway, activation of MAPK activity, regulation of MAPK cascade, regulation of protein serine
threonine kinase activity, and transmembrane receptor protein tyrosine kinase signaling pathway were among the
significantly enriched pathways (Table 6). Example representation of the output from the gene set analysis for each
data set is shown in Figure 2.
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Figure 1 Flow chart of transcriptomics data normalisation and gene set enrichment analysis
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Genes Differentially Expressed Among Non-Aggressive and Metastatic PTC in
Comparison to Normal Thyroid Tissue
The enriched pathways from GSEA were subjected to gene frequency cutoff using the 95-percentile as a cut-off. Gene
frequency can be defined as the number of times a gene occurs across all the enriched gene component from the
significantly activated cellular pathways. This type of analysis showed the value for the frequency for non-aggressive
(NAG) to be 13 and metastatic (MET) to be 10. Based on those frequency cutoff values, the number of genes with
frequency higher than the cutoff in NAG was 355 and in METwas 280. The top 40 genes based on frequency cutoff were
shown in Tables 7 and 8

Based on fold change method, 144 genes upregulated in non-aggressive samples 27 genes down regulated. Among
metastatic PTC 138 genes were upregulated and 20 genes down regulated (Supplementary Material). The intersection
of genes upregulated between both the NAG and MET samples were determined using InteractiVenn17 (http://www.
interactivenn.net). Around 114 genes were seen commonly upregulated in both the sets. The genes unique to NAG set
were 30 and for MET was 24 (Figure 3). The list of commonly upregulated genes in both the sets given in Table 9.

The fold change in expression for the most frequent genes were retrieved from the microarray data and plotted to
compare the differential expression pattern among NAG (n=28), MET (n=26) patients’ samples in comparison to healthy
thyroid tissue (n=41). Three genes showed significant differential expression between healthy and thyroid cancer; EGFR
(p < 0.05), PTK2B (p < 0.001), KCNN4 (p < 0.001). The 3 genes showed significantly higher expression in NAG and
MET samples compared to healthy thyroid tissue (Figure 4).

In silico Validation of GSEA Using Metascape Analysis
The most frequently present genes across the enriched pathways identified using the absolute GSEA were used to
validate the significantly activated cellular pathways between non-aggressive and metastatic samples in comparison to
normal samples. The validation was carried out using Metascape relying on large and well annotated cellular pathways
derived from gene ontology.18,19 The analysis showed that calcium ion transport, positive regulation of protein
phosphorylation and signaling by receptor tyrosine kinase were enriched in non-aggressive PTC (Figure 5A). In the
metastatic PTC, significantly activated pathways included positive regulation of protein phosphorylation, MAPK
cascade, apoptotic and growth signaling pathways (Figure 5B). Interestingly, although the MAPK pathway activation
was present in both NAG and metastatic thyroid the data showed that MAPK pathway came up 3 times in the
metastatic set.

Similarly, when the commonly upregulated genes were input in Metascape, positive regulation of protein phosphor-
ylation, extracellular matrix organization and cellular response to transforming growth factor beta stimulus pathways
were identified (Figure 6).

Table 4 List of Number of Significant Pathways Enriched in Non-Aggressive and Metastatic PTC Compared to Normal Thyroid Tissue
in Absolute GSEA

Gene Set Analyzed Description Total Number of Pathways Significant Pathways from Absolute
GSEA

NAG MET

C2 Curated gene sets eg KEGG REACTOME 6229 447 294

C5.bp Ontology Gene set: biological processes 7573 860 728

C5.mf Ontology Gene set: molecular functions 1697 107 100

C6 Oncogenic signature 189 78 117

C7 Immunologic signature 4872 701 730
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Table 5 List of the Pathways Activated in Non-Aggressive Samples in Comparison to Normal Thyroid Tissue Analyzed by GSEA

Gene Set Size ES NES NOM p-val FDR q-val FWER p-val Tag % Gene % Signal glob.p.val

Go_regulation_of_ion_transport 298 0.489 2.09 <0.0001 0.004 0.048 0.292 0.184 0.246 0

Go_positive_regulation_of_nervous_system_development 287 0.478 2.147 <0.0001 0.002 0.026 0.401 0.287 0.295 0

Go_regulation_of_hormone_levels 240 0.517 2.272 <0.0001 0 0.002 0.354 0.209 0.288 0

Go_regulation_of_developmental_growth 179 0.471 1.995 <0.0001 0.008 0.141 0.413 0.3 0.295 0.001

