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Glycosphingolipids (GSLs) exhibit a variety of functions in cellular differentiation and

interaction. Also, they are known to play a role as receptors in pathogen invasion.

A less well-explored feature is the role of GSLs in immune cell function which is

the subject of this review article. Here we summarize knowledge on GSL expression

patterns in different immune cells. We review the changes in GSL expression during

immune cell development and differentiation, maturation, and activation. Furthermore,

we review how immune cell GSLs impact membrane organization, molecular signaling,

and trans-interactions in cellular cross-talk. Another aspect covered is the role of GSLs

as targets of antibody-based immunity in cancer. We expect that recent advances in

analytical and genome editing technologies will help in the coming years to further our

knowledge on the role of GSLs as modulators of immune cell function.
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INTRODUCTION

The surface of cells is covered with glycans (or carbohydrates) that are part of glycoproteins,
glycosaminoglycans, or glycosphingolipids (GSLs). GSLs consist of glycans conjugated to a lipid
(ceramide) core and comprise a diverse group of over 300 different complex molecules based
on variation in the glycan buildup (1–3). The diversity of glycan structures on GSLs is directed
by a range of proteins involved in glycan biosynthesis including glycosyltransferases (GTs),
glycosidases, enzymes involved in glycan precursor biosynthesis and nucleotide sugar transporters.
These proteins are differentially expressed throughout the immune system giving rise to a large
variability in GSL expression patterns which suggests a functional role for GSLs in immune cell
development or activation (4). GSLs are essential parts of GSL enriched microdomains (GEMs)
in the cell membrane, which have an important role in molecular signaling, cellular cross-talk,
and cell adhesion (5–7). Consequently, mice deficient in subclasses of GSLs show immunological,
reproductive, neuronal, renal, gastrointestinal, and metabolic defects (8). To date, cell surface GSLs
have been shown to be involved in diverse immune processes, including differentiation, immune
recognition, and transduction of activation signals. In this review, we summarize the literature on
GSL expression of various immune cells and highlight the functions that have been attributed to
these GSLs.

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.00090
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.00090&domain=pdf&date_stamp=2019-01-29
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:m.wuhrer@lumc.nl
mailto:r.spaapen@sanquin.nl
https://doi.org/10.3389/fimmu.2019.00090
https://www.frontiersin.org/articles/10.3389/fimmu.2019.00090/full
http://loop.frontiersin.org/people/618502/overview
http://loop.frontiersin.org/people/637795/overview
http://loop.frontiersin.org/people/454791/overview
http://loop.frontiersin.org/people/621851/overview


Zhang et al. Glycosphingolipids in Immune Cell Functions

BIOSYNTHESIS AND EXPRESSION OF
GSLS IN NAÏVE AND DIFFERENTIATED
IMMUNE CELLS

GSLs are divided into two groups based on the presence of
a galactosylated or glucosylated ceramide (Cer) core. The
latter group consists of complex structures subdivided into
gangliosides, (iso)globosides, and (neo)lacto-series GSLs
(Figure 1A; Table S1). The GTs UDP-glucose ceramide
glucosyltransferase (UGCG) and β1,4-galactosyltransferase
5/6 (B4GALT5/6) synthesize glucosylceramide (GlcCer)
and lactosylceramide (LacCer) respectively, forming the
precursor of GlcCer-based GSLs (8). GSLs are further divided
into four major series based on the synthesis pathways
(Figure 1A). Alpha2,3-sialyltransferase 5 (ST3GAL5) is
the key enzyme for the synthesis of GM3, which is the
parent structure for a-, b-, and c-series gangliosides. β1,4-N-
acetylgalactosaminyltransferase 1 (B4GALNT1) catalyzes the
generation of asialo GM2 by transferring N-acetylgalactosamine
(GalNAc) to LacCer, initializing the synthesis of o-series
gangliosides. Lactotriaosylceramide (Lc3) is the starting
structure for synthesis of (neo)lacto-series GSLs, which
is synthesized by β1,3-N-acetylglucosaminyltransferase 5
(B3GNT5). The (iso)globosides globotriaosylceramide (Gb3) and
isoglobotriaosylceramide (isoGb3) are generated by the addition
of a galactose to LacCer in α1,4 and α1,3 linkages by α1,4-
galactosyltransferase (A4GALT) and α1,3-galactosyltransferase
2 (A3GALT2) respectively (Figure 1A). Further extension and
modifications of these core structures, including elongation,
sulfation, and sialic acid acetylation, contributes to the diversity
of the repertoire expressed in (immune) cells (9–13).

The GSL repertoire of different immune cells varies per cell
type under physiological conditions (14–16). The expression
of some GSLs on immune subsets is well-studied, and
antibodies against them have found their way into the cluster
of differentiation (CD) marker set established decades ago.

Abbreviations: GSL, glycosphingolipid; GT, glycosyltransferase; GEMs,

glycosphingolipid enriched microdomains; Cer, ceramide; UGCG, UDP-

glucose ceramide glycosyltransferase; B4GALT, β1,4-galactosyltransferase;

GlcCer, glucosylceramide; LacCer, lactosylceramide; ST3GAL, α2,3-

sialyltransferase; B4GALNT1, β1,4-N-acetylgalactosaminyltransferase 1; GalNAc,

N-acetylgalactosamine; Lc3, lactotriaosylceramide; Gb3, globotriaosylceramide;

isoGb3, isoglobotriaosylceramide; B3GNT, β1,3-N-acetylglucosaminyltransferase;

A4GALT, α1,4-galactosyltransferase; A3GALT2, α1,3-galactosyltransferase 2; CD,

cluster of differentiation; CTB, cholera toxin subunit B; BMMCs, bone marrow

culture-derived mast cells; SMCs, serosal mast cells; PMA, phorbol myristate

acetate; Lex, Lewis X structures, Galβ1-4(Fucα1-3)GlcNAcβ1-; S(3)nLc4,

Neu5Acα2-3nLc4; S(6)nLc4, Neu5Acα2-6nLc4; S(3)nLc6, Neu5Acα2-3nLc6;

moDCs,monocyte-derived dendritic cells; Galα1-3(F(2))ASGM1, Galα1-3(Fucα1-

2)asialoGM1; Fo, Forssman glycolipid antigen, GalNAcα1-3Gb4; BMDCs, bone

marrow-derived dendritic cells; NKT, natural killer T; NK, natural killer; NeuGc,

N-glycolylneuraminic acid; LacNAc-GM1, Galβ1-4GlcNAcβ1-3GM1a; Galα1-

3LacNAc-GM1, S(3)LacNAc-GM1, Neu5Acα2-3Galβ1-4GlcNAcβ1-3GM1a;

IL, interleukin; IFN-α, Interferon-α; TNF-α, tumor necrosis factor-α; LPS,

lipopolysaccharide; TCR, T cell receptor; LXR, liver X receptor; ST, shiga toxin;

STb, B subunit of ST; PCI, protein-carbohydrate interaction; CCI, carbohydrate-

carbohydrate interaction; EGFR, epidermal growth factor receptor; CAR, chimeric

antigen receptor; TLR4-MD2, Toll-Like Receptor 4-myeloid differentiation factor

2; EtxB, enterotoxin subunit B; HIV, human immunodeficiency virus; STb, B

subunit of ST; NBDNJ, N-butyl 1-deoxynojirimycin. Glycan abbreviations and

structures are listed in Table S1.

At that time, it was not yet known that these antibodies
recognized glycan headgroups of GSLs, and therefore they
have been assigned a specific CD-number. This group includes
CD15, CD17, CD60, CD65, CD75, CD77, CD173, and CD174
(Figures 1A,B), some of which are still being used to phenotype
and isolate immune cell subpopulations (17). For example, CD77
represents the Gb3 structure, which has been employed to define
a B cell subpopulation. Notably, the specific terminal glycan
motifs of CD15, CD75, CD173, and CD174, can be carried by
GSLs and glycoproteins. In the following sections, we summarize
current knowledge on GSL expression patterns in different
immune cell subsets (see Figure 2 and Table 1 for an overview).

Hematopoietic Stem and Progenitor Cells
HSCs are multipotent cells located in bone marrow which
can differentiate into myeloid and lymphoid progenitor cells
(Figure 2). To date, the GSL content of HSCs has hardly been
studied, probably due to the low abundance of HSCs in blood
and bone marrow and the difficulty to isolate them (75). Some
studies suggest the presence of GM1 on HSCs based on binding
of Cholera Toxin B (CTB). However, this glycan-binding subunit
B of cholera toxin has a broader specificity then just GM1
(discussed in section Organization of Membrane Microdomains)
(76–78). Furthermore, Giebel et al. found that GM3 is expressed
and localized at the leading edge of polarized CD34+ HSCs,
suggesting a role for GM3GEMs in the polarization of HSCs (18).
With respect to neutral GSLs, Gb5 was detected after exposure to
fetal calf serum (19), but not on freshly isolated HSCs, even not
as a sialylated or fucosylated variant. This finding is supported
by a lack of expression of the relevant GTs in HSCs. Thus,
environmental factors may change the expression of GTs, which
has to be kept in mind when evaluating GSL expression on
cultured or stimulated cells. In addition, CD173 and CD174
(Figure 1B), which may be carried by GSLs, are found to be
specifically expressed on naïve CD34+ HSCs and disappear after
differentiation (79).

