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Abstract: Auditory Neuropathy (AN) is characterized by disruption of temporal coding of acoustic
signals in auditory nerve fibers resulting in alterations of auditory perceptions. Mutations in several
genes have been associated to the most forms of AN. Underlying mechanisms include both pre-
synaptic and post-synaptic damage involving inner hair cell (IHC) depolarization, neurotransmitter
release, spike initiation in auditory nerve terminals, loss of auditory fibers and impaired conduction.
In contrast, outer hair cell (OHC) activities (otoacoustic emissions [OAEs] and cochlear microphonic
[CM]) are normal. Disordered synchrony of auditory nerve activity has been suggested as the basis
of both the alterations of auditory brainstem responses (ABRs) and reduction of speech perception.
We will review how electrocochleography (ECochG) recordings provide detailed information to help
objectively define the sites of auditory neural dysfunction and their effect on receptor summating
potential (SP) and neural compound action potential (CAP), the latter reflecting disorders of ribbon
synapses and auditory nerve fibers.

Keywords: OPA1-related deafness; OTOF-related hearing loss; electrocochleography; cochlear
implants; speech perception

1. Introduction

Auditory neuropathy (AN) is a disorder characterized by alteration of the temporal
coding of acoustic signals in auditory fibers with consequent reducction of auditory per-
ceptions [1–3]. Disordered synchrony of auditory nerve activity has been suggested as
the basis of both the profound alterations of auditory brainstem responses (ABRs) and
reduction of speech perception [4].

Auditory neuropathy may be congenital or postlingual in onset. Congenital forms
affect the development of language (prelingual AN) [5]. When the onset of AN is delayed
to childhood or adult life (postlingual AN), alteration of temporal coding results in se-
vere impairment of speech perception and possible deterioration of acquired language
skills [2] Both congenital and postlingual forms of the disorder may be underlain by ge-
netic disorders or result from a huge range of other etiologies (infectious, toxic, metabolic,
immune) [2].

Diagnosis relies on decrease of speech perception beyond that expected for the hearing
loss, absence or profound abnormality of auditory brainstem responses, and normal outer
hair cell activities (otoacoustic emissions and/or cochlear microphonic). However, in some
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AN patients hearing thresholds are normal and the impairment of speech perception is
apparent only in the presence of noise [2,6–8]. In these cases, the evaluation of speech per-
ception in noise and psychoacoustical testing (gap detection, frequency discrimination) [3]
is mandatory.

Cochlear implantation is the only rehabilitative tool potentially able to restore speech
perception in patients affected by pre-synaptic AN [9,10] or post-synaptic AN involving
the distal portion of auditory fibers [11,12].

The most well-known forms of AN are due to gene mutations and the mechanisms
believed to be involved are functional alterations at pre- and post-synaptic sites, including
neurotransmitter release from synapses, spike initiation in auditory nerve fibers and
the neural dys-synchrony accompanying demyelination and axonal loss, all resulting in
impairment of auditory nerve discharge in response to acoustic stimuli [2,7].

In the last two decades, the identification of many genes involved in the pathogenesis
of AN has greatly contributed to the diagnosis and elucidation of the mechanisms under-
lying this disorder (Table 1). In these disorders AN may present as an isolated hearing
disorder (non-syndromic AN) or be associated with multisystem involvement (syndromic
AN) [2,7]. In general, most isolated forms of AN are underlain by presynaptic lesions,
whereas AN disorders with multisystem involvement are typically due to post-synaptic
damage affecting the auditory nerve [7].

We will review how electrocochleography (ECochG) can provide detailed information
to help objectively define the sites of auditory neural dysfunction as affecting inner hair
cell receptor summating potential (SP) and compound action potential (CAP), the latter
reflecting disorders of ribbon synapsis and auditory nerve fibers. This study mostly reflects
the experiences from the University of Padua Service of Audiology and Phoniatrics together
with the Institute of Neurological Sciences of the University of Bologna and the Servicio de
Genética of the Hospital Universitario Ramón y Cajal in Spain.

