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Abstract: Freshly cut vegetables are susceptible to microbial contamination and oxidation during
handling and storage. Hence, light-emitting diode technology can effectively inhibit microbial
growth and improve antioxidant enzyme activity. In this paper, the freshly cut amaranth was treated
with different intensities of blue light-emitting diode (LED460nm) over 12 days. Chlorophyll content,
ascorbic acid content, antioxidant capacity, antioxidant enzymes activity, the changes in microbial
count, and sensorial evaluation were measured to analyze the effects of LED treatment on the
amaranth. Blue LED460nm light irradiation improved the vital signs of the samples and extended
the shelf life by 2–3 days. The AsA–GSH cycle was effectively activated with the irradiation of
30 µmol/(m2·s) blue LED460nm light. According to the results, the LED460nm light could retard the
growth of colonies and the main spoilage bacteria, Pseudomonas aeruginosa, of freshly cut amaranth.

Keywords: freshly cut amaranth; light-emitting diode; antioxidation ability; microbial community

1. Introduction

Amaranth (Amaranthus dubius L.)is rich in ascorbic acid and other nutrients [1]. Freshly
cut vegetables are ready-to-use products made from fresh vegetables after sorting, cleaning,
and other treatment, which are convenient and fresh for consumers [2]. Cutting could
cause mechanical damage to vegetables that would speed up their respiration rate. In
addition, the cut wounds are susceptible to microbial invasion, which accelerates the
deterioration of plant quality. There is a great demand for effective preservation techniques
to maintain the quality of freshly cut commodities at this stage. Light energy is a necessary
condition to maintain plant growth [3]. LEDs have characteristics such as low cost, high
efficiency, and environmental protection. They have a wide range of applications in
freshly cut vegetable preservation as well as in other areas with high research prospects [4].
Bhavya et al. [5] found that blue light could inhibit the proliferation of Escherichia coli
and Staphylococcus aureus, and effectively improved the antioxidant enzyme activity of
freshly cut pineapple slices. Zhai et al. [6] confirmed that UVC–LEDs could effectively
sterilize Escherichia coli inoculated on freshly cut dragon fruit, while maintaining the
quality of the freshly cut dragon fruit. Bian et al. [7] agreed that red and blue LEDs
scavenged free radicals by enhancing the antioxidant capacity of lettuce while reducing
nitrate levels. Maroga et al. [8] showed that 100 µmol/(m2·s) blue LED450nm light extended
the shelf life of red freshly cut bell peppers, and improved antioxidant capacity and
phenolic compounds. Chang et al. [9] confirmed that blue LED light irradiation enhances
L-ascorbic acid content while reducing reactive oxygen species accumulation in Chinese
cabbage seedlings. Samuolienė et al. [10] showed that blue LED irradiation of baby leaf
lettuce had a significant positive effect on its DPPH scavenging capacity and enhanced its
antioxidant properties.
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In this paper, the physiological characteristics of freshly cut leafy vegetables treated
with blue light were studied, and the bacterial colonies in the vegetables were assayed as
well. It is short of research on antioxidant performance and antibacterial effects on freshly
cut fruits and vegetables irradiated with monochromatic light (460 to around 470 nm).
In this study, blue LED460nm light was used to treat the freshly cut amaranth, and the
changes in microbial total bacteria and antioxidant capacity, combined with physiological
and biochemical indexes were measured to check the effects.

2. Materials and Methods
2.1. Treatment Method of Amaranth and LED Equipment Diagram

Amaranth plants were purchased from Shanghai Duoli farm fruit and vegetable
cooperative. After amaranth plants were picked, they were quickly sent to the laboratory
for treatment. Amaranth samples were cut about 5 cm away from the stem of the leaf,
washed with ultrapure water, and dried naturally. Samples were chosen without yellowing
or mechanical damage and freshly cut with a 1-cm scalpel. Samples were placed on
a sterilized tray (80 g/plate), sealed with polyvinyl chloride (PVC) high-transmittance
anti-fog film, and stored at 4 ◦C for 12 days.