In human myeloid progenitors—which give rise to mast cells,
granulocytes, monocytes, and bone marrow-derived dendritic
cells—GlcCer, LacCer, gangliosides (GM2, GM3, and GD3), and
globosides (Gb3 and Gb4) are reported (Figure 2). In some
studies, (neo)lacto-series GSLs (Lc3 and nLc4) were also weakly
detected (20, 23). The mouse myeloid progenitor cell line FDC-
P1 displays LacCer, gangliosides (GM1, GM2, GM3, GD1a,
GD1b, and GD3), and globoside Gb3, while no GlcCer or
(neo)lacto-series GSLs were detected (24). This work further
revealed that GM1 and GD1a are the two major gangliosides
accumulated by FDC-P1 cells. Reports on GSL expression of
lymphoid progenitors, the precursors of NK, T and B cells,
are absent in literature. We can conclude that gangliosides are
expressed in HSCs and progenitor cells, while globosides and
(neo)lacto-series GSLs are hardly expressed in HSCs, and at
relatively low levels during further differentiation.

Myeloid Cells
Myeloid cells have been studied for decades and express some
unique GSLs. The best described myeloid-specific GSL is a
fucosylated neolacto-series GSL which is known as the CD65
antigen (Figure 1B) (80–82). It is expressed on most myeloid
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FIGURE 1 | Schematic diagram of the different types of GSLs. (A) Major GSLs expressed in immune cells and proposed GSL biosynthetic pathway. The key enzymes

are in green. GSLs that have been given a cluster of differentiation (CD) number are annotated in red. (B) Terminal glycan motifs that have been given a CD number

and the most prominent E-selectin ligand present on human neutrophils.
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FIGURE 2 | Schematic diagram of GSL expression in different stages of human (H) and murine (M) immune cell differentiation. GSL subsets that have been reported

are represented by colored spheres, unreported subsets are represented by gray spheres. The absence of a sphere indicates that the GSL subset could not be

detected. See Table 1 for details on the subset expression.

cells during development, highly on granulocytes and weakly
on monocytes in peripheral blood. The sialylated form of CD65
(CD65s) is expressed when the myeloid progenitor antigen
CD34 disappears, indicating that CD65s expression marks a
turning point in myeloid cell differentiation. In addition to
CD65 and CD65s, the expression patterns of other GSLs in mast
cells, granulocytes, monocytes, macrophages, and DCs will be
discussed in the following sections (Figure 2).

Mast Cells
After development from bone marrow-derived progenitor cells,
mast cells can circulate as CD34+ progenitor cells, ormigrate into
tissues to differentiate into mature mast cells under the influence
of cytokines.

It is well-recognized that GD3 is the most abundantly
expressed GSL on the surface of nearly all mast cells (26).
Zuberbier et al. studied the alterations of ganglioside expression
during maturation of the human mast cell line HMC-1.
Upon differentiation, a highly elevated expression of GM3 and
GM3-derived a-series gangliosides (Figure 1A), including GM2,
GM1a, and GD1a, were observed as a result of upregulation
of the GTs ST3GAL5, B4GALNT1, ST8SIA1, and ST3GAL2
(25). Similarly, mouse serosal mast cells (SMCs) mainly express
GM3. The ability to synthesize complex acidic GSLs is possibly
lost during mast cell maturation, because in vitro differentiated
bone marrow-derived mast cells (BMMCs) expressed—next to
GM3—GM1, which was lost when matured toward SMC-like
cells (29, 30).

Neutral GSLs have not been biochemically analyzed in human
mast cells, except for the observation of LacCer in HMC-
1 cells (25). For the murine BMMCs, expression of GlcCer,

LacCer, asialo GM1, Gb3, and Gb4 has been described, while
no (neo)lacto-series GSLs have been reported (27, 28, 83, 84).
Interestingly, specifically Gb4 was found to be expressed in
secretory granules, where it may have a yet unknown function
(28). During in vitro activation of BMMCs, surface expression
levels of Gb4 increased, which is thought to be the result of the
fusion of internal membranes with the plasma membrane (28).
Intriguingly, the Forssman glycolipid antigen (Fo), GalNAcα1-
3Gb4, is specifically expressed by SMCs and not by BMMCs (27).
In contrast tomurine cells, only Gb5, but not LacCer, Gb3 or Gb4,
was found on rat SMCs (85).

Granulocytes
Neutrophils, eosinophils, and basophils are granulocytes derived
frommyeloid precursor cells and have similar characteristics and
functions in innate immune responses.

Human neutrophils are rich in GSLs, and around 2mg
of GSLs can be extracted from 1010 cells. Detailed structural
characterization of these GSLs showed neutrophils contain a
very complex ganglioside mixture (34, 37, 86, 87). Similar to
BMMCs, GM1 and GM3 are the most abundant gangliosides
in neutrophils. Compared to other bone marrow-derived cells,
mature neutrophils were found to express the highest levels of
GM1 (32, 35, 87). Later studies revealed that the presence of GM1
is related to the stage of neutrophil apoptosis, allowing the use of
GM1 as an aging marker for neutrophils (40). In contrast to mast
cells, neutrophils were not found to express GD3 (34).

With respect to neutral GSLs, human neutrophils express
GlcCer, LacCer, and a set of (neo)lacto-series GSLs, but no
globoside has been detected (23, 31–33, 35, 39, 88). During
differentiation of the promyelocyte cell line HL60 toward
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TABLE 1 | GSL expression in human and murine immune cells.

GSL types

Cell type Sources GlcCer, LacCer,
GalCer

Ganglioside Globosides (neo)Lacto-series References

HSCs Human N.R. GM3 Gb5 N.R. (18, 19)

Mouse N.R. N.R. N.R. N.R. N.R.

Myeloid

progenitors

Human GlcCer, LacCer GM3a, GM2, GD3 Gb3, Gb4 Lc3b,

(n)Lc4b
(20–23)

Mouse LacCer GM1a, GD1aa, GM2,

GD3, GM3, GD1b

Gb3b N.D. (24)

Mast cells Human N.R. GD3a, GM3 N.R. N.R. (25, 26)

Mouse GlcCer, LacCer GM1a, GM3a, asialo GM1 Gb3, Gb4, Fo N.D. (27–30)

Maturated

mast cells

Human LacCer GD3a, GM3, and a-series

ganglioside (GM2, GM1, GD1a)c
N.R. N.R. (25)

Mouse GlcCer GM3a N.R. N.D. (29, 30)

Neutrophils Human GlcCer,LacCerd,

GalCer

GM1a, GM3a, complex type, (no

GD3)

N.D. Lc3d, nLc4, nLc6,

S(3)nLc4, S(6)nLc4,

S(3)nLc6

(31–40)

Mouse N.R. N.R. N.R. N.R. N.R.

Eosinophils Human N.R. GM1 N.R. N.R. (41, 42)

Mouse N.R. N.R. N.R. N.R. N.R.

Basophils Human N.R. N.R. N.R. N.R. N.R.

Mouse N.R. Asialo GM1 N.R. N.R. (43)

Monocytes Human GlcCer, LacCer GM3a (iso)Gb3d, Gb4d Lc3b,(n)Lc4b,

S(3)nLc4, S(6)nLc4,

S(3)nLc6

(36, 44–48)

Mouse N.R. N.R. N.R. N.R. N.R.