Go_regulation_of_membrane_potential 173 0.542 2.333 <0.0001 0.001 0.001 0.318 0.159 0.273 0

Go_organic_acid_transport 168 0.478 2.118 <0.0001 0.003 0.032 0.327 0.214 0.262 0

Go_intracellular_receptor_signaling_pathway 161 0.416 1.835 <0.0001 0.02 0.449 0.366 0.294 0.263 0.002

Go_hormone_transport 156 0.469 2.056 <0.0001 0.005 0.078 0.308 0.209 0.248 0.001

Go_positive_regulation_of_growth 146 0.481 1.963 <0.0001 0.01 0.189 0.349 0.243 0.269 0.001

Go_regulation_of_blood_circulation 128 0.532 2.138 <0.0001 0.002 0.029 0.352 0.197 0.286 0

Go_peptide_hormone_secretion 128 0.489 2.084 <0.0001 0.004 0.055 0.312 0.197 0.254 0

Go_regulation_of_hormone_secretion 126 0.482 2.088 <0.0001 0.004 0.05 0.317 0.209 0.255 0

Go_insulin_secretion 110 0.502 2.149 <0.0001 0.002 0.026 0.327 0.197 0.266 0

Go_regulation_of_peptide_hormone_secretion 105 0.485 2.074 <0.0001 0.005 0.061 0.314 0.197 0.255 0

Go_cell_substrate_adhesion 236 0.455 1.857 0.002 0.017 0.4 0.297 0.198 0.244 0.001

Go_g_protein_coupled_receptor_signaling_pathway 345 0.477 1.933 0.002 0.011 0.233 0.31 0.203 0.257 0.001

Go_regulation_of_wnt_signaling_pathway 221 0.421 1.73 0.004 0.031 0.674 0.281 0.226 0.222 0.001

Go_transmembrane_receptor_protein_serine_threonine_kinase_signaling 198 0.471 1.846 0.004 0.018 0.424 0.379 0.261 0.286 0.002

Go_response_to_transforming_growth_factor_beta 161 0.437 1.72 0.006 0.032 0.69 0.466 0.352 0.307 0.001

Go_positive_regulation_of_apoptotic_signaling_pathway 130 0.406 1.694 0.008 0.036 0.741 0.308 0.249 0.234 0.001

Go_positive_regulation_of_map_kinase_activity 169 0.451 1.725 0.01 0.032 0.681 0.308 0.216 0.246 0.001

Go_positive_regulation_of_peptidyl_tyrosine_phosphorylation 106 0.487 1.696 0.012 0.036 0.738 0.34 0.199 0.275 0.001

Go_regulation_of_protein_serine_threonine_kinase_activity 330 0.401 1.601 0.012 0.055 0.866 0.264 0.212 0.215 0

Go_cell_cycle_arrest 141 0.374 1.63 0.014 0.049 0.837 0.348 0.331 0.236 0

Go_regulation_of_apoptotic_signaling_pathway 256 0.375 1.605 0.018 0.054 0.861 0.285 0.25 0.22 0

Go_positive_regulation_of_erk1_and_erk2_cascade 109 0.491 1.624 0.028 0.05 0.846 0.404 0.243 0.309 0

Abbreviations: ES, enrichment score; NES, normalized ES; NOM, nominal; FDR, false discovery rate; FWER, family-wise error rate; Tag%, the percentage of gene tags before (for positive ES) of after (for negative ES) the peak in the
running enrichment score; gene %, the percentage of genes in the gene list before (for positive ES) of after (for negative ES) the peak in the running enrichment score; GO, gene ontology.
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Table 6 List of the Pathways Activated in Metastatic Samples in Comparison to Normal Thyroid Tissue Analyzed by GSEA

Gene Set Size ES NES NOM p-val FDR q-val FWER p-val Tag % Gene % Signal FDR (Median) glob.p.val

Go_growth 563 0.429 1.893 <0.0001 0.014 0.3 0.329 0.26 0.259 0 0.001

Go_regulation_of_cell_development 525 0.447 1.948 <0.0001 0.01 0.19 0.417 0.31 0.305 0 0.001

Go_positive_regulation_of_transport 515 0.41 1.698 <0.0001 0.037 0.792 0.357 0.297 0.266 0.014 0.001

Go_cation_transport 511 0.439 2.008 <0.0001 0.008 0.1 0.399 0.306 0.293 0 0

Go_ion_transmembrane_transport 510 0.448 2.129 <0.0001 0.005 0.014 0.445 0.335 0.313 0 0.001