This experiment was divided into four groups, each group having 10 samples. The
samples were irradiated with different intensities of blue LED460nm light at 4 ◦C and relative
humidity of 90 ± 5%. The irradiation height was about 30 cm. The irradiation time was
12 h per day. As shown in Figure 1, the T3 group had a 30 µmol/(m2·s) 460 nm LED light.
Similarly, a 10 µmol/(m2·s) 460 nm LED lamp was installed in group T1, a 20 µmol/(m2·s)
460 nm LED lamp was installed in group T2, and no LED lamp was installed in group
CK. The intensities were 0, 10, 20, 30 µmol/(m2·s), and related indicators were tested at
two-day intervals for 12 days. The detailed treatments for each group are shown in Table 1.
The physiological and biochemical indexes, total bacterial count, and antioxidant capacity
of vegetables under the three light conditions were evaluated, where antioxidant capacity
was assessed mainly by peroxidase, superoxide dismutase, and oxidative stress-related
enzymes, and the corresponding data were processed.
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Figure 1. LED equipment diagram.

Table 1. Freshly cut amaranth of each experimental group.

Group Light Intensity (µmol/(m2·s)) LED Band (nm)

CK - -
T1 10 460
T2 20 460
T3 30 460
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2.2. Organoleptic Properties

Twelve consumers formed an evaluation group. The color, shape, and smell of the
experimental samples were evaluated, reasonably and objectively. The full score of the
three indicators was 10 points, and the specific scoring standards are shown in Table 2.

Table 2. Sensory evaluation project.

Score Color Form Smell

10 Full and bright color Crisp Refreshing fragrance

8 The color is a little dim, but
not brown

It’s brittle, but it doesn’t
shrink

No fragrance, no peculiar
smell

6 Overall acceptable, with
occasional browning Slight atrophy

No fragrance, slightly
peculiar smell after

careful smelling

4 Browning rate < 1/3 Obvious atrophy, but not
serious

Obvious odor, but not
serious

2 Browning rate ≥ 1/3 Atrophy serious Severe odor

0 All browning and the color
of mildew spots can be seen

All severely atrophied
and moldy Stench

2.3. Soluble Solids

The soluble solids method referred to the method of Zhang et al. [11]. The samples
were fully ground, and centrifuged at 4000 r/min for 10 min. The supernatant scale was
added to the detection mirror to set the content of soluble solids, expressed by mass fraction
(%), and repeated 3 times.

2.4. Weight-Loss Rate

The water weight-loss rate was calculated according to Formula (1).

Weight − loss rate/% =
M0 − Mt

M0
× 100% (1)

2.5. Water Distribution and Migration

The water distribution and migration referred to the method of Bimal et al. [12].

2.6. Chlorophyll Content

Chlorophyll content was calculated according to the experimental method of Hasperué
et al. [13]. The content of total chlorophyll was calculated according to Formula (2), the
content of total chlorophyll, and the content of demethylated chlorophyll and carotenoid
was calculated by:

G/% =
(20.29 ∗ A645nm + 8.05 ∗ A663nm ∗ VT ∗ n)

1000 ∗ m
(2)

where G, the content of chlorophyll in a 1 g sample, mg/g; A645nm, the absorbance of the
extract was measured at 645 nm; A663nm, the absorbance of the extract was measured at
663 nm; VT, total volume of extract, mL; n, dilution ratio of extract; m, fresh weight of
freshly cut amaranth, g.

2.7. Ascorbic Acid Content

Ascorbic acid content referred to the method of Young et al. [14], with some modifica-
tions. A 1 g sample of amaranth leaf tissue was weighed and ground in 5 mL 0.05 mol/L
oxalic acid. The supernatant was extracted by centrifugation at 4000 r/min for 10 min. All
experiments were performed three times.

2.8. Ascorbate Peroxidase (APX) Activity

APX activity referred to the method of Zhao et al. [15].
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2.9. Glutathione Reductase (GR) Activity

GR activity referred to the method of Giacomo et al. [16].

2.10. Peroxidase (POD) Activity

POD activity referred to the method of Zhao et al. [17].

2.11. Superoxide Dismutase (SOD) Activity

SOD activity was determined by monitoring the inhibition of photochemical reduction
by nitroblue tetrazolium (NBT) [15].

2.12. Malondialdehyde (MDA) Content

MDA content refers to the method of Young et al. [18], with some modifications.
A5 mL measure of 100 g/L trichloroacetic acid solution was added to a 1 g sample of
amaranth. After homogenizing, samples were centrifuged at 10,000× g for 20 min at 4 ◦C.
Next, 2 mL of supernatant was added to 2 mL of 0.67 g/100 mL thiobarbituric acid solution.
After mixing, the solution was boiled for 20 min in a boiling water bath. The solution was
centrifuged at 10,000× g, cooled with water. The experiment was repeated 3 times.