Macrophages Human GlcCer, LacCer GM3a Gb3d, Gb4d, Gb5 Lc3b, (n)Lc4b,

S(3)nLc4, S(6)nLc4,

S(3)nLc6

(44, 45, 48–52)

Mouse N.R. N.R. Gb3d, Gb4d, Gb5,

Foc
N.R. (53, 54)

moDCs Human N.R. GM3a N.R. Lc3, nLc4 (55, 56)

Mouse N.R. GM3a N.R. N.R (56)

BMDCs Human N.R. GM3a N.R. N.R. (56)

Mouse LacCer, Galα1-2,

GalCer

GM3a, complex type, (a-, b- and

o-series),asialo GM1, asialo GM2

(iso)Gb3, (iso)Gb4,

Gb5, Fo

Lc3 (57)

B cells Human GalCer, GlcCer,

LacCer

GM3a, complex type (a-, b- and

o-series), asialo GM1, asialo

GM2, GD3, 7-O-GD3 and

9-O-GD3

Gb3d, Gb4d Lc3b, nLc4b (12, 58–64)

Mouse GalCer, GlcCer,

LacCer

N.R. N.R. N.R. (65)

T cells Human GlcCer, LacCer GM1a, GM3a, complex type (a-,

b- and o-series), GD3, 7-O-GD3,

7-O-GD3

Gb3d, Gb4 nLc4 (13, 18, 58, 61, 66, 67)

Mouse GlcCer, LacCer GM1a, GM3a, complex type (a-,

b- and o-series), asialo GM1,

extended GM1b (more complex

than human)

(iso)Gb3, (iso)Gb4 Lc3 (57, 66, 68–71)

NK cells Human N.R. Asialo GM1, 7-O-GD3 N.R. N.R. (50, 72)

Mouse N.R. Asialo GM1, GM1 N.R. N.R. (69, 73, 74)

N.R., Not reported; N.D., Not detected; aDominant abundance; bLow abundance; cSpecific expression; dDominant abundance among neutral GSLs.

granulocytes using all-trans retinoic acid or phorbol myristate
acetate (PMA), the (neo)lacto-series synthase B3GNT5 was
upregulated (21, 89). Therefore, Lc3, after LacCer, appeared to
be the predominant species accounting for about 10% of the
total neutral GSL fraction (38, 90). Notably, the neolacto-series

GSLs are the major class in neutrophils, containing Lc3, nLc4,
nLc6, and a-series of GSLs carrying Lex (Lewis X structures,
Galβ1-4(Fucα1-3)GlcNAcβ1-), also known as CD15 (Figure 1B)
(35, 38). In addition, sialylated neolacto-series GSLs (S(3)nLc4,
S(6)nLc4, and S(3)nLc6) have also been detected (33, 91). The
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unique expression of these neolacto-series GSLs by neutrophils
in comparison to other immune cells may be required to interact
with pathogens or the humoral immune system.

To date, there are hardly any studies on the GSL expression of
eosinophil and basophils. Ganglioside GM1 has been detected at
the surface of eosinophils, and a stepwise upregulated expression
was observed during cell differentiation from the promyelocyte to
the eosinophil stage (41, 42). For murine basophils, a high level
of asialo GM1 expression has been described (43).

Monocytes, Macrophages, and Dendritic Cells
Monocytes, macrophages, and dendritic cells (DCs) are
phagocytic innate immune cells, which drive adaptive immune
responses via antigen processing and presentation (92, 93).
Monocytes can differentiate in vitro into macrophages or
monocyte-derived DCs (moDCs) after specific cytokine
stimulation. All monocytes, macrophages, and moDCs express
high levels of GM3 in both human and mouse (49, 94, 95).
Cultured human macrophages yield approximately seven times
more GM3 per million cells than ex vivo peripheral blood
monocytes (2.7 vs. 0.4 µg respectively) (46). Accordingly,
such macrophages, but also in vitro differentiated moDC
express 10-fold higher ST3GAL5 levels compared to freshly
isolated monocytes (46, 55, 56, 96). Interestingly, the high
expression of acidic GSLs is probably in part also facilitated
by a decreased expression of α2,3- and α2,6-sialidases (such as
NEU3), which was for example observed in PMA-differentiated
THP-1 macrophages (97, 98). Similar to humans and mice, rat
abdominal macrophages express GM3 as the predominant acidic
GSLs, followed by GM2 (85).

Monocytes and macrophages seem to have a different neutral
GSL composition compared to other human myeloid immune
cells since they express globosides ((iso)Gb3 and Gb4) as the
major neutral GSLs (36, 44, 45, 48, 52). Neolacto-series GSLs
such as Lc3 and nLc4 are also detectable and upregulated
during differentiation toward moDCs, but are reduced during
differentiation toward macrophages as a result of decreased
B3GNT5 gene expression (36, 44, 45, 55, 96). Additionally,
during macrophage differentiation the expression of Gb5 is
upregulated, which—like Gb3—is a target for the human
immunodeficiency virus (HIV) gp120 glycoprotein (94, 99). In
mouse abdominal macrophages, it has been demonstrated that
neutral GSLs are expressed at higher levels than gangliosides.
Asialo GM1 was specifically expressed after a 3-day culture, but
its expression gradually declined after prolonged cultures. Other
neutral GSLs including GlcCer and Gb3 were highly upregulated
in macrophage differentiated murine M1 cells (100–102). Fo
GSLs are expressed in mature mouse macrophages and increases
during the lifetime of the cell. It is used as a differentiationmarker
and is specifically expressed in defined areas in spleen, lymph
nodes, and bone marrow, which suggests it may have a function
in lymphoid organ homing or residency (53, 54, 103–105). In
addition to the globosides Gb3, Gb4, andGb5, the specific neutral
GSL Galα1-3(F(2))ASGM1 was also found to be highly expressed
in rat macrophages (85).

During differentiation of murine bone marrow precursors
to bone marrow-derived DCs (BMDCs), no significant change

in acidic GSLs nor LacCer or asialo GM1 content was found,
even though a-series (GM1a, GD1a, and GT1a), b-series (GD3,
GD1b, and GT1b), and o-series (asialo GM1 and GM1b) are
generally present in BMDCs (57). However, Lc3, Gb3, Gb4, and
Fo GSLs were found to be more abundant on mature BMDCs.
Interestingly, Li et al., also described the presence of isoGb3 and
isoGb4 to be enhanced in mature BMDC. Though the isoGb3
expression level was very low compared to Gb3, ∼0.8% in both
immature andmature DCs. IsoGb3 can be specifically recognized
in the context of CD1d by mouse Vα14 and human Vα24 natural
killer T (NKT) cells, and plays an important role in regulating
NKT cell responses during infections, cancer and autoimmunity
(47, 57, 106–108). In addition, a unique Galα1-2GalCer was
found in BMDC as well, which can be processed to GalCer for
presentation to NKT cells (109). Based on the upregulation of
globosides during the differentiation of macrophages, moDCs
and BMDCs, globosides function as markers of differentiation
(57).

Lymphocytes
Lymphocytes include T cells, B cells, and natural killer (NK)
cells (Figure 2), which are the main adaptive and innate immune
effector cells. GSL expression in B and T cells has been
widely studied during differentiation, maturation, and immune
responses.

B Cells
After antigen exposure, B cells can differentiate into plasma cells
secreting antibodies to clear antigen-bearing entities. Human
pre-B cells have a similar GSL-profile to cells of myeloid
origin. Human B cells mainly express GM3, but also more
complex gangliosides such as GM1, GD1a, GD1b, and GT1
(32, 58, 63). In addition, asialo GM1 and asialo GM2 are
expressed in minor amounts (61). Notably, ganglioside GD3 and
its O-acetylated variants, 7-O-GD3 and 9-O-GD3 (CD60b and
CD60c, respectively), have been described to be expressed on
B cells (and also T cells) although the expression levels vary
(12, 50, 72). Some of these studies propose an involvement of
O-acetylated gangliosides in lymphocyte activation processes.
Mouse B cells show an even higher expression of the gangliosides
GM1 and GM3 and their derivatives compared to human B
cells. Interestingly, whereas humans are incapable of synthesizing
N-glycolylneuraminic acid (NeuGc), gangliosides GM1 and
GM3 modified with this sugar are present on mouse B cells.
Importantly, the CD22 ligand Neu5Acα2-6Gal-, also known
as CD75 (Figure 1B), was identified as a major B lymphocyte
epitope (95). Additionally, rat B cells lowly expressed Galα1-
3(F(2))ASGM1 and some unique extended GM1b structures,
which contain the GM1b core extended with LacNAc unit(s),
including Galα1-3LacNAc-GM1, Galα1-3(LacNAc)2-GM1, and
S(3)LacNAc-GM1 (110).

Both human and murine B cells express GalCer, GlcCer,
LacCer, and globosides, but only immature B cells contain
(neo)lacto-series GSLs since activated B cells lack expression of
the Lc3 synthase B3GNT5 (23, 63, 65, 66). Human peripheral B
cells contain relatively large amounts of more complex globosides
which are nearly absent in tonsillar B lymphocytes (32, 62).
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Importantly, Gb3 (CD77) was initially found to be specifically
expressed by germinal center B cells (60, 111). However, it was
later identified that not all germinal center B cells express Gb3
(112). In contrast to peripheral and germinal center B cells,
GlcCer, and LacCer comprise the largest portion of GSLs in
tonsillar B lymphocytes. In addition, Gb3 expression increased
10-fold in a bovine B cell lymphoma cell line after stimulation
with different mitogens, suggesting that B cells actively regulate
surface expression of Gb3 (113).