Go_g_protein_coupled_receptor_signaling_pathway 345 0.474 1.859 <0.0001 0.017 0.397 0.441 0.305 0.318 0 0.001

Go_cell_cell_signaling_by_wnt 311 0.385 1.635 <0.0001 0.05 0.882 0.334 0.284 0.248 0.023 0.001

Go_anion_transport 307 0.444 1.976 <0.0001 0.009 0.149 0.423 0.305 0.304 0 0.001

Go_regulation_of_ion_transport 298 0.469 1.951 <0.0001 0.01 0.187 0.436 0.306 0.313 0 0.001

Go_response_to_extracellular_stimulus 280 0.404 1.737 <0.0001 0.031 0.712 0.443 0.36 0.292 0.011 0.001

Go_regulation_of_transmembrane_transport 266 0.467 1.963 <0.0001 0.01 0.166 0.466 0.336 0.319 0 0.001

Go_organic_anion_transport 240 0.444 1.948 <0.0001 0.01 0.19 0.438 0.305 0.312 0 0.001

Go_cell_substrate_adhesion 236 0.483 1.872 <0.0001 0.016 0.366 0.39 0.259 0.296 0 0.001

Go_regulation_of_wnt_signaling_pathway 221 0.42 1.684 <0.0001 0.039 0.81 0.353 0.284 0.259 0.016 0.001

Go_positive_regulation_of_neuron_differentiation 215 0.448 1.904 <0.0001 0.013 0.28 0.433 0.319 0.301 0 0.001

Go_regulation_of_ion_transmembrane_transport 211 0.478 1.984 <0.0001 0.009 0.135 0.441 0.304 0.314 0 0.001

Go_canonical_wnt_signaling_pathway 197 0.427 1.689 <0.0001 0.038 0.803 0.365 0.284 0.267 0.015 0.001

Go_negative_regulation_of_cell_development 179 0.456 1.895 <0.0001 0.014 0.299 0.419 0.299 0.3 0 0.001

Go_regulation_of_membrane_potential 173 0.541 2.343 <0.0001 0 0 0.347 0.178 0.29 0 0

Go_regulation_of_cation_transmembrane_transport 165 0.489 1.952 <0.0001 0.01 0.187 0.467 0.304 0.33 0 0.001

Go_intracellular_receptor_signaling_pathway 161 0.418 1.797 <0.0001 0.023 0.555 0.292 0.223 0.231 0.006 0.001

Go_hormone_transport 156 0.46 2 <0.0001 0.007 0.112 0.41 0.307 0.289 0 0.001

Go_positive_regulation_of_growth 146 0.425 1.708 <0.0001 0.035 0.766 0.199 0.113 0.179 0.013 0.001

Go_calcium_ion_transmembrane_transport 153 0.424 1.813 0.002 0.021 0.522 0.366 0.294 0.263 0.005 0.001

Go_regulation_of_protein_localization_to_membrane 133 0.445 1.678 0.002 0.041 0.819 0.429 0.32 0.296 0.016 0.001

Go_transmembrane_receptor_protein_tyrosine_kinase_signaling 452 0.416 1.723 0.002 0.033 0.734 0.358 0.289 0.268 0.012 0.001

Go_positive_regulation_of_protein_serine_threonine_kinase 218 0.461 1.7 0.004 0.036 0.79 0.394 0.289 0.287 0.014 0.001

Go_regulation_of_mapk_cascade 434 0.438 1.708 0.008 0.035 0.767 0.366 0.27 0.28 0.013 0.001

Go_positive_regulation_of_map_kinase_activity 169 0.462 1.647 0.008 0.047 0.871 0.402 0.289 0.291 0.021 0.001

Go_regulation_of_peptidyl_tyrosine_phosphorylation 142 0.483 1.67 0.01 0.043 0.827 0.423 0.287 0.306 0.018 0.001

Go_response_to_wounding 381 0.427 1.655 0.012 0.046 0.861 0.399 0.312 0.286 0.02 0.001

Go_regulation_of_apoptotic_signaling_pathway 256 0.39 1.646 0.018 0.048 0.872 0.387 0.308 0.275 0.021 0.001

Go_extracellular_structure_organization 236 0.505 1.678 0.021 0.041 0.819 0.458 0.27 0.343 0.016 0.001

Abbreviations: ES, enrichment score; NES, normalized ES; NOM, nominal; FDR, false discovery rate; FWER, family-wise error rate; Tag%, the percentage of gene tags before (for positive ES) of after (for negative ES) the peak in the
running enrichment score; gene %, the percentage of genes in the gene list before (for positive ES) of after (for negative ES) the peak in the running enrichment score; GO, gene ontology.
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Analysis of the immune component using the enriched genes from both the NAG and metastatic PTC revealed that
NAG has less inflammatory component than the metastatic PTC as shown by imbalance in the M1/M2 ratio as well as the
decrease in the NK fraction in the metastatic compared to the non-aggressive PTC. In addition, increase in memory:naïve
B-cell ratio was observed in NAG set (Figure 7).