2.13. Aerobic Plate Count and Specific Spoilage Organism (SSO) Count

The aerobic plate-counting method referred to the method of Zhang et al. [11]. A total
10 g of freshly cut amaranth samples were weighed on the sterile operating platform, and
homogenization solution with a ratio of 1:10 was prepared in the sterile bag according to
the gradient dilution method. The homogenization solution was evenly placed on the plate-
counting agar medium (PCA), and the colonies were tested by the inverted plate method.
The specific spoilage organism(SSO)count referred to the method of Amal et al. [19].

Where M0 is the quality of amaranth before storage; Mt is the quality of amaranth
during storage time t.

2.14. DNA Extraction and PCR Amplification

Microbial DNA was extracted using the HiPure Soil DNA Kits (Magen, Guangzhou,
China) according to the manufacturer’s protocols. The 16S rDNA V5-V7 region of the ribo-
somal RNA gene was amplified by PCR using primers799F: AACMGGATTAGATACCCKG;
1193R: ACGTCATCCCCACCTTCC [20].

2.15. Illumina Novaseq 6000 Sequencing

Amplicons were extracted from 2% agarose gels and purified using the DNA Gel
Extraction Kit according to the manufacturer’s instructions and quantified using ABI
StepOnePlus Real-Time PCR System. Purified amplicons were pooled in equimolar and
paired-end sequenced on an Illumina platform according to the standard protocols.

2.16. Data Analysis Method

Three parallel measurements were performed in all experiments. All data were
expressed as average values ± standard error (n = 3); All data were performed by one-way
analysis of variance (ANOVA) and the differences among the means were compared by
Duncan’s multiple range test with a significance of p < 0.05 using the SPSS 17.0 statistical
program (SPSS Inc., Chicago, IL, USA).

3. Results and Discussion
3.1. Changes in Organoleptic Properties and Shelf Life

Sensory evaluation shows the freshness of freshly cut amaranth most intuitively and
objectively [21]. In Figure 2, the color, appearance, and odor of freshly cut amaranth
decreased during storage time. Significant differences were present in the irradiated
and control groups. Onwards of the 8th day, the control group scored below 6 marks
on each item. This indicated the deterioration of the quality of freshly cut amaranth
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in the control group. The leaves of each treatment group presented various degrees of
water loss, appearing wrinkled and yellowed on the 10th day. The overall score was:
T3 > T2 > T1 > CK. During storage, the sensory scores of the treatment groups were much
higher than those of the control group. Blue LED460nm light can slow down the aging of
freshly cut amaranth and prolong the shelf life of freshly cut amaranth. Aiamlaor et al. [22]
demonstrated that blue light irradiation was effective in delaying broccoli floret yellowing
to extend the shelf life. Shelf-stage differences showed a close correlation with chlorophyll
content. The chlorophyll content in the CK group appeared to decrease significantly at the
6th day. Yellowing was also evident at the 6th day during the shelf period. In all, the T3
treatment group had the best effects.
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Figure 2. Changes in smell (A), form (B) and color (C) sensory characteristics, and sample shelf-life
changes (D) during storage.

3.2. Changes in Soluble Solids Content

Sugars, vitamins, and minerals are the prime soluble solids in plants. Soluble solids can
corroborate the consumption rate and maturity of plant nutrients. Certainly, an important
indicator measures the freshly cut fruit and vegetable preservation effects [23,24].