Table 1. Genetic disorders underlying AN.

Locus Gene Transmission Phenotype Reference

Isolated AN

2p23–p22 OTOF Recessive Congenital profound
deafness [13]

2q31.1–q31.3 PJVK Recessive Congenital profound
deafness [14]

13q21–q24 DIAPH3 Dominant Moderate to profound
deafness [15]

mtDNA 12S rRNA (T1095C) Moderate deafness [16]
12q23.1 SLC17A8 Dominant Progressive [17]

3P25.1 TMEM43 Dominant Post-lingual moderate to
profound deafness [18]

Non-isolated AN

CMT 1A 17p11.2–p12 PMP22 Dominant Mild to severe deafness;
demyelinating neuropathy [19]

CMT 1B 1q22 MPZ Dominant Mild to severe deafness;
demyelinating neuropathy [20]

CMT 2E 8p21 NF-L Dominant Normal hearing; axonal
neuropathy [21]

CMT 4D 8q24.3 NDRG1 Recessive
Mild to severe deafness;
axonal/demyelinating

neuropathy
[6,22]

CMT 1p34 GJB3 (Cx31) Dominant Mild deafness [23]
CMT 1X Xp13 GJB1 (Cx32) X-linked Dominant Demyelinating neuropathy [24]

ADOA 3q28–q29 OPA1 (R445H) Dominant Optic neuropathy; moderate
deafness [25]

ADOA 16q21–q22 Dominant Optic neuropathy, cardiac
abnormalities [26]
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Table 1. Cont.

Locus Gene Transmission Phenotype Reference

AROA 11q14.1–11q22.3 TMEM126A Recessive Optic neuropathy; mild
hearing loss [27]

Friedreich 9q13 FXN Recessive

Ataxia; axonal neuropathy;
optic neuropathy;

cardiomyopathy; normal
hearing threshold-mild

deafness

[28]

AUNX1 Xq23–q27.3 X-linked Recessive Sensory axonal neuropathy;
mild-to-severe deafness [29]

DDON (Mohr-
Tranebjaerg) Xq22.1 TIMM8A X-linked Recessive

Progressive deafness;
dystonia, optic neuropathy;

dementia
[30]

LHON (Leber) mtDNA MTND4
(11778mtDNA)

Optic neuropathy;
mild-to-moderate deafness [31]

Perrault 10q24.31 TWNK Recessive
Hypogonadism, cerebellar

atrophy, cochlear nerve
thinning

[32]

USH3A 3q25.1 CLRN1 Recessive Retinitis pigmentosa [33]

CAPOS 19q13.2 ATP1A3 Dominant Cerebellar ataxia, areflexia,
pes cavus, optic atrophy [34]

2. Electrocochleography (ECochG)

Electrocochleography (ECochG) recording is acquiring importance in the diagnosis
of auditory neuropathy since it allows us to define the details of both neural and receptor
responses in the various forms of the disorder [7,35,36]. The identification of specific
gene mutations combined with typical electrophysiological patterns may be the key factor
in localizing the site of lesions and in revealing how the failure of different molecular
processes underlies the varieties of AN.