Human B cell differentiation and activation are accompanied
by sequential regulation of GSL expression via modulation of
the corresponding GTs (61, 63, 114). GM3 synthase B4GALNT1
is differentially activated from the pre-B cell stage to the
terminally differentiated myeloma (plasma)cells, and GM2
synthase B4GALT has a high activity in lymphoblastoid cell
lines and terminally differentiated myeloma cells only. Lc3
synthase B3GNT5 shows a high activity in pro- and pre-B
cells, initializing the synthesis of (neo)lacto-series GSLs. But,
(neo)lacto-series synthesis is shut down in more differentiated
cells. For the expression of globosides, Gb3 synthase A4GALT
and Gb4 synthase B3GALNT are only activated in the late stages
of B cell differentiation (114). These results explain the stage-
dependent expression of GSLs like Gb3, Gb4, GM2, and GM3,
suggesting functional roles of GSLs during B cell maturation (63).

T Cells
T cells are the effector cells of adaptive immunity through the
production of various cytokines and the activation-induced cell
death. Variations in GSL expression have been related to T cell
subtype, activation, differentiation, and function (66, 67). Human
T cells express both GM1 and GM3, which are clustered in GEMs
and thought to be involved in T cell activation (66). Besides these
two gangliosides, also minor levels of other gangliosides (GD1a,
GD1b, GT1b etc.) have been detected (18, 115, 116). During
interleukin-2 (IL-2) stimulation, CD8+ T cells, more than CD4+

T cells, upregulate GM1 expression (117, 118). In contrast, naïve
CD4+ T cells stimulated with anti-CD3/CD28 show increased
expression of ST8SIA1, driving GD3 expression (119). Similar to
B cells, O-acetylated variants of the ganglioside GD3 have been
described to be expressed by human T cells (10, 12, 13, 50).
Desialylation of GSLs was also apparent in T cells, since the
sialidases NEU1 and NEU3 are 2- to 3-fold upregulated upon
T cell receptor (TCR) ligation of both CD4+ and CD8+ T cells.
Interestingly, inhibition of these sialidases resulted in a greater
amount of cell surface sialic acids, but also a reduced IFN-γ
secretion upon activation of T cells (120, 121). These data indicate
that T cell effector function can be modulated by sialic acid
bearing GSLs in T cells.

Similar to human T cells, murine T cells express GM3,
GM1a, GM1b, GD1b, GD1c, GD3, asialo GM1, and extended
GM1b series. Compared to CD8+ T cells, murine CD4+ T cells
express higher level of ST3GAL5 to synthesize a- and b-series
gangliosides (GM1a and GD1b). In contrast, CD8+ T cells
express more B4GALNT1, resulting in higher levels of o-series
gangliosides (asialo GM1, GM1b, GalNAcGM1b, and extended-
GM1b) (66, 68, 70, 71, 122–126). Although these studies show
that stimulation of T cells correlates with elongation of a common

GM1b precursor structure, it is as yet unclear how such GSLs
contribute to T cell physiology.

The total amount of gangliosides per cell was found to be
about 10-fold higher in mature T cells than in thymocytes. This
increased level of ganglioside expression mainly resulted from
the upregulation of GM1 subclasses and o-series gangliosides
(GalNAcGM1b and extended-GM1b) in T cells whereas GD1b is
downregulated (70, 71). This distinct expression of gangliosides
between murine thymocytes and mature T cells suggest a stage
and type-dependent expression of gangliosides, similar to B
cells (71). Notably, whereas GD1c is highly expressed in both
thymocytes and CD4+ T cells, CD8+ T cells downregulate its
expression (68, 116, 127). Similarly, GM1a is present on both
thymocytes and CD4+ T cells, while only trace amounts are
found in CD8+ T cells (70). Compared to the human T cells,
activated murine CD8+ T cells also upregulate the sialidase
NEU3 and downregulate NEU1 (128). In addition, some unique
modified GM1 series, including Galα1-3LacNAc-GM1, Galα1-
3(LacNAc)2-GM1, and S(3)LacNAc-GM1 were found in rat
thymocytes (110, 129).

With respect to neutral GSLs, both human and murine T cells
express GlcCer, LacCer, asialo GM1, globosides, and (neo)lacto-
series (57, 58, 67, 71). In murine and rat T cells, quantification
of neutral GSLs has revealed that the amount of neutral GSLs
was higher in peripheral T cells compared to thymocytes. The
major neutral GSLs in thymocytes are globosides while asialo
GM1 is the most abundant neutral GSL in mature T cells (58, 69,
130, 131). In addition, some unique neutral GSLs, such as Galα1-
3(F(2))ASGM1, have been detected in rat thymocytes (110). The
presence of isoGb3 on T cells was recently described, which is
recognized by both mouse and human NKT cells when presented
by CD1d (57). However, the relevance of this GSL for NKT cells
remains to be elucidated since mice that lack the isoGb3 synthesis
machinery show a normal phenotype and function (47).

NK Cells
NK cells develop in bone marrow and account for up to 15% of
peripheral blood mononuclear cells. NK cell activity is unleashed
by a loss of inhibitory signaling of their receptors that recognize
MHC class I on a target’s cell surface, which often is the case on
infected or malignant cells.

To date, the GSL expression on NK cells has not been well-
studied. In contrast to NK cell precursors, mature NK cells
express asialo GM1 (69, 73, 74, 80). Besides asialo GM1, NK cells
in mice have been reported to express GM1 at a relatively high
level compared to splenic T cells (69). The ganglioside 7-O-acetyl
GD3 was found at medium levels in 16% of the CD16+ NK cells
(50, 72).

Considerations Concerning GSL
Expression Analyses
Many studies have contributed to the current knowledge of GSL
expression in immune cells, during development, maturation,
or activation. Still, information on GSL subtype expression
in several immune cell subsets is incomplete (Table 1 and
Figure 2) and in many cases lack structural details, often due
to the limitations of the analytical tools employed. Incomplete

Frontiers in Immunology | www.frontiersin.org 7 January 2019 | Volume 10 | Article 90

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. Glycosphingolipids in Immune Cell Functions

structural information poses a challenge in understanding
expression, regulation, and function of GSLs in immune cells.
Thus, further in depth structural studies are pivotal as a basis for
functional investigations.

It is clear though that the subtypes of GSLs are very
differentially expressed throughout the immune system,
suggesting that GSLs not just constitute a structural requirement
for membrane integrity of immune cells but rather play specific
roles in their function. For example, (neo)lacto-series GSLs are
highly expressed by neutrophils, but not their progenitor cells,
suggesting a specific role in neutrophil mediated immunity.
This may relate to pathogen recognition through an interaction
of neolacto glycans with pathogen-expressed proteins (132).
On the other hand, it is curious that the expression of some
GSLs by human immune cells significantly differs from their
murine counterparts. Does this mean that GSLs are functionally
dispensable or at least replaceable? A few functions of GSLs
have been identified and will be discussed below. Furthermore,
GSL expression alterations in response to cytokines and other
modulators have also been observed, suggesting an intricate
regulation of synthesis and degradation which will be discussed
in the next chapter.

REGULATION OF GSL EXPRESSION IN
IMMUNE CELLS

Differentiation and activation of immune cells leads to alterations
in the GSL repertoire, likely through modulation of the
expression of GTs, glycosidases, glycan precursor synthesizing
enzymes, and nucleotide sugar transporters (Figure 3) (14–
16). Although these processes are well-documented, little
information is available on the regulation of GSL expression
in immune cells specifically. Nevertheless, the GSL regulation
in the context of immune cell differentiation and activation
as described in Biosynthesis and Expression of GSLs in
Naïve and Differentiated Immune Cells, is often regulated by
well-known signals, such as cytokines. We will now further
focus on the molecular details of such external signals on
the regulation of GSL synthesis and expression in immune
cells.

Regulation of GSL Expression by Cytokines
It is yet largely unclear what the intracellular switches and
master regulators of GSL expression are. Knowledge of cytokine-
induced signaling cascades, whether or not in the context of
differentiation or activation, is important to understand GSL
regulation and may provide opportunities for the design of
intervention strategies. Up to now, regulation of GSL expression
on immune cells has mainly been studied by addition of key
cytokines such as interleukins, interferon-α (IFN-α), and tumor
necrosis factor-α (TNF-α) (Figure 3).