In Figure 3, the soluble solids of the T2 and T3 treatment groups were able to remain in
a stable range at the beginning of storage, which might be due to the enhanced respiration
and vital activity of freshly cut amaranth, causing the balance between the consumption
and formation rate of soluble solids. The plant vital signs decreased with storage time,
resulting in increased consumption of soluble sugars and a decreased trend in the later
stages of storage. Dramatic differences were observed between the T2 and T3 treatment
groups and the control group (p < 0.05). It may happen that higher light intensity can better
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stimulate photosynthesis in amaranth and further synthesize more organic matter. No
distinct differences were observed between the T1 treatment group and the control group,
which might be due to insufficient light intensity to reach the light supplementation point
of the freshly cut amaranth. The CK group was unable to photosynthesize under sheltered
conditions in a more effective way. Noelia et al. [25] also confirmed the results.
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3.3. Changes in Weight Loss and Moisture Migration

The loss rate of plant weight is mainly reflected in water loss and nutrient consumption.
In Figure 4A, the weight-loss rate was: T3 > T2 > T1 > CK. This result indicated that blue
light could effectively enlarge the stomata of plant leaves, and stomatal conductance
increased with the increase of blue light intensity [26]. Sander et al. [27] also proved that
blue light could trigger the qualitative signal effect of plants and photosynthesis again.
Moreover, blue light could effectively accelerate the transpiration rate, further increasing
the mass loss rate [28]. The samples were wrapped by PE film during the experiment, so
the experimental results were controlled in a reasonable range.

In Figure 4B, the water migration of bound water (0–2 ms), immobilized water
(2–20 ms), and free water (20–100 ms) in the leaves of the samples at the early stage
of storage (0 d) and the end of storage (12 d) was obtained by inversion and calculation.

Water content was observed by peak value and peak area. In the first 12 d, the bound
water and immobilized water content for the treatment groups showed an upward trend,
at the same time as the content of free water fell. This may be due to the mechanical
damage caused by self-healing of freshly cut amaranth and the synergistic effect of blue
light irradiation to stimulate the stress response of the amaranth [29]. The increase in the
bound water content showed that the stress resistance of the treated group was enhanced
to a certain extent [3] The bound water content for the control group decreased at the end of
storage, with significant differences among the other groups (p < 0.05). The possible reason
behind the difference is due to the high metabolic reaction caused by light, which feeds
freshly cut amaranth with energy in an efficient way. Combined with sensory evaluation
index, the quality of freshly cut amaranth deteriorated significantly on the 12th day. This
indicated that the metabolic system of freshly cut amaranth collapsed and could not
maintain the plant body signs. At the end of storage, the free water content for each
experimental group decreased. The consequence was: CK > T1 > T2 > T3. After blue light
irradiation, freshly cut amaranth had vigorous life activity, metabolic activity, and oxidation
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reactions, which consume a lot of water. The results of moisture migration experiments
corresponded to the weight-loss rate.
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3.4. Changes in Chlorophyll Content

Chlorophyll is an important indicator of plant vital signs in the photosynthesis of plant
cells. Chlorophyll can absorb light energy to synthesize carbohydrates, carbon dioxide,
and water. Light can affect photosynthesis of plant cells by changing the absorption and
consumption of light energy and electron transport [30]. In Figure 5, the chlorophyll content
of the treatment groups irradiated by blue LED460nm light show a trend of increasing
from 0–6 days and then decreasing after the 6th day, with peak value occurring at day 6
(p < 0.05). The peak value of the T3 treatment group reached 41.18 mg/g. The chlorophyll
of the control group decreased continuously with storage time. Bukhov et al. [31] found
that barley leaf seedlings could synthesize chlorophyll more effectively under blue light
irradiation; and the quantity of carotenoids, which could consume the energy of excessive
excitation of chlorophyll and maintain the balance of physiological activities of the plants,
increased under blue LED light. Light stimulated the activity of magnesium chelatase,
then increased the content of chlorophyll. The results showed that the treatment of freshly
cut amaranth with 30 µmol/(m2·s) blue LED460nm light could effectively improve the
chlorophyll content. The sensory score was consistent with the result, which could inhibit
the quality deterioration of freshly cut amaranth for 2 or 3 days.



Plants 2021, 10, 1614 8 of 14Plants 2021, 10, x FOR PEER REVIEW 8 of 14 
 

 

 

Figure 5. Changes in chlorophyll content. The means with different lowercase letters (a–d) in figure 

differ significantly (p  <  0.05). 

3.5. Changes in AsA Content and Oxidative Stressase Activity 

AsA can remove ROS and H2O2 indirectly through APX, because of the reducibility. 

AsA synthesis pathway in plants is called the Smirnoff Wheeler cycle. The oxidative stress 

process of AsA is shown in Figure 6. APX and GR were particularly important in the AsA-

GSH cycle. APX could scavenge reactive oxygen species (ROS) and prevent oxidative 

damage in plants. Plant stress resistance could also be corroborated by the increase of APX 

activity. GR promoted AsA indirectly by regulating the dynamic balance of Glutathion 

(GSH), which was particularly important in the ROS removal process. 