The ECochG potentials evoked in response to acoustic stimuli result from the su-
perimposition of three components, two originating from receptor elements, the cochlear
microphonic (CM) and summating potential (SP); and the other, the compound action
potential (CAP), arising from auditory nerve fibers ([36] for a review). These components
are intermingled in the recordings obtained in response to stimuli of a given polarity and,
depending on the type and intensity of acoustic stimulation, cannot easily be distinguished
from one another. Figure 1 reports an example of ECochG potentials recorded from the
promontory wall in one subject with normal hearing in response to high-level 0.1 ms
click stimuli (110 dB peSPL). The recorded signals were amplified (50,000 times), filtered
(5–8000 Hz) and digitized (25 µs) and then averaged (500 trials). The procedure of aver-
aging the responses evoked separately by condensation and rarefaction clicks is applied
to extract the CAP with the superimposed SP [36]. The top panel displays the ECochG
potentials evoked by stimuli of opposite polarity. Superimposed responses to condensation
and rarefaction clicks show the phase-reversed CMs intermixed with negative in-phase
SP and CAP. Since CM activity is related to the basilar membrane motion, the procedure
of averaging the responses evoked separately by condensation, and rarefaction stimuli
is applied to extract the CAP together with the superimposed SP. This is shown in the
middle panel, where the condensation and rarefaction waveforms have been averaged
to cancel the CM and reveal the SP and CAP components. The averaged curve is then
subtracted from the response evoked by condensation (or rarefaction) stimuli to obtain the
CM (lower panel).
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syndromic form of DOA associated with several extra-ocular manifestations, such as sen-

Figure 1. ECochG potentials recorded in a normally-hearing individual at 110 dB nHL. The procedure
utilized to separate the cochlear microphonic (CM) from the compound action potential (CAP) and
summating potential (SP) is illustrated. The ECochG responses to condensation (C) and rarefaction
(R) clicks are superimposed in the top panel. The CAP together with the superimposed SP was
obtained by averaging the recordings to condensation and rarefaction clicks (C + R average) through
the attenuation of the out-of-phase cochlear microphonics (middle panel). The CM shown in the
lower panel results from subtracting the (C + R) average from the ECochG response to condensation
clicks. (Reprinted with permission from [35]).

CM is believed to originate mainly from the sum of the extra-cellular components
of receptor potentials arising in inner (IHCs) and outer hair cells (OHCs), with the latter
contributing more to CM generation because of their greater number [37].

SP is considered to be a gross reflection of the DC component of receptor poten-
tials, which results from asymmetries in the hair-cell transducer function. Because the SP
recorded at the round window in chinchillas has been found to decrease in amplitude by
over 50% after selective destruction of IHCs, the main contribution to SP generation is be-
lieved to arise from activation of IHCs located in the basal cochlear turn Durrant et al. [38].
More recently, Pappa et al. [39] have reported that SP recorded at the round window
in both gerbils and human beings results from the contribution of OHC and IHC recep-
tor potentials together with auditory nerve activation. Nevertheless, the SP recorded in
normally-hearing individuals in response to click stimuli at high intensity shows peak
latencies and mean peak latencies (<1 ms) [36], which rules out synaptic transmission and
then neural contribution to SP generation.
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CAP results from the weighted sum of the extracellular components of the action
potentials generated by individual auditory nerve fibers in response to acoustic stimula-
tion, with the main contribution coming from fibers showing high characteristic frequency
and short latency of activation localized to the basal portion of the cochlea [40]. Re-
cently, Bourien et al. [41] have shown that the CAP mostly reflects the contribution of
high- and medium-SR (spontaneous rate) fibers, while there is little to no contribution of
low-SR fibers.

3. Mutations in the OPA1 Gene: A Model of Post-Synaptic AN

Dominant optic atrophy (DOA) is the most common genetic optic neuropathy. The
hallmark of the disease is progressive visual loss beginning in childhood [42]. About
60–70% of DOA cases are caused by mutations in the nuclear gene encoding the OPA1
protein, a mitochondria GTPase embedded in the mitochondrial membrane. This pro-
tein is involved in fusion of the inner mitochondrial membrane [43], preservation of the
structure of mitochondrial cristae [44], maintenance of membrane potential and oxidative
phosphorylation [45].

Patients carrying missense mutations localized to the GTPase domain show a syn-
dromic form of DOA associated with several extra-ocular manifestations, such as sen-
sorineural hearing loss, peripheral neuropathy, ataxia, external ophthalmoplegia and
myopathy [46,47]. Sensorineural hearing loss affects about 60% of OPA1 patients and AN
has been proposed as the mechanism underlying the hearing disorder [11,25,47].