IL-4 and especially IL-6 induce expression of Fo GSLs at
early stages of mouse BMDM culture, but neither could promote
further Fo GSL expression once the intrinsic maximum of these
cells had been reached (104, 105, 133). The mechanism of
these IL-4 and IL-6 regulated differences in GSL composition

is still unclear. One option may be that these interleukins
coordinate GSL synthesis through modulation of the nucleotide
sugar metabolism. IL-4 and IL-13 have the ability to upregulate
the levels of UDP-GlcNAc which is a key nucleotide sugar
donor for GSL synthesis. The increased activity of corresponding
transcriptional enzymes involved in the production of these
intermediates (e.g., Enpp1, Pgm1) was reported for IL-4 activated
M2 polarized macrophages as well, and was not observed
in IFN-γ and toll-like receptor-induced M1 macrophage
polarization (134). An alternative mechanism of GSL regulation
was provided by overexpression of IL-3 in mouse NFS60-
17 cells, which leads to the specific synthesis of GD1a
(114, 123, 135). This change in GSL expression is caused
by increased GM3 synthase levels, since other GTs involved
in GD1a synthesis were not significantly altered by IL-3
expression. Thus, regulation of GT expression can result in
a shift in the GSL repertoire, in this case from o-series
to a- and o-series gangliosides (Figure 3). IFN-α induces
more significant alterations in GSL biosynthesis in mouse
B cells compared to other cytokines, including IL-6 and
IL-10. In particular, GlcCer, LacCer, and Gb3 are significantly
upregulated (65). These changes were attributed to the enhanced
expression of UGCG and A4GALT. IFN-α also represses
α-galactosidase that catalyzes the degradation of Gb3 further
contributing to Gb3 accumulation (65). The effect of TNF-α
on GSL expression has been described in several studies.
TNF-α binding to its cognate receptor TNFR1 has been
reported to enhance ceramide production by upregulating
the acidic sphingomyelinase, a ceramide generating enzyme
(136, 137). Furthermore, TNF-α increased Gb3, GM2, and
GM3 through increased transcription of their specific synthases
(134, 138–140). TNF-α also mediated upregulation of GM2
in tumor cells and accelerated tumor-induced T cell apoptosis
and immune dysfunction. Furthermore, TNF-α was found
to activate sialidases through p38 mitogen-activated protein
kinase in lipopolysaccharide(LPS)-stimulated humanmonocytes,
suggesting that TNF-α-induced p38 activation may regulate GSL
expression (141).

Regulation of GSL Expression by Other
External Signals
Not only cytokines but also other factors have been observed
to alter GSL expression. The presence of high-affinity FcεRI
is suggested to contribute to the expression of gangliosides.
FcεRI positive HMC-1 cells expressed 3-fold higher levels of
GM3 compared to the FcεRI negative counterparts. Furthermore,
detectable amounts of the gangliosides GM2, GM1, and GD1a
were found only in the FcεRI positive HMC-1 cells, with a
corresponding increase of mRNA for GalNTs in the presence of
the FcεRI. These findings suggest that FcεRI signaling enhances
ganglioside production (25). Similarly, TCR stimulation on
naïve CD8+ T cells upregulated GM1 expression, which is
crucial for responding to self-MHC ligands and IL-2 (117).
GM1 levels declined after cell transfer to MHC-Ilow (Tap−/−)
mice, indicating that maintenance of GM1 expression required
continuous TCR-MHC-I interaction. By contrast, CD4+ T cells
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FIGURE 3 | Schematic model of the different levels of GSL regulation. Input signals described to be able to affect the GSL repertoire of a cell are either cytokines, other

ligands with membrane-bound receptors or ligands with intracellular receptors. These affect the GSL repertoire by changing the expression or activity of ceramide

synthases such as acidic sphingomyelinase (1), nucleotide sugar synthases in the cytoplasm (2), nucleotide sugar transporters which transport the nucleotide sugars

into the Golgi apparatus (3), glycosyltransferases (4), trafficking of the GSLs from the Golgi apparatus to the plasma membrane (5), or glycosidases (6).

expressed low amounts of GM1 and were unresponsive to
IL-2 (117). In addition, both NEU1 and NEU3 mRNAs were
significantly induced in human T cells by TCR stimulation,
potentially leading to a decrease of sialylated GSLs (Figure 3)
(120). Wang et al. further revealed that NEU3 is expressed
as a major isoform in activated cells. Transcription of NEU
expression in T cells is enhanced by FLI1, whose activity is
potentially driven by TCR stimulation. Genetic reduction of FLI1
expression in T cells thus decreased NEU1 and NEU3 levels
but also overall GSL expression. However, the mechanism by
which FLI1 influences GSL expression is not clear yet (118).
GSL levels on CD4+ T cells can also be boosted by stimulation
with synthetic liver X receptor (LXR), which signals through
the nuclear receptor LXRβ. Stimulation of LXR is known
to directly control expression of NPC1 and NPC2 proteins,
which regulate cellular GSL transport and recycling (Figure 3).
Therefore, an elevated LacCer, Gb3, and GM1 expression in
CD4+ T cells with highly expressed LXRβ was achieved, which
associated with accelerated and sustained GSL internalization
and recycling dynamics. Interestingly, this enhanced GSL
expression is not correlated with changes in synthase expression
but rather associated with the intracellular accumulation and
accelerated trafficking of GSLs (67). Yet another GSL modulating
stimulus is heparin, which modulates the expression of GSLs
in lymphocytes activated by IL-2. Heparin treatment induces
downregulation of certain GSLs, including GM1, GD1a, LacCer,
asialo GM1, and asialo GM2, whereas globoside and Fo
antigen levels are elevated. These changes were attributed to
heparin-mediated inhibition of α2-3 sialyltransferase and a β1-
3 galactosyltransferase, possibly via heparin-binding domains
(142).

Considerations on Regulation of GSL
Expression
GSL expression is highly controlled at multiple levels, such
as the availability of nucleotide sugars and glycosyltransferases
(Figure 3). Our understanding of how the GSL synthesis pathway
is regulated in specific immune cells needs be improved. The
fact that the physiological role of most immune cells is known
will then provide opportunities to unravel molecular functions
of specific GSLs in these cells. In addition, various laboratories
have identified environmental factors that manipulate the GSL
repertoire by seizing on components of the GSL synthesis
pathway. The limited number of papers describing such
regulation of GSL synthesis clearly indicates that this is an
underexposed field. Moreover, the available data seems to be
biased toward the more well-known soluble proteins. We expect
many more GSL regulatory factors to exist that are not yet linked
to GSL synthesis. The identification of such GSL modulatory
processes may have implications for GSL manipulation in
research and potentially even in clinical contexts.

FUNCTIONS OF GSLS ON IMMUNE CELLS

Organization of Membrane Microdomains
GSLs are mainly known for their role in membrane organization
which is a dynamic process, especially during activation and
differentiation of immune cells. In resting immune cells,
GEMs (Figure 4A) are suggested to be unstable and small in
size. Immune cell activation triggers a change in localization
of receptors and signal transducers, in many cases to or
from GEMs, which is required to bring receptors and signal
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FIGURE 4 | Schematic model of the different GSL functions. Essential glycan-glycan, protein-glycan, and lipid interactions are highlighted (red dot). (A) GSLs are

involved in including and (not shown) excluding proteins from microdomains. (B) Several receptors can be directly regulated by GSLs present in the cell membrane.

(C) Crosslinking of several GSLs can induce signaling across the membrane. (D) GSLs can interact with glycans (CCI, left) or with proteins (PCI, right) on other cells,

contributing to cell-cell recognition and adhesion.

transducers in close proximity to enable signaling (143, 144).
The best described example in T cells is the activation-
induced recruitment of the TCR/CD3 complex to GM1 GEMs
together with downstream signaling molecules Lck, SLP-76, and
palmitoylated LAT. At the same time, the phosphatase CD45 is
excluded from GEMs, further increasing the sensitivity of the
TCR (145–151). Additionally, the IL2Rβ is recruited to GM1
GEMs upon stimulation, which is required for its signaling
(117). Interestingly, when GM1 GEMs were crosslinked by
CTB and anti-CTB antibodies, TCR-like signaling was observed,
suggesting that multiple signalingmolecules are brought together
by crosslinking multiple GM1 GEMs, which indicates a diversity
in GM1 GEMs content in different plasma membrane patches
(148). General disruption of GEMs in T cells results in a lack
of receptor recruitment and exclusion from the immunological
synapse, which causes desensitization for ligands and greatly
reduced or absent T cell activation. Interestingly, no difference
in T cell development has been observed in mice with a
T cell specific deletion of UGCG. However, no functional
characterization was performed on these T cells other than
PMA/ionomycin stimulation, which bypasses signaling from
the membrane. In contrast, the development of invariant NKT
cells that recognize CD1d-restricted antigens was found to be
impaired in these mice (152).

Once B cells encounter an antigen, caveolin-1 recruits the IgM
BCR to GM1 GEMs (153–155). The lack of caveolin-1 results
in impaired BCR signaling which results in decreased receptor
editing and ultimately autoimmune B cells (155). Also MHC-II
molecules on B cells require clustering to GM1 GEMs in order
to efficiently trigger CD4+ T cell help at low ligand densities
(156, 157). Additionally, B cells in B3GNT5−/− mice, which
lack (neo)lacto-series GSLs, display alterations in the structure

of GM1 GEMs containing BCR, CD19, and Lyn, resulting in
increased antigen sensitivity. Consequently these B cells are also
more prone to generate autoreactive antibodies (158).