 

Figure 6. Mechanism diagram of AsA–GSH. 

As shown in Figure 7A, AsA content in the treatment group increased and decreased 

late, and reached the peak in the T3 experimental group on the 6th day in addition. The 

control group occurred a continuous decline. Ohashi et al. [32] confirmed that blue light 

can effectively improve the content of AsA in leafy vegetables. Combined with the APX 

activity and GR activity in Figure 7B,C, APX activity of all samples rose then decreased. 

In addition, the APX activity of the treatment group was significantly higher than that of 

the control group. GR activity in the treatment group remained at a stable level, while GR 

activity decreased for the control group. Blue LED460nm light could effectively regulate the 

AsA–GSH cycle and increase AsA content in the end. Blue light was more effective in 

increasing AsA content compared to other light sources, as was demonstrated by Mishra 

et al. [33]. Rabelo et al. [34] confirmed that high light intensity could promote the produc-

tion of photosynthetic products and further increase the accumulation of AsA. The activ-
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3.5. Changes in AsA Content and Oxidative Stressase Activity

AsA can remove ROS and H2O2 indirectly through APX, because of the reducibility.
AsA synthesis pathway in plants is called the Smirnoff Wheeler cycle. The oxidative stress
process of AsA is shown in Figure 6. APX and GR were particularly important in the
AsA-GSH cycle. APX could scavenge reactive oxygen species (ROS) and prevent oxidative
damage in plants. Plant stress resistance could also be corroborated by the increase of APX
activity. GR promoted AsA indirectly by regulating the dynamic balance of Glutathion
(GSH), which was particularly important in the ROS removal process.
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As shown in Figure 7A, AsA content in the treatment group increased and decreased
late, and reached the peak in the T3 experimental group on the 6th day in addition. The
control group occurred a continuous decline. Ohashi et al. [32] confirmed that blue light
can effectively improve the content of AsA in leafy vegetables. Combined with the APX
activity and GR activity in Figure 7B,C, APX activity of all samples rose then decreased.
In addition, the APX activity of the treatment group was significantly higher than that of
the control group. GR activity in the treatment group remained at a stable level, while GR
activity decreased for the control group. Blue LED460nm light could effectively regulate
the AsA–GSH cycle and increase AsA content in the end. Blue light was more effective in
increasing AsA content compared to other light sources, as was demonstrated by Mishra
et al. [33]. Rabelo et al. [34] confirmed that high light intensity could promote the production
of photosynthetic products and further increase the accumulation of AsA. The activities of
APX and GR were positively correlated with AsA content under different environmental
stresses [35]. In conclusion, the freshly cut amaranth irradiated by blue light could increase
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ASA content, enhance the activity of GR and APX, and further excite the AsA–GSH cycle,
especially 30 µmol/(m2·s) LED460nm blue light had the best effect.
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Figure 7. Effects of blue LED460nm light with different intensities on AsA content (A); APX activity (B); and GR activity (C)
of freshly cut amaranth.

3.6. Changes in Antioxidant Enzyme Activity

It can be seen from Figure 8A,B that the antioxidant enzymes of freshly cut amaranth
irradiated by blue LED460nm light ascended then descended. In the ascending phase, blue
LED460nm light induced an increase in POD and SOD activities. The activities of SOD
and POD in the T3 treatment group reached the peak on the 6th day, increased by 27.33%
and 58.49%, respectively, compared with the control group. With the increase of storage
time, the photosynthesis and respiration activities in plants weakened, and the antioxidant
enzymes activity began to decline. On the 8th day, the antioxidant enzymes of the control
group were lower than the initial value. Combined with the sensory indexes, the control
group had lower antioxidant enzymes than the original values on the 8th day. Figure 8
revealed that blue LED460nm light can effectively enhance the activity of antioxidant en-
zymes. SOD mainly disproportionates O2

− and H+ to form O2 and H2O2. When the rate
of O2

− scavenging by SOD was lower than the rate of O2
− production, as the dynamic

equilibrium was broken, freshly cut amaranth accelerated its aging process [36]. POD and
H2O2 were oxidized to produce phenolic free radicals to scavenge oxygen free radicals [37].
The accumulation of phenolic free radicals led to the increase of chlorophyll content and
the degradation of chlorophyll in freshly cut amaranth. Blue light could effectively activate
the antioxidant defense system of plants, such as Stevia rebaudiana [38], lettuce [39], and
carnation [40]. The increase of antioxidant enzyme activity not only helped to remove ROS,
but reduced the irreversible damage caused by photooxidation [41].