In the last decade, nine hearing-impaired subjects (age range of five–58 years) har-
boring missense mutations in the OPA1 gene have been diagnosed and followed up at the
University of Padua Service of Audiology and Phoniatrics, while their neurological and
ophthalmologic evaluation together with genetic analyses were performed at the Institute
of Neurological Sciences of University of Bologna [12]. In all patients vision problems
and difficulties in understanding speech began in childhood or adolescence. Audiolog-
ical assessment showed severe impairment in speech perception, absence or profound
abnormalities of auditory brainstem responses and the presence of otoacoustic emissions.

Transtympanic electrocochleography was performed in patients carrying missense mu-
tations in the OPA1 gene at decreasing stimulus intensities from 120 to 60 dB SPL. ECochG
waveforms were compared to the corresponding recordings obtained in 20 normally-
hearing controls. CM potentials were significantly larger in OPA1 patients compared to
controls, thus confirming preservation of outer hair cell activities. We hypothesized that
The increase of CM amplitude might result from reduced activity of the efferent system
resulting in turn from abnormal activation of auditory fibers.

Figure 2 illustrates the cochlear potentials obtained after CM cancellation from two
representative OPA1 patients at decreasing stimulus intensities. The recordings are su-
perimposed to the ECochG waveforms recorded in one normally-hearing control. In the
latter, the responses consist of the rapid receptor summating potential (SP) followed by
the synchronous neural compound action potential (CAP). Decreasing the stimulus level
results in progressive latency increase and amplitude reduction of both SP and CAP peaks.
In OPA1 patients the responses recorded at high intensity (120–100 dB SPL) begin with the
SP potential, which shows comparable amplitudes and latencies with respect to controls.
This finding points to preservation of IHC function. However, differently from controls, no
CAP was recorded as SP was followed by a low-amplitude prolonged negative potential,
which returned to baseline at 8–9 ms from response onset. This prolonged potential has
been interpreted as resulting from abnormal activation of the terminal dendrites of audi-
tory nerve fibers. This hypothesis was confirmed by the reduction in both amplitude and
duration of ECochG potentials during high-rate stimulation, which is consistent with their
neural generation.
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Figure 2. ECochG waveforms recorded from OPA1 patients. In the left panel the ECochG recordings from two OPA1-M
patients are superimposed on the corresponding waveforms obtained in one control at decreasing stimulus intensity. In
OPA1 patients no CAP was recorded, the ECochG response showing the SP followed by prolonged potential. In this and the
subsequent figure time “0” refers to CM onset. In the right panel means and standard errors of peak latency, amplitude
and duration of cochlear potentials from OPA1 patients are superimposed on the corresponding values calculated for
20 controls with normal hearing. No differences in SP peak latency and values were found between OPA1 subjects and
controls, whereas the duration of cochlear potentials was significantly increased in the group of OPA1 patients. (Modified
from [12]).

All patients had tried hearing aids without benefit. Eight patients received unilateral
cochlear implants in order to improve speech perception by electrical stimulation of audi-
tory fibers through the cochlear implant. Overall, speech perception remarkably improved
in all cochlear implant recipients also in the presence of competing noise, although con-
siderable variation of speech perception scores between was observed. Interestingly, no
compound action potential was recorded in response to electrical stimulation through the
cochlear implant, which confirmed the presence of neural damage. In contrast, brainstem
potentials were restored in response to electrical stimulation. This finding supports the
hypothesis that the hearing disorder affecting OPA1 patients is underlain by degeneration
of the distal portion of auditory nerve fibers. Cochlear implantation restores synchronous
activation of auditory pathways by by-passing the site of the lesion.