Thus, in both T and B cells, GM1 is part of GEMs that
have a crucial role during activation of these cells. The fact that
other GSLs expressed by these cells (see section Biosynthesis and
Expression of GSLs in Naïve and Differentiated Immune Cells)
have not been investigated in this context is likely due to a lack
of detection and visualization methods. Importantly, the plasma
membrane may contain a large diversity of domains or GEMs
with a slightly different (glycosphingo)lipid and protein content
as proposed in the revised Fluid-Mosaic Membrane Model (144).
Each domain with physically distinct properties may have a
specific function, also in immune cells (144). Techniques to
visualize these nanometer-domains without introducing artifacts
are still scarce. While detection of GM1 by cholera toxin CTB is
a broadly accepted method, probes that are considered specific
for other GSLs are less well-established, introducing a strong
bias toward GM1 GEMs investigations. Therefore, the function
of other GSL containing membrane domains and their role in
membrane organization is still largely unclear.

Direct Regulation of Immune Receptors
A second function of GSLs is their direct regulation of
surface protein function (Figure 4B). One of the best-described
interactions between GSLs and proteins is the interaction
between insulin receptor and GM3. Insulin receptor binds the
acidic GM3 through a basic lysine residue (K944) resulting in
inhibition of insulin-induced signaling. Thus, upregulation of
GM3, for example after TNF-α stimulation, results in insulin
resistance (139, 159). Similarly, autophosphorylation of the
Epidermal Growth Factor Receptor (EGFR) in the absence of
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EGF is prevented by binding of GM3 via a lysine residue (K642)
(160).

On immune cells, only few GSL-receptor interactions have
been reported, often with limited molecular details. Upon
activation of the Toll-Like Receptor 4-Myeloid Differentiation
factor 2 (TLR4-MD2) with LPS, Gb4 synthesis is upregulated
in mouse endothelial cells. Gb4 can bind the TLR4-MD2
complex to desensitize the LPS-activated signaling pathway thus
representing a negative feedback loop (161). Since Gb4 and the
TLR4-MD2 complex are also expressed on early human myeloid
cells andmaturemonocytes (23), onemay speculate that a similar
regulation applies to human immune cells. Interestingly, GlcCer
on the membrane of macrophages is essential for efficient LPS-
induced TLR4-MD2 signaling since inhibition of GSL-synthesis
prior to incubation with LPS significantly reduced cytokine
release. In silico simulations to explain these observations suggest
that GlcCer induces a conformational change of TLR4 thereby
enhancing the interaction between TLR4 and the intracellular
signaling molecule Mal (52).

In T cells, CD4 interacts with GM1, and additional GM1
incorporation into the membrane results in masking of some
CD4 epitopes for antibodies and a subsequent internalization
of CD4 molecules, with the underlying mechanisms being
unknown. Additionally, GM1 binds PI3K whereas GM3 binds
LCK. In order to get successful T cell activation LFA-1 links CD4
and PI3K to LCK by binding both GM1 and GM3 (162, 163).

GSLs are also important for strengthening protein-protein
interactions in tetraspanin-rich microdomains. An example of
the stabilizing function of GSLs is the enhanced binding of the
tetraspanins CD9 and CD82 to integrins in the presence of
GM3 and GM1, respectively (164, 165). Thus, GSLs may impact
integrin mediated immune cell migration (166). Additionally,
loss of functional tetraspanin-rich microdomains results in
uncontrolled receptor activity, such as uncontrolled activation of
theMET receptor tyrosine kinase and decreased EGFR sensitivity
(165, 167). CD82 expression also correlates with increased GM1
and GD1a levels on the cell surface, suggesting an interplay
between GSLs and tetraspanin expression either by increasing
GSL synthesis or by extending the half-life of GSLs on the plasma
membrane (168).

Since CD19 shares amino acid sequences with the Gb3
binding domain of the E. coli produced verotoxin, the Daudi
B cell line was modified to lack Gb3, which impaired CD19
surface expression. However, the mechanism was not elucidated
and since only a subpopulation of germinal center B cells
express Gb3 while CD19 is expressed on all B cells, the
finding may be an artifact of the cell system that was used
(112, 169). Using the same approach MHC-II was identified
as another protein that contained a possible Gb3 binding
domain, which could be relevant in for example germinal center
reactions of B cells, but also for other professional antigen
presenting cells such as macrophages and DCs which also express
considerable amounts of Gb3 (see section Biosynthesis and
Expression of GSLs in Naïve and Differentiated Immune Cells).
Unfortunately, no binding data are available for theMHC-II-Gb3
interaction, thus the functionality of these domains is still unclear
(170).

Activation of Notch by its ligand Delta-like 1 (Dll1) is
dependent on binding of Dll1 to LacCer. Either mutating the
LacCer binding site of Dll1 or inhibiting GSL synthesis impairs
the capacity of Dll1 to activate Notch (171). This may be relevant
during T cell development, where Notch signaling plays a major
role (172).

The internalization route of Fas receptor upon ligation with
Fas ligand is determined by its interaction with LacCer or Gb3
which results in an endocytotic pathway leading to apoptosis,
while the GSL-independent route induces proliferation and
differentiation (173). Expression of Gb3 by B cells (112) during
the germinal center reaction may support the apoptotic events
required for B cell selection.

Besides direct interactions between GSLs and proteins
described above, there are also reports on interactions between
N-glycans and GSLs. The ganglioside GT1b can interact with
mannose residues on the N-glycan of the α5-integrin, thereby
inhibiting integrin-fibronectin interaction (174). Regulation of
integrin activity by GT1b may play a role in T cell development,
where α5β1 integrin signaling plays a role in T cell selection
(175, 176).

GSLs as Signal Transducers
Direct interaction of GSLs with surface receptors may thus
have profound impact on signaling events. But GSLs can also
transduce signals across the membrane themselves (Figure 4C).
Crosslinking GSLs by multivalent binders such as bacterial toxins
CTB and Shiga Toxin (ST), or alternatively IgM antibodies,
has been found to increase intracellular calcium levels that
in turn activate Syk (177, 178). This influx of calcium ions
upon GM1 crosslinking on the cell surface may be through
modulation of L-type calcium channels. Additionally some GSLs
regulate intracellular calcium levels by affecting the function
of the calcium-dependent messenger protein calmodulin (179,
180). The result of Gb3 crosslinking using ST or anti-Gb3
mAbs in germinal center B cells induces recruitment of Lyn/Syk
and the BCR and subsequent internalization of the complex
leading to apoptosis (181). Interestingly, the pathways leading to
apoptosis differ between ST or anti-Gb3 mediated crosslinking
of Gb3 (182–185). Similarly, crosslinking of GM1+ patches in
T cells using crosslinked CTB induces LCK-dependent TCR-like
signaling (148). Interestingly, crosslinking of GM1+ patches by
the E. coli heat-labile enterotoxin B induces apoptosis in CD8+

T cells specifically (186). However, there are some doubts on the
specificity of these two toxins, which may explain differences in
results obtained.

In neutrophils, the kinase Lyn is associated with LacCer
enriched microdomains. Crosslinking of these microdomains
by anti-LacCer IgM antibodies induces Lyn activation and
ultimately leads to superoxide production (39). This signal
transduction from LacCer molecules to the palmitoylated form
of Lyn is dependent on the length of the fatty acid chain of the
GSLs; Lyn is only activated when the fatty acid chain contains
24 carbon atoms and not with shorter fatty acids of 22 or 16
carbon atoms, suggesting that the signal is transmitted within
the lipid bilayer relying on specific interactions of the lipid tails
(187, 188). Although the length of the fatty acid chain also
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influences the general membrane organization and association
with proteins which is not addressed yet, a similar association has
been described for Lyn and c-Src with photoactivatable GD1b in
rat cerebral granule cells (189).

Intercellular GSL Functions
There are two mechanisms by which cells interact with GSLs
on other cells; via protein-carbohydrate interaction (PCI), and
via carbohydrate-carbohydrate interaction (CCI) (Figure 4D).
Proteins known to engage in PCI are called lectins, and human
lectins may be grouped into three major classes; (1) selectins, that
typically bind glycans that are both sialylated and fucosylated, (2)
siglecs, which bind sialylated glycans, and (3) galectins, that bind
glycans with a terminal galactose. The function of these lectins
differ per cell type, with selectins being the major mediators
of cell-cell adhesion, particularly between activated endothelial
cells and leukocytes. Siglecs specifically interact with sialic acids
and are mainly found on hematopoietic cells. Galectins, on the
other hand, often bind terminal galactoses and can modulate cell
growth, apoptosis, differentiation, and migration (190).