Plants 2021, 10, x FOR PEER REVIEW 10 of 14 
 

 

   

Figure 8. Effects of blue LED460nm with different intensities on SOD activity (A); POD activity (B); and MDA contents (C) 

of freshly cut amaranth. 

3.7. SSO Count and Aerobic Plate Count 

In Figure 9A, the total number of colonies in the sample without any pretreatment is 

4.2 (log CFU/g) at the 0th day. During storage, the total bacterial counts of samples in-

creased. On the 12th day, the aerobic plate count was: T3 (6.6 log CFU/g) < T2 (7.4 log 

CFU/g) < T1 (7.8 log CFU/g) < CK (9.1 log CFU/g). The antibacterial effect was: T3 > T2 > 

T1> CK, and there was a dramatic difference between the T3 treatment group and the CK 

group (p < 0.01). To sum up, blue LED460 nm light treatment had an antibacterial effect, and 

30 μmol/(m2·s) blue LED460 nm light treatment had the best antibacterial effect. Further-

more, the antibacterial effect gradually increased with the rise in blue light intensity. Blue 

light could induce bacterial apoptosis by stimulating endogenous photosensitizers (PSs) 

and transferring electrons to molecular oxygen to form reactive oxygen species (ROS) [43]. 

Blue light could also inhibit other rot pathogens, such as Listeria monocytogenes [44], Bacil-

lus subtilis [45], Escherichia coli [46], and so on. As a kind of spoilage bacteria in plants, 

pseudomonas had pectin decomposition activity, which led to freshly cut amaranth spoil-

age [47]. Hyun et al. [48] found that 460–470 nm LEDs inhibit bacteria mainly by disrupt-

ing the cell envelope, causing irreversible damage to bacteria by destroying their ribo-

somes. As can be seen from Figure 9B, the bacteria in the experimental groups showed a 

rising trend. The growth rate of P. fluorescens in the treated group was lower than that in 

the control group. The results showed that 30 μmol/(m2·s) blue LED460nm light could effec-

tively inhibit the growth of Pseudomonas. 

 

Figure 9. Changes in aerobic plate count (A) and Pseudomonas spp. count (B). The means with differ-

ent lowercase letters (a–d) in figure differ significantly (p  <  0.05). 

3.8. Changes in Microbial Community 

RDP classifier and blast analysis were used to classify the OTUs. A total of 43 genera, 

32 families, 5 phyla, 6 classes, and 20 orders were identified. Figure 10 showed the relative 

abundance distribution map of freshly cut amaranth samples under the condition of phyla 

and genus classification standards. Under the condition of phylum classification standard, 

Figure 8. Effects of blue LED460nm with different intensities on SOD activity (A); POD activity (B); and MDA contents (C) of
freshly cut amaranth.

MDA content is an important signal of peroxidation of plant somatic cell membrane
during storage. In Figure 8C, MDA content was decreasing. On the 6th day, the mea-
surement was: T3 < T2 < T1 < CK. The results were consistent with the data of POD and
SOD activities on the 6th day, indicating that the freshly cut amaranth treated with blue
LED460nm light could effectively reduce the degree of oxidative damage, minimize the
damage of cell membrane and cell structure, and lessen the accumulation of MDA content.
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Li et al. [42] confirmed that Chinese Kale irradiated by blue LED460nm light could effectively
delay the accumulation of MDA.