Overall, these findings indicate that in patients carrying OPA1 missense mutations
neural degeneration affecting the terminal dendrites results in a disruption of synchrony
of auditory nerve fiber activity. Cochlear implantation improves speech perception in
post-synaptic AN associated with OPA1 disease. However, a positive outcome of cochlear
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implant use was not invariably reported for all forms of post-synaptic AN, variability being
possibly dependent on both the sites and extension of the lesion along auditory nerve
fibers. Indeed, a variable improvement of speech perception scores has been reported with
cochlear implant use in patients with AN associated with Friedreich ataxia [48,49].

The findings collected in families carrying mutations in the OPA1 gene indicated
that combination of findings from genetic research and high-sensitive neurophysiologic
recordings plays a crucial role in clarifying both mechanisms and sites underlying the
abnormal synchrony of auditory fiber firing.

4. Mutations in the OTOF Gene: A Model of Synaptopathy

One well-studied form of presynaptic AN is caused by mutations in the OTOF gene
encoding otoferlin [13,50]. Otoferlin is a transmembrane protein, localized to the synaptic
pole in mature IHCs, which has been implicated in multivesicular release at the synapse
between the IHCs and auditory nerve fibers [51] as well as in fast vesicle replenishment [52].

Mutations in the OTOF gene result in a disrupted function of the ribbon synapses
with an impaired multivesicular glutamate release and vesicle replenishment. The majority
of subjects carrying mutations in the OTOF gene present with the phenotype of congen-
ital profound hearing loss, the absence of auditory brainstem potentials associated with
preserved cochlear hair cell activities (OAEs, CM) [13,50].

In the last ten years, ten hearing-impaired children (age range of four month to
three years) harboring biallelic mutations of the OTOF gene have been diagnosed and
followed up at the University of Padua Service of Audiology and Phoniatrics, while
their genetic analyses were performed at the Hospital Ramón y Cajal in Madrid [9,53]. All
children showed profound hearing loss and absent ABRs and presence of distortion product
otoacoustic emissions (DPOAEs). Moreover, ECochG recordings showed no differences in
CM amplitude between OTOF patients and a group of 20 normally-hearing controls, thus
confirming the preservation of OHC function. The audiological and electrophysiological
findings collected in a representative patient are displayed in Figure 3. ECochG waveforms
obtained after CM cancellation at high intensity (120–100 dB peSPL) are superimposed
on the corresponding responses collected from one normally-hearing control. ECochG
potentials begin with a rapid negative deflection that peaks at the same SP peak latency as
in the normal control, and is of a comparable amplitude, which points to preservation of
the IHC function. No CAP was recorded in the hearing-impaired child carrying mutations
in the OTOF gene, as the SP is followed by a low-amplitude negative potential showing
a markedly prolonged duration. Nevertheless, a small CAP is superimposed on the
prolonged activity at high intensity in some children.

The prolonged potentials are likely to result from the sum of EPSPs arising in the
terminal dendrites, which are dispersed in time as a consequence of the impaired multi-
vesicle release. EPSPs only occasionally reach the threshold for triggering action potentials
in some OTOF patients, and are recorded as high-threshold CAPs superimposed on the
prolonged activity at high intensity. Therefore, the impaired multivesicular release is likely
to result in a lesser probability of synchronized neural spiking and in a reduced signaling
to the auditory brainstem pathways in comparison with normal hearing.

All children harboring OTOF mutations diagnosed at our department underwent
unilateral cochlear implantation. They showed a remarkable improvement in hearing
sensitivity and all reached speech perception scores of 90–100% by one year of cochlear
implant use. Moreover, language development was in line with the language skills of their
peers using cochlear implants whose deafness was related to causes other than mutations
in the OTOF gene.



Audiol. Res. 2021, 11 646

Audiol. Res. 2021, 11, FOR PEER REVIEW  8 
 

 

4. Mutations in the OTOF Gene: A Model of Synaptopathy 

One well-studied form of presynaptic AN is caused by mutations in the OTOF gene 

encoding otoferlin [13,50]. Otoferlin is a transmembrane protein, localized to the synaptic 

pole in mature IHCs, which has been implicated in multivesicular release at the ribbon 

synapse between the IHCs and auditory nerve fibers [51] as well as in fast vesicle replen-

ishment [52]. 