CD83 is an I-type lectin adhesion receptor that is mainly
expressed by mature dendritic cells but is also found on activated
B and T cells. CD83 interacts with sialic acids on monocytes
and activated CD8+ T cells and is required for efficient T cell
activation (191). Although the ligand for CD83 was identified as
a glycan carried by a glycoprotein on the T cell line HPB-ALL, the
authors do not rule out the possibility of ligands carried by GSLs
(192).

The sialic acid binding receptor on B cells, CD22 or siglec-
2, recognizes α2,6-linked sialic acids that are predominantly
expressed in eukaryotes. When the B cell is in an inactive
state, CD22 is associated with sialic acids on the B cell surface.
However, once the B cell becomes activated, the CD22 is
unmasked, and can engage in trans-interactions with sialic acids
on other cells which induces inhibitory signaling (193, 194). NK
cell activation may be controlled by siglec-7 in a similar manner
(195, 196). The current hypothesis is that these interactions
prevent activation of auto-reactive B and NK cells (197).

Cell-cell interaction in the immune system is critical at sites of
inflammation. Inflammation-mediated activation of endothelial
cells upregulates selectins like E-selectin in order to recruit
immune cells (198). The ligand for E-selectin on neutrophils
is a GSL that contains poly-LacNAc repeats with at least two
fucose residues and a terminal sialic acid, but E-selectin may
also bind GSLs and glycoproteins containing the sialyl-Lex motif
(Figure 1B). This interaction is of low affinity and induces typical
neutrophil rolling on the endothelium, which is required for
transmigration afterwards (199).

CCIs are studied to a lesser extent compared to PCIs. They are
involved in early embryogenesis, where the compaction of the
embryo is dependent on Lex structures [for review, see (200)].
Additional reports on CCI describe the interaction between
GM3 or Gb4 and asialo GM2 (201). Although a single CCI is
generally of very low binding affinity, the carbohydrates may
be so prevalent that they may act as a zipper to mediate strong
cell-cell adhesion, comparable to CPI or even protein-protein
interaction (200, 202).

Although still poorly understood, B cells communicate
by forming nanotubes in certain differentiation stages which
correlate with expression of GM1 and GM3. The formation
of these nanotubes was inhibited by methyl-β-cyclodextrin
induced cholesterol depletion, which destroys the integrity of
GEMs. Furthermore, only cells with high levels of raftophilic
sphingomyelin and phosphatidylcholine generated nanotubes.
Thus, the formation of these nanotubes depends on functional
GEMs which is possibly related to their GSL contents (203).

Considerations on Molecular Functions of
GSLs
GSLs clearly play a role in immunological processes involving
cell-cell recognition, adhesion, and communication. However,
most of the studies merely provide evidence that certain GSLs
are required or sufficient for a particular process, while the
exact molecular role of such GSLs remains to be identified for
most of these processes. Such mechanistic studies are sparse for
a reason, because molecular evidence is often hard to obtain
with the current tools. Furthermore, the studies are still limited
to a few specific GSLs and do not cover all GSL subtypes.
For example, (neo)lacto-series GSLs have largely been neglected
in investigations. The relatively recent generation of B3GNT5
knockout cancer cell lines and mice are important initiatives to
extend our knowledge on the physiological role of these elusive
GSLs (158, 204). Thus, many aspects of GSL functions are still
unclear and require further in depth investigations.

RELATIONS BETWEEN GSLS AND
IMMUNITY IN DISEASE

Congenital diseases, infections, and cancer showcase aberrant
GSL expression, which provides opportunities to gain new
insights in (dys)regulation and functions of GSLs. Such
knowledge may provide new targets for therapeutic intervention,
of which the most recent developments are described in section
Targeting GSLs: Opportunities for Treatment.

Gaucher Disease
Patients with Gaucher disease lack the enzyme
glucosylceramidase, which is required for the breakdown
of GlcCer. Besides neuronal abnormalities this disease is
characterized by the presence of large “Gaucher cells” which
are macrophages with accumulated GlcCer in lysosomes that
concentrate in the spleen and bone marrow. The formation of
splenic Gaucher cells is enhanced by rapid splenic clearance
of defective red blood cells by macrophages (205). Patients
suffering from Gaucher disease are treated either with enzyme
replacement therapy or with substrate reduction therapy which
consists of the administration of UGCG inhibitors such as
N-butyl-deoxynojirimycin (Miglustat) (205, 206).

Infection
Various pathogens dysregulate the cellular GSL metabolism,
leading to different compositions of the cell surface GSL
repertoire. The p40tax protein encoded by the human T cell
lymphotropic virus, can induce GD2 expression by upregulating
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B4GALNT1, which is normally not expressed in T cells (207).
Similarly, it was shown that cytomegalovirus (CMV) induces
enhanced synthesis of GSLs, of which specifically (neo)lacto-
series remain expressed long after initial infection (208, 209).
Additionally, herpes simplex virus alters gene expression of a
variety of GTs. The significance of these changes still need to be
addressed since the authors could not detect major differences
in the profile or total amount of GSLs after infection (210). A
potential reason for such dysregulation may be to escape from
detection and elimination by the immune system.

Several infectious pathogens and toxins are well-known to
use GSLs as cellular entry receptor. Next to CD4, HIV can
infect cells through Gb3 and possibly also GM3. Shigella bacteria
target only activated CD4+ T cells likely through their GM1 and
GM3 expression which was inhibited by exogenously added LPS,
suggesting a direct interaction between LPS and the gangliosides
(211). This would imply that also other gram-negative bacteria
may enter host cells through binding of their gangliosides (212).

A variety of bacterial toxins have been described to target GSLs
using their binding subunit (B subunit) in order to bring their
enzymatically active subunit (A subunit) inside the cell. In 1973,
one of the best known toxins, cholera toxin, was described to
bind GM1 (213). Although generally used as a marker for GM1,
CTB can bind asialo GM1, Fuc-GM1, GD1a, GD1b, GT1b, GM2,
GM3, and also to Lex on glycoproteins although usually with
lower affinity. Similarly, it was long thought that enterotoxin B
was GM1-specific, until it was shown to cross-react with asialo
GM1, GD1b, LacCer, and several galactoproteins (214–216). The
B subunit of shiga toxins (STb) and verotoxins associate with
Gb3, although all bind Gb3 in a slightly different way (217).
Since STb binding to Gb3 induces endocytosis and Gb3 is present
on DCs, some research has been devoted to exploiting STb for
tumor vaccination (218). However, STb elicited a cytotoxic effect
through binding of an N-glycan on HeLa cells, suggesting this
strategy may have serious side-effects when applied in humans
(219). The toxic effects of tetanus toxin and botulinum toxin
were greatly reduced in B4GALNT1 (GD2-synthase) deficient
mice, suggesting their natural ligands are at least partly complex
gangliosides (220). Confirming these findings, type A botulinum
progenitor toxin bound asialo GM1, nLc4 and N-glycans
containing a terminal Galβ1-4GlcNAc (221). Despite these health
risks, the physiological function of specific GSL structures was
apparently too critical to be efficiently counterselected against
during human evolution. Although GSLs are essential during
embryonic development, this may also partially be due to the
versatile roles of GSLs in immunity.

Finally, several bacteria have the capacity to bind GSLs but it
is currently unclear what the pathophysiological reason is for this
phenomenon. Helicobacter pylori, a microaerophilic organism
that can cause severe gastritis, binds to sialic acid-containing
GSLs on neutrophils, thereby activating the neutrophil to
produce reactive oxygen species (222, 223). Interestingly,
neutrophils can phagocytose the bacteria but it seems able to
escape the immune cell and cope with the immune response
(222, 224). Neisseria bacteria, mostly known for their genera
meningitides and gonorrhoeae, are also capable of binding GSLs,
although it differs per strain which GSLs they adhere to.

N. subflava binds sialylated GSLs on erythrocytes by its adhesin
Sia1 (225) whereasN. gonorrhoeae has an adhesin binding LacCer
and asialo GM1 (226). N. meningitides binds a wider array of
GSLs; LacCer, asialo GM2, asialo GM1, nLc4 but also sialylated
nLc6 (227). Additionally, phagocytosis of N. meningitidis by
neutrophils appears to depend on their expression of (neo)lacto-
series GSLs since it is blocked by the LacNAc-Gal-binding
antibody 1B2 (228).

The importance of GEMs for the phagocytosis of yeast, such
as Cryptococcus neoformans, by macrophages has been well-
defined since disruption of GEMs using methyl-β-cyclodextrin
decreases internalization (229). However, Jimenez-Lucho et al.
have shown specific binding of C. neoformans, Candidia
albicans, and other fungi to LacCer, suggesting indeed a role
of these GSLs as adhesion receptors for yeast (230). This
was confirmed by the identification of an interaction between
the bacterial and fungal cell wall polysaccharide β-glucan and
LacCer on neutrophils, which triggers superoxide production
and CD11b/CD18-mediated phagocytosis of the pathogen
(231). These examples indicate potential pathways for different
pathogens to be captured by phagocytes, which play an important
role in the antimicrobial defense. Moreover, the specific GSL
repertoire of neutrophils may allow for improved detection of
bacteria, or other pathogens, and possibly contribute to fight
infections.