DEGs and Enriched Pathways of Thyroid Cancer Across Different Populations
Differentially expressed genes from the microarray data available from other populations such as Ukraine, Brazil and
South Korea were analyzed and the top genes upregulated in thyroid cancer in each population were subjected to
pathway analysis using Metascape. The results identified unique set of pathways activated for each population. However,
key pathways known to be affected in thyroid cancer such as PI3 kinase, MAP kinase and tyrosine metabolism were
identified across the various populations (Figures 8–10) indicating that MAPK pathway is probably commonly activated
in thyroid cancer across different population cohort. Interestingly, the study identified response to steroid hormone and
hormone metabolism activated more in the Ukrainian patients whereas response to inorganic substance and small
molecule metabolism was detected in Brazilian thyroid cancer patients. In case of South Korean patients, viral entry
and wound healing pathways were observed.

Figure 2 Representation of heatmaps and graphs for GSEA for significant pathways with enrichment scores. (A) The result file for normal and non-aggressive dataset is
presented here with graph for enrichment score. (B) Graphical representation for the GSEA for normal versus metastatic data
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Drugs Associated with Genes Identified from Bioinformatics Analysis
The pharmacoinformatics search using the differentially enriched genes to search the DrugBank database identified many
FDA approved drug targets that are currently used in treating metastatic thyroid cancer. Most of those drugs targeted EGFR
and vascular EGFR (Table 10). In addition, the search also identified other drugs that target molecules linked to thyroid
cancer (Table 11) some of which might be useful as target for pre-clinical trials to treat thyroid cancer pending future studies.

Table 7 List of the Top 40 Genes Based on Frequency in Normal versus NAG Set

Gene Frequency Gene Frequency

KCNQ1 38 CACNA1A 29

CACNA1D 37 EDN3 29

PTK2B 35 EGFR 29
EDN1 34 KCNAB1 29

SFRP1 33 KCNE4 29

ABAT 32 RYR2 29
KCNJ2 32 KCNE3 27

KCNJ5 32 KCNJ8 27

KCNS3 32 KCNK1 27
ADRA2A 31 KCNMA1 27

ANO1 31 KCNQ3 27

BCL-2 31 SCN4B 27
CACNA2D2 31 ADORA1 26

FKBP1B 31 CXCL12 26

GPER1 31 GRIN2C 26
AGT 30 PTEN 26

CACNB3 30 RGS4 26

HCN4 30 AKR1C3 25
ITPR1 30 GRIK2 25

KIT 30 ITPR3 25

Table 8 List of the Top 40 Genes Based on Frequency in Normal versus MET Set

Gene Frequency Gene Frequency Gene Frequency

EGFR 26 ITPR1 20 ANXA6 17

PTK2B 25 RGS2 20 CACNA2D1 17

RYR2 24 SRC 20 FGF13 17
BCL-2 23 ANK2 19 KCNJ5 17

CACNA1D 23 CRABP2 19

SFRP1 23 FYN 19
CXCL12 22 AGT 18

GPER1 22 AKT1 18

KCNJ2 22 CACNA1A 18
KCNQ1 22 CAV1 18

RYR1 22 CX3CL1 18

ABL1 21 EFEMP1 18
ADRA2A 21 FGFR3 18

SLC8A1 21 HBEGF 18

CDK5 20 INHBB 18
DMD 20 KIT 18

EDN1 20 PSEN1 18

FKBP1B 20 ADRB2 17
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Figure 3 Intersection of DEGs among non-aggressive and metastatic set compared to normal samples