Mutations in the OTOF gene result in a disrupted function of the ribbon synapses 

with an impaired multivesicular glutamate release and vesicle replenishment. The major-

ity of subjects carrying mutations in the OTOF gene present with a very homogeneous 

phenotype of congenital profound hearing loss, the absence of auditory brainstem poten-

tials associated with preserved cochlear hair cell activities (OAEs, CM) [13,50]. 

In the last ten years, ten hearing-impaired children (age range of four month to three 

years) harboring biallelic mutations of the OTOF gene have been diagnosed and followed 

up at the University of Padua Service of Audiology and Phoniatrics, while their genetic 

analyses were performed at the Hospital Ramón y Cajal in Madrid [9,53]. All children 

showed profound hearing loss and absent ABRs and presence of distortion product otoa-

coustic emissions (DPOAEs). Moreover, ECochG recordings showed no differences in CM 

amplitude between OTOF patients and a group of 20 normally-hearing controls, thus con-

firming the preservation of OHC function. The audiological and electrophysiological find-

ings collected in a representative patient are displayed in Figure 3. ECochG waveforms 

obtained after CM cancellation at high intensity (120–100 dB peSPL) are superimposed on 

the corresponding responses collected from one normally-hearing control. ECochG po-

tentials begin with a rapid negative deflection that peaks at the same SP peak latency as 

in the normal control, and is of a comparable amplitude, which points to preservation of 

the IHC function. No CAP was recorded in the hearing-impaired child carrying mutations 

in the OTOF gene, as the SP is followed by a low-amplitude negative potential showing a 

markedly prolonged duration. Nevertheless, a small CAP is superimposed on the pro-

longed activity at high intensity in some children. 

 
Figure 3. Hearing thresholds and DPOAEs, ABRs and ECochG recordings collected from one child carrying two mutant
alleles of the OTOF gene. The audiometric assessment performed in the free field using visual reinforcement audiometry
indicated profound hearing loss. DPOAEs were recorded from both ears, whereas ABRs were absent. ECochG potentials
obtained after CM cancellation are superimposed on the ECochG waveforms obtained in one normally-hearing control.
ECochG waveforms begin with the SP, which is followed by a low-amplitude negative potential showing a markedly
prolonged duration compared to the control. A small CAP was recorded at high intensity. (Modified from [9]).

Unlike patients with post-synaptic AN, the implanted children with otoferlin-related
deafness showed electrically-evoked auditory nerve potentials (e-CAPs) in response to
electrical stimulation through the cochlear implant, consistent with preservation of auditory
nerve function. Based on these findings, the outcome of cochlear implantation in patients
with presynaptic AN due to OTOF mutations is expected to be successful.

In addition, it is worthy of note that recent studies on animal models of OTOF showed
successful preliminary results by using gene therapy [54,55].

5. Hearing Dysfunction Related to the OPA8 Locus: A Model of Hidden AN

Hidden auditory neuropathy is characterized by reduced performances in challenging
auditory tasks with preservation of hearing thresholds. This condition results from loss of
synapses which ensues from degeneration of the unmyelinated portion of auditory nerve
fibers [56].

Hidden AN has been observed in ten members of a large Italian family affected by
DOA associated with the OPA8 locus (age range 19–72 years) [8,26]. Their neurological
and ophthalmologic assessment was performed at the Institute of Neurological Sciences of
University of Bologna.

Affected subjects complained of difficulties in understanding speech in the presence
of noise. Hearing thresholds and speech perception were normal in the youngest members
of this family, whereas the oldest patients showed mild hearing loss at high frequencies
and decreased speech perception scores in the presence of noise. OAEs and CM recordings
were within normal limits, thus indicating preservation of OHC function in all patients. In



Audiol. Res. 2021, 11 647

contrast, ABRs showed attenuated amplitudes in the youngest patients and severe abnor-
malities in the oldest. In addition, Wave I amplitude was significantly reduced compared
to normally-hearing individuals, consistent with degeneration of IHCs synapses [57].