Cancer
Tumors often express high levels of GSLs, which interferes with
the killing capacity of the immune system. These high levels
of GSLs result, either via an active or passive process, in high
concentrations of free GSLs in the tumor microenvironment. For
some tumors, such as neuroblastoma, the plasma concentration
of tumor-derived GSLs was 50 times elevated as compared
to the same patients after treatment or healthy controls (232,
233). Multiple modes of action have been described for the
immunosuppressive characteristics of free GSLs.

A portion of T cells isolated from renal cell carcinoma
were found to be GM2 positive, while lacking the machinery
for GM2 synthesis, suggesting the T cells adopted the GM2
from the tumor microenvironment. These T cells exhibited
increased rates of apoptosis compared to their GM2 negative
counterparts (234). In addition, ex-vivo T cells treated with
renal cell carcinoma-derived gangliosides also show a decrease
in NFκB signaling (235). T cells incubated with exogenous
GD1a lose cytotoxicity since polarization and exocytosis of lytic
granules is inhibited, we speculate this may also be due to
incorporation of soluble gangliosides in the plasma membrane,
disrupting the organization required for proper T cell function
(236). Additionally, CD4+ T cells cultured in the presence of
GT1b led to a shift from an IFN-γ secreting type-1 phenotype
to an IL-4 producing type-2 phenotype (237). Finally, various
individual brain-derived gangliosides inhibit T cell proliferation
possibly through competing for the IL-2 binding place on the IL-2
receptor or via direct binding to cytokines such as IL-4 and IL-15
(238–241).

Similar to T cells, also DC differentiation and maturation is
inhibited by gangliosides through inhibition of NFκB signaling
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(242, 243). Besides, brain-derived gangliosides inhibit MHC-II
antigen presentation bymonocytes (244). GM2 and GM3 shed by
melanomas were potent inhibitors of Fc receptor expression on
monocytes and macrophages whereas GM1 and GD3 inhibited
IL-1β production (245). Similarly, GM2 and GM3 were potent
inhibitors of NK cell activity. Since GM2 showed reduced
effector-target cell binding and GM3 did not, they are likely
to act through different mechanisms (246). IL-3 dependent
proliferation of BMMCs was inhibited by GM3, but in contrast to
earlier proposed mechanisms, the authors excluded direct GM3-
IL-3 interaction. However, it remains unknown whether the
mechanism may be through competition with IL-3 for the IL-3
receptor (247). In summary, high concentrations of gangliosides
shed by tumors lead to a downregulation of the cellular immune
response.

Conversely, microglia downregulate TLR4 while upregulating
TLR2 in the presence of free gangliosides, which thus contribute
to inflammatory conditions in the brain (248). However, the
mechanism bywhich gangliosides affect themicroglial phenotype
and whether this actually contributes to an inflammatory state in
the brain has yet to be established.

TARGETING GSLS: OPPORTUNITIES FOR
TREATMENT

Targeting of GSLs Using Antibodies/CAR T
Cells
Since tumors often upregulate GSL expression, as discussed in
the previous chapter, the 75 cancer antigen priorities of the
National Cancer Institute at Rockville (USA) lists 4 different
GSLs (249). The first one on the list is GD2, for which an
antibody (dituximab beta; ch14.18/CHO) is currently being
tested in phase III trials for patients with neuroblastoma (trial
NCT01704716). Additionally, chimeric antigen receptors (CARs)
have been designed and overexpressed in T cells to target
GD2 overexpressing neuroblastoma (250–252). Next, an anti-
GD3 antibody-drug conjugate (PF-06688992) is in a Phase
I clinical trial for patients with stage III or IV melanoma
(trial NCT03159117). Also for this GSL-target, CARs have
been developed (253). Fucosyl-GM1 is being targeted by the
antibody BMS-986012 that is currently tested in the preclinical
phase with the goal to treat patients with small-cell lung
carcinoma (254). The last GSLs on the list is GM3 for
which an antibody is undergoing preclinical investigation by
Morphotek.

Yet another option is to vaccinate with GSLs or structures
that bear GSL antigens in order to induce an antibody response
toward the GSLs overexpressed by a patient’s tumor. The
disadvantage, however, is that vaccinations with carbohydrates
require (a lot of) purified carbohydrates and often result in
CD4+ T cell independent low affinity IgM responses without
long-lived B cell memory (255). To overcome these challenges,
either purified carbohydrates or synthetic polymers harboring
the epitope can be fused to carrier proteins (e.g., keyhole limpet
hemocyanin or tetanus toxoid) that are able to induce CD4+

T cell activation. Since conjugation of carbohydrate epitopes to

proteins is hard to control, fully synthetic vaccines are being
developed (256).

Inhibition of GSL Synthesis to Active
Immune Cells
In 2003 and 2014 the UGCG inhibitors Miglustat [N-butyl
1-deoxynojirimycin (NBDNJ)] and Eliglustat, respectively,
received FDA approval for treatment of Gaucher disease in
order to prevent accumulation of GlcCer in these patients. Until
1994, NBDNJ was described to inhibit α-glucosidases in the
N-glycosylation pathway. In vitro work on purified proteins
shows that the IC50 for NBDNJ was 0.57µM for α-glucosidase I
and 20.4µM for UGCG. However, due to localization of UGCG
on the cytoplasmic side and α-glucosidase I on the luminal side
of the ER, a 10-fold lower concentration NBDNJ is required
to inhibit UGCG compared to α-glucosidase I in intact cells
(257–259). For long it has been hypothesized that inhibitors of
GSL synthesis like NBDNJ could also be beneficial for other
diseases including cancer (260).

In several mouse models it has been shown that inhibition
of GSL synthesis decreases tumor load or even cured the
mice (261). Moreover, in a multiple myeloma mouse model,
inhibition of GSL synthesis decreased osteoclast activation and
thereby the osteolytic lesions that are often present in multiple
myeloma patients (262). Since it is even suggested that aberrant
GSL synthesis by tumors cause drug-resistance (263, 264),
inhibiting GSL synthesis would be great for a combination
therapy. Apart from drug-resistance, high expression of GSLs
by tumors also negatively affects T cell and DC function, so
GSL synthesis inhibition could also be beneficial for cancer
immunotherapies.

However, in a Phase I trial where NBDNJ was administered
to HIV patients it was found that some patients developed
borderline or transient leuko- or neutropenia that was
unrelated to dosage (265). In addition, GSL inhibitors
may have a negative effect on lymphocyte development
and maturation in vivo (266), In the case of anti-tumor
treatment, however, the patient population would only have
a temporary inhibition of GSL synthesis and a functional
immune system. Additionally, studies in patients suffering
from Gaucher disease do not mention any immune-related
side-effect of NB-DNJ (267–269). In this review, we discussed
several functions of the immune system that rely on GSLs,
therefore it is likely that some functions may be impaired
by GSL synthesis inhibitors and their off-label use should be
well-substantiated.

CONCLUDING REMARKS

It is clear by now that GSLs are important constituents of
a functional immune system. GSLs play versatile roles in
physiology and pathophysiology. The knowledge on these roles
is largely skewed by the limitations of the tools available.
Still, investigators have discovered on a molecular level that
GSLs are essential for the recruitment of (immune-related)
proteins to specific membrane microdomains and that GSLs
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can directly interact with surface receptors. Interactions directly
with molecules on other cell types further shape the multi-
faceted function of GSLs in immunity. We believe that these
GSL functions are closely interconnected to control immune cell
function through dynamic regulation of GSL composition. As a
consequence, various pathologies are highly related to specific
GSL repertoires. We therefore also provided a brief summary
of the therapeutic opportunities of GSL synthesis dysregulation
that are currently being evaluated. New mechanistic insights in
the (immunological) functions of GSLs in health and disease will
allow to expand the described options and applications. Available
state-of-the-art technologies will be of great help to take the field
a great leap forward. Specifically, a validated gRNA library to
target all known human GTs by CRISPR/Cas9 has been recently
constructed (270). Difficulties of introducing the CRISPR/Cas9
machinery into primary immune cells, such as B and T cells, have
also been overcome by electroporation protocols and the usage
of recombinant gRNA-loaded Cas9 (271, 272). Furthermore,
the development and combination of high-sensitive analytical
platforms based onmass spectrometry have boosted the detection
of less common GSL-species. And the current throughput
and analysis efficiency allows for comprehensive profiling,
quantification, and structural characterization of GSLs extracted
from tissues and cells (48, 273–275). All these advancements

allow the community to systemically investigate the role of
individual GSLs in immune cells.
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