Table 9 List of the 114 Genes Commonly Upregulated in Both the Types of PTC

DCSTAMP LEMD1 LINC02555 MIR31HG AGR2 ABTB2 CRLF1

KLK10 FAXC ABCC3 TMEM163 GLT1D1 MIR100HG CLDN1

GABRB2 FAM230B KCNJ2 SPTBN2 GALE TUSC3 KRT19

RXRG SYT12 KCNN4 SLC34A2 CLDN16 LRRK2 NAT8L

SYTL5 GOLT1A EGFEM1P ADTRP HLA-DQB2 TMEM79 IL17RD

CLDN10 LAMP5 RAB27B ADORA1 NOD1 NOX4 TNFRSF12A

PRSS2 ZCCHC12 NMU THRSP NR2F1-AS1 DOCK9-DT

HMGA2 KLHDC8A TRDC ALOX15B DPP4 B3GNT3

PRR15 CITED1 CD1A CHI3L1 LPAR5 CORO2A

LRRC52-AS1 NGEF BRINP1 GLDN ULBP2 HPCAL4

PDZK1IP1 LRRK2-DT LIPH STK32A MMP16 ECM1

ARHGAP36 GDF15 FAM20A CTXND1 KISS1R NRCAM

TMPRSS4 RIMS2 TENM1 ALDH1A3 EVA1A PLAU

AHNAK2 KCNQ3 KLK11 TIAM1 NFE2L3 TACSTD2

ST6GALNAC5 SCEL PDZRN4 SYT1 CCL13 PCSK1N

GAP43 LCN2 CDKN2B COMP MAMLD1 LINC00891

LAMB3 CDH3 RYR1 SHROOM4 CYP1B1 NHSL2

METTL7B SLC27A6 LRP4 CEACAM6 IGSF1 INAVA
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Drugs targeting the genes specific for population were also searched. Only the population of Ukraine and Brazil
showed drugs targeting the genes CRABP1 and MAPK4 respectively (Table 12).

In vivo Validation of DEGs Using NGS
The 3 genes identified from in silico analysis; EGFR, PTK2B and KCNN4 were validated on a cohort of 6 well
characterized thyroid carcinoma tissue biopsies collected from patients in the UAE. RNA seq data analyzed for the
expression of the genes identified from in silico analysis revealed a significantly higher transcript value for the genes
KCNN4 (p < 0.001) and EGFR (p < 0.05) in late PTC samples in comparison to early thyroid cancer samples. PTK2B
showed relatively higher expression trend in late PTC samples compared to early (Figure 11).

In vivo Validation of DEGs Using TNM Plot
The expression values for the three genes identified from in silico analysis; EGFR, KCNN4 and PTK2B was examined
using an independent larger cohort of RNAseq data from 502 thyroid cancer. The data showed that in this cohort the three
genes had higher expression in tumour compared to normal thyroid samples with EGFR (p < 0.01), KCNN4 (p < 0.0001)
and PTK2B (p < 0.0001). Thus, the expression fold change confirmed the results from both the microarray and the tissue
biopsy for the expression of the EGFR, PTK2B and KCNN4 genes (Figure 12).

Figure 4 Box plots for log fold expression from microarray data for the three differentially expressed genes identified from in silico analysis between healthy, non-aggressive
and metastatic groups. (A) differential expression of EGFR, (B) differential expression of PTK2B and (C) differential expression of KCNN4. *p < 0.05, ***p < 0.01
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Figure 5 Metascape analysis for the high frequent genes from (A) normal versus non-aggressive set and (B) normal versus metastatic set

Figure 6 Metascape for DEGs commonly upregulated in both non-aggressive and metastatic PTC
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Discussion
This study identified cellular pathways unique to non-aggressive and metastatic PTC as well as common between the two
different entities. Interestingly, many of the genes and pathways overlapped between the two clinical groups, these
include calcium and potassium ion transport and tyrosine kinase and protein phosphatase pathways. The NAG group
showed more unique association with regulation of hormone levels and cell signaling related to hormone whereas the
study identified more impact of MAPK activation as well as activation of other cancer hallmark pathways such as
regulation of apoptosis and growth in the metastatic pathways.

Validating the data using pathway analysis from the differential expressed genes across different populations showed
that MAPK is active in diverse populations including that from Ukraine (Europe), Brazil (South America) and South

Figure 7 Immune cells enriched in non-aggressive and metastatic PTC in comparison to normal thyroid tissue
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Korea (Asia). However, each population had set of unique cellular pathways activated. Ukrainian patients had more
pathways linked to response to hormones and hormone metabolic processes. Brazilian patients had pathways linked to
environmental triggers including response to inorganic substances and vitamin A metabolism suggesting the perhaps