3.7. SSO Count and Aerobic Plate Count

In Figure 9A, the total number of colonies in the sample without any pretreatment is 4.2
(log CFU/g) at the 0th day. During storage, the total bacterial counts of samples increased.
On the 12th day, the aerobic plate count was: T3 (6.6 log CFU/g) < T2 (7.4 log CFU/g) < T1
(7.8 log CFU/g) < CK (9.1 log CFU/g). The antibacterial effect was: T3 > T2 > T1> CK, and
there was a dramatic difference between the T3 treatment group and the CK group (p < 0.01).
To sum up, blue LED460nm light treatment had an antibacterial effect, and 30 µmol/(m2·s)
blue LED460nm light treatment had the best antibacterial effect. Furthermore, the antibacte-
rial effect gradually increased with the rise in blue light intensity. Blue light could induce
bacterial apoptosis by stimulating endogenous photosensitizers (PSs) and transferring
electrons to molecular oxygen to form reactive oxygen species (ROS) [43]. Blue light could
also inhibit other rot pathogens, such as Listeria monocytogenes [44], Bacillus subtilis [45],
Escherichia coli [46], and so on. As a kind of spoilage bacteria in plants, pseudomonas had
pectin decomposition activity, which led to freshly cut amaranth spoilage [47]. Hyun
et al. [48] found that 460–470 nm LEDs inhibit bacteria mainly by disrupting the cell en-
velope, causing irreversible damage to bacteria by destroying their ribosomes. As can be
seen from Figure 9B, the bacteria in the experimental groups showed a rising trend. The
growth rate of P. fluorescens in the treated group was lower than that in the control group.
The results showed that 30 µmol/(m2·s) blue LED460nm light could effectively inhibit the
growth of Pseudomonas.
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3.8. Changes in Microbial Community

RDP classifier and blast analysis were used to classify the OTUs. A total of 43 genera,
32 families, 5 phyla, 6 classes, and 20 orders were identified. Figure 10 showed the relative
abundance distribution map of freshly cut amaranth samples under the condition of
phyla and genus classification standards. Under the condition of phylum classification
standard, the flora of fresh samples mainly include cyanobacteria, Proteobacteria, and so on.
Among them, Proteobacteria was the dominant species during the whole storage period,
and the relative abundance increased from 0.04% to 77.45%. Under the condition of genus
classification standard, the flora of fresh samples mainly includes Pseudomonas, Shewanella,
Sphingobacterium, and so on. During storage, the abundance of Pseudomonas increased
from 0.04 to 41.83%, and finally to 56.93%, so the dominant spoilage bacteria of freshly
cut amaranth was Pseudomonas. The relative abundance of other flora decreased gradually.
The main reason was that the growth of dominant bacteria was too fast, which inhibited
the growth of other microorganisms. P. fluorescens had been confirmed to be the dominant
spoilage bacteria for many vegetables [49]. The physiological properties of P. fluorescens
were adapted to the growth environment of vegetables, and its abundance accounted for
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about 50–90% of spoilage bacteria. In this genus, P. fluorescens is the main bacteria causing
soft rot and yellowing of freshly cut amaranth [50].
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3.9. Correlation Analysis

As shown in Figure 11, the AsA content of freshly cut amaranth during storage was
significantly and positively correlated with APX activity, SOD activity, and POD activity.
In addition, AsA content was positively correlated with physiological indices of soluble
solids and chlorophyll content. The results showed that 30 µmol/(m2·s) blue LED460nm
light treatment of freshly cut amaranth AsA content was closely correlated with AsA–GSH
cycle activity, which demonstrated strong oxidative stress properties and enhanced the
increase of AsA content. The physiological indicators were also elevated in freshly cut
amaranth under blue LED460nm light irradiation to maintain its vital signs. Blue LED460nm
light could align the antioxidant capacity of freshly cut amaranth and prolong the shelf life
of freshly cut amaranth by increasing the activity of antioxidant enzymes.
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4. Conclusions

In conclusion, the shelf life of freshly cut amaranth treated with blue LED460nm light
irradiation could be effectively prolonged by 2–3 days, and sensory scores were increased
to satisfy the consumers. Blue LED460nm light improved the content of chlorophyll and
soluble solids, ascorbic acid, and antioxidant capacity. The rise in POD, SOD, APX, and GR
activities advanced the antioxidant capacity of freshly cut amaranth. It could effectively
inhibit colony reproduction and the growth of dominant spoilage bacteria Pseudomonas.
The best preservation effect was obtained by 30 µmol/(m2·s) blue LED460nm light on freshly
cut amaranth compared with the other groups. However, the water loss of freshly cut
amaranth irradiated by blue LED460nm was not good enough. In a follow-up study, red
light, ultraviolet light, or other different light sources could be used on freshly cut amaranth
for further exploration.
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