Figure 8 Pathway analysis using Metascape on Ukrainian thyroid cancer samples

Figure 9 Pathway analysis using Metascape on Brazilian thyroid cancer samples

Figure 10 Pathway analysis using Metascape on South Korean thyroid cancer samples
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pollution20 and poor diet21 may have partially contributed to PTC cases. The South Korean patients seem to have more
cancer hallmark pathways activated such as apoptosis and growth in addition to possibly pro-inflammatory pathway
activation as shown by the activation of viral entry into the cell pathway suggesting that there might be additional genetic
components within that population leading to chronic inflammatory response which when not treated immediately might
lead to PTC. Overall, pathway analysis indicated that PTC is highly complex disease with high level intra-tumoral
heterogeneity as shown by the activation of different cellular pathways across different populations but with a commonly
activated pathway such as the MAPK related pathways. This difference in activated pathways might be reflected by the
diverse genetics between the different population. For example, Brazilian population have shown prevalence to inherited
TP53 mutation which can lead to tumours in multiple tissue types as characterised by Li-Fraumeni patients.22 Also the
Brazilian population show prevalence to mutations in BRCA1 and BRCA2 which are DNA repair genes.23 Ukrainian
population show more prevalence to a different DNA repair gene; RAD51.24 However, the South Korean population
seem to have prevalence of deletion mutations in Sialic Acid Binding Ig Like Lectin 14 (SIGLEC14)25 which is linked to
inflammasome activation in macrophage.26 Thus, the different mutations in the different populations may have role in
shaping the transcriptomics profile in those populations. In addition, GSEA of the pathways identified unique upregulated
genes for each of the population; CRABP1 for Ukrainian population, MAPK4 for Brazil and LAMB3 for South Korea.
DrugBank search using those genes identified retinoid receptors for CRABP1 such as Tretinoin and Alitretinoin which
are used for eczema, Fostamatinib for MAPK4 which is used for chronic immune thrombocytopenia. Taken together, the

Table 10 List of Drugs Approved by FDA to Treat Thyroid Cancer

Drugs Approved for Thyroid Cancer Treatment Target Known Stage of Thyroid Cancer

Cometriq (Cabozantinib-S-Malate)49–51,98 VEGFR Differentiated and spread; metastasized

Vandetanib99–103 VEGFR and EGFR inhibitor Metastasized

Table 11 List of Drugs Related to Other Genes Possibly Involved in Thyroid Cancer

Gene Symbol Drugs Known to Target the
Gene

Conditions Associated Mechanism

KCNQ1 Enflurane General Anesthesia104,105 Voltage-gated Potassium Channels

inhibitor106

Promethazine Sedative therapy, Allergic

conjunctivitis

Voltage-gated Potassium Channels inducer

CACNA1D107,108 Isradipine35 Hypertension Calcium channel blocker

PTK2B109 Genistein63,64 Calcium deficiency Unknown

Leflunomide66,67 Rheumatoid Arthritis Regulation of autoimmune lymphocytes

Fostamatinib71–83 Chronic immune thrombocytopenia Tyrosine kinase inhibitor

BCL-2 Navitoclax31,110 Solid tumors Targets BCL-2 family proteins

Table 12 List of Drugs Targeting the Genes Highly Upregulated in Population Specific Set

Population Gene Drugs Known to Target the Gene Conditions Associated Mechanism

Ukraine CRABP1 Alitretinoin, Tretinoin Vit A deficiency, eczema Activates retinoid receptors

Brazil MAPK4 Fostamatinib Chronic immune thrombocytopenia Inhibitor of spleen tyrosine kinase

South Korea LAMB3 – – –
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Figure 11 Differential gene expression in six tissue biopsies from thyroid cancer patients from UAE. *p < 0.05, ***p < 0.01

Figure 12 TNM Plot output of the three differentially expressed genes identified from in silico analysis on large independent cohort of 58 normal and 502 non-aggressive
and 8 metastatic thyroid cancer cases. (A) differential expression of EGFR, (B) differential expression of PTK2B and (C) differential expression of KCNN4
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transcriptomic analysis indicated the possibility of repurposing different drugs in different populations for thyroid cancer
treatment.

The immune response analysis suggested an imbalance in the tumour immune microenvironment as it showed that
NAG has more inflammatory component than metastatic thyroid. This is partly demonstrated by the fact that NAG has
both resting and activated NK fraction and higher memory:naïve B-cell ratio whereas metastatic cancer did not show the
NK fraction suggesting that the disease stage has passed the inflammatory stage to the cancer stage. This is supported by
the fact that other studies showed that in PTC, NK cell infiltration is in early stages of PTC is higher compared to the
metastatic stages.27 Additionally, the immune analysis showed an imbalance in the M1/M2 ratio in both the the NAG and
MET types of PTC with slightly higher ratio in the metastatic stage indicating that in this cohort might have different
mechanism of PTC pathogenesis warranting further studies of the genes involved in the M1 and M2 polarization in
thyroid cancer as done in previous studies.28

The study identified the following targets linked to PTC initiation and progression: BCL2, CACNA1D, KCNQ1,
KCNN4, EGFR and PTK2B.

B cell Lymphoma-2 (BCL2) is anti-apoptotic protein responsible for inhibiting programmed cell death or apoptosis.29

Aksoy et al found that lower BCL2 expression in thyroid cancer supports the formation of oncocytic neoplasms in early
thyroid cancer stages by inhibiting apoptosis of tumor cells.30 This finding from this study supports the results obtained
in our study where the frequency of BCL2 overexpression is present in both the NAG and metastatic groups. In addition,
few studies have shown that BCL2 is likely to be involved in early PTC as few studies have shown that BCL2 expression
decreases in microcarcinomas of PTC30 which indicates that it is probably not a reliable prognostic marker since it is
probably involved in very early PTC and continues in the metastatic phase. However, its related drugs such as
Navitoclax31 might be useful in treating some forms of PTC.

One of the recurrent activated pathways identified from this study is related to ion transport and more specifically
calcium and potassium transport. Many genes related to calcium and potassium transport were identified. CACNA1D
gene is responsible for regulating positively charged calcium channels (CaV1.3) across cell membranes and specifically
adrenal gland to form alpha-1 subunit. These subunits act as pores to calcium ions to flow through. It is also involved in
the regulation of adrenal hormones production such as aldosterone which maintains blood pressure and fluid balance in
the body.32,33 Somatic mutations of CACNA1D is associated with tumorigenesis such as in adrenal aldosterone-
producing adenomas.33 Interestingly, it has been shown that cancer cells can undergo oncogenic switch by transforming
apoptosis inducing Ca influx pathway to proliferative calcium influx which in turn can promote growth and apoptosis
resistance in cancerous cells.34 This was also confirmed by the fact that pathway analysis showed the activation of
calcium ion transport pathways in both NAG and metastatic PTC. The results from this study, showed that CACNA1D is
more frequently overexpressed in the NAG and metastatic PTC compared to healthy suggesting that it is probably
involved in PTC progression. In addition, the results indicates that although drugs that targets CACNA1D such as
Isradipine35 are used to treat hypertension by regulating the calcium transport, they may help in treating some of the
thyroid cancer patients.

Another gene implicated is the KCNQ1 gene which belongs to family genes responsible for potassium channels
formation. Channels formed by KCNQ1 genes are located in the inner ear, cardiac muscles, kidney, liver, intestine and
stomach. Voltage gated K+ channels (Kv1.3) were identified as novel tumor markers36 Somatic mutations of KCNQ1 and
specifically KCNA3 promoter’s methylation contributes to gene silencing37 and dysregulation of potassium ion transport
which in turn causes several disease such as cardiovascular diseases, sudden infant death syndrome and cancers.38–41 The
results showed that KCNQ1 was the top most frequently present gene across the significantly activated cellular pathways
in NAG PTC. However, it remains to be seen whether the drugs that targets KCNQ1 such as Promethazine and Enflurane
which are sedative drugs (Table 10) might be worth considered for thyroid cancer pending future studies.

Another gene identified from this study that is implicated in thyroid cancer is Potassium Calcium-Activated Channel
Subfamily N Member 4 (KCNN4), a known oncogene, very recently was reported to be upregulated in PTC and was
proposed as a diagnostic and prognostic marker for PTC.42 Apart from thyroid cancer, differential expression of KCNN4
in various cancers was indicated either in poor prognosis, drug resistance and/or poor survival.43–45 In the present study,
KCNN4 was occurring in both the datasets with high frequency and showed approximately 2 fold change in expression.
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Hence, potassium calcium activated channels can be targeted to control the progression of PTC to metastatic phase.
Interestingly, the results of the RNAseq from the clinical biopsies of both the NGS as well as the TNMplot carried out in
this study showed that KCNN4 is significantly overexpressed in metastatic and non-aggressive compared to normal PTC
(p < 0.001).

The results also found Epidermal Growth Factor Receptor (EGFR) to be associated with thyroid cancer. EGFR is
known to mediate cell proliferation and survival signaling pathways. The transmembrane tyrosine kinase receptor is
expressed in different subtypes of cancers such as thyroid carcinoma, glioblastoma and lung cancer.46 EGFR signaling
pathways are altered in human cancers due to somatic mutation, gene amplification and protein overexpression which are
associated with aggressiveness of the disease and poor survival.47 In this study, EGFR is the most frequently differen-
tially expressed gene in metastatic PTC and also present halfway in the non-aggressive set suggesting that EGFR play
a key role in PTC progression and metastasis. Interestingly, search for Thyroid cancer treating drugs identified many
FDA approved drugs that targets EGFR including Cabozantinib-S-Malate and Vandetanib.48–60 The results of the
RNAseq of the clinical biopsies carried out in this study showed that EGFR is significantly overexpressed in metastatic
and non-aggressive compared to normal PTC (p < 0.05).

Another protein identified is Protein tyrosine kinase 2 beta (PTK2B). This has many functions including regulator of
cell growth, survival, proliferation and invasion.61 It encodes a cytoplasmic protein tyrosine kinase that is involved in
calcium-induced regulation of ion channels and activation of the MAP kinase signaling pathway. Methylated PTK2B
favouring overexpression is linked to c-Src activation, development of Pyk2/c-Src complex and the activation of ERK/
MAPK signaling pathway. Activation of ERK/MAPK signaling pathway is responsible for regulating the activation of
more than 160 downstream signaling transcription factors affecting cancer progression62. The results of the RNAseq
from the clinical biopsies of both the NGS as well as the TNMplot carried out in this study showed that PTK2B is
significantly overexpressed in metastatic and non-aggressive compared to normal PTC (p < 0.001). Since it is involved in
calcium ion regulation and MAPK activation, the drugs which target PTK2B include Genistein63,64 (used to treat calcium
deficiency), Leflunomide65–70 (used to treat rheumatoid Arthritis) and Fostamatinib71–83 (used to treat chronic immune
thrombocytopenia). Few studies have shown some links between EGFR and PTK2B. Notably, a recent report indicated
that overexpression of EGFR and focal adhesion kinases (FAKs) correlated with PTC progression more specifically in
aggressive clinicopathological condition and lymph node metastasis84. PTK2B is one of the FAKs, also known to be
associated with lymph nodes, tumor size and pathologic state in thyroid cancer samples.85 Moreover, a combinatorial
drug Crizotinib (receptor tyrosine kinase targeting drug) was proven effective in reducing tumor size of triple negative
breast cancer graft when used along with erlotinib (EGFR targeting drug).86 PTK2B is also one of the targets for the drug
Crizotinib.87 The current study also indicates that the metastatic samples were enriched with EGFR and PTK2B genes
and the combination might be effective in treating aggressive or metastatic PTC. Therefore, since PTK2B is linked to
EGFR, MAP kinase activation and calcium ion transport, it is probably an attractive therapeutic target and since it is
linked with poor survival it can be a good prognostic target.

In summary, the absolute gene set enrichment and the pathway analysis indicated strongly that most of pathways
overlapped among the non-aggressive and metastatic PTC. The key regulatory proteins among the pathways integrated in
PTC pathophysiology are receptor protein tyrosine kinases, calcium channels, potassium channels, potassium activated
calcium channels and MAP/ERK kinase family. The genes involved in these processes were seen occurring in high
frequency and also seen upregulated in both the datasets which could be used as potential therapeutic targets to treat PTC.

Conclusions
In conclusion, the differentially activated cellular pathways and genes from this study showed the involvement of ion
transport as well as other cancer related pathways including tyrosine kinase and protein phosphatase and the modulation
of MAPK related pathways in the initiation of PTC during the non-aggressive phase and further progression to PTC
metastatic phase. Transcriptomic analysis in different populations highlighted common and unique pathways involved in
thyroid cancer pathogenesis further highlighting its heterogeneity. Understanding of genes mediated pathways during
carcinogenesis, invasion and metastasis can have significant clinical outcome in developing better prognostic assays and
molecular inhibitors that can replace classic generalized PTC treatments.
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In addition, the transcriptomics analysis in this study identified interesting putative prognostic targets including
EGFR, PTK2B, KCNQ1, KCNN4, BCL2 and CACNA1D which may be involved in key mechanisms of thyroid cancer.
EGFR, PTK2B and KCNN4 showed significant higher expression in non-aggressive and metastatic compared to normal
using PTC clinical biopsies. Search for corresponding drugs identified FDA approved drugs such as Vandetanib as well
as other drugs that may prove useful treating the PTC.
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