All subjects were submitted to ECochG recording. Figure 4 reports the ECochG
potentials obtained in four OPA8 subjects, two with normal hearing thresholds and two
with mild hearing loss, superimposed on the corresponding ECochG waveforms recorded
in two controls. Of these, one had normal hearing while the other had a mild hearing loss
of cochlear origin. In OPA8 patients the ECochG waveforms begin with the SP potential,
which showed reduced amplitudes and increased latencies in comparison to recordings
obtained from controls. SP potential was followed by the CAP, which showed a smaller
amplitude and an increased peak latency in comparison with controls. The reduction in
amplitude and the delay in peak latency of ECochG components were more pronounced
in the group of older OPA8 patients showing mild hearing loss (Figure 5). These findings
support the hypothesis that in the youngest members of the OPA8 family synaptic damage
was far less pronounced [8].
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individual values obtained in OPA8 patients (Modified from [8]).

The decrease in amplitude of both SP and CAP points to a decrease of the cochlear
output, whereas the increase of both CAP peak latency and duration points to a selective
reduction of auditory fibers from the basal portion of the cochlea. This is consistent
with the audiometric profile of the oldest OPA8 patients showing mild hearing loss at
high frequencies.
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These findings indicate that in OPA8 patients hidden AN results from loss of IHCs
synapses. At an early stage of the disease, the functional alterations only consist of
abnormalities of ABR Wave I while the cochlear potentials show a decrease in amplitude
and prolongation in latency of both SP and CAP. At this stage speech perception is relatively
preserved. A reduction in speech perception scores and the worsening of cochlear potentials
alterations become apparent only with progression of the disease.

6. Conclusions and Future Directions

AN disorders associated with gene mutations constitute a group of hearing dysfunc-
tions resulting from different pathophysiological mechanisms. The identification of specific
gene mutations combined with typical electrophysiological patterns may be the key factor
in revealing how the failure of different molecular processes underlies the varieties of AN.
This information is crucial for selecting effective rehabilitative options. In addition, the
development of new electrophysiological tools may help in identifying neural and receptor
components in the ECochG recordings collected from AN patients [58].
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32. Ołdak, M.; Oziębło, D.; Pollak, A.; Stępniak, I.; Lazniewski, M.; Lechowicz, U.; Kochanek, K.; Furmanek, M.; Tacikowska, G.;
Plewczynski, D.; et al. Novel neuro-audiological findings and further evidence for TWNK involvement in Perrault syndrome. J.
Transl. Med. 2017, 15, 25. [CrossRef]

33. Dulon, D.; Papal, S.; Patni, P.; Cortese, M.; Vincent, M.; Tertrais, M.; Emptoz, A.; Tlili, A.; Bouleau, Y.; Michel, V.; et al. Clarin-1
gene transfer rescues auditory synaptopathy in model of Usher syndrome. J. Clin. Investig. 2018, 128, 3382–3401. [CrossRef]

http://doi.org/10.1016/j.brainres.2009.08.083
http://www.ncbi.nlm.nih.gov/pubmed/19733158
http://doi.org/10.1093/brain/awu378
http://doi.org/10.1002/humu.10274
http://doi.org/10.1038/ng1829
http://doi.org/10.1073/pnas.1003027107
http://doi.org/10.1136/jmg.2005.037929
http://doi.org/10.1001/archotol.129.8.830
http://doi.org/10.1073/pnas.2019681118
http://doi.org/10.1002/ajmg.10223
http://doi.org/10.1093/brain/awg156
http://doi.org/10.1016/j.clinph.2007.10.004
http://doi.org/10.1086/302978
http://doi.org/10.1093/hmg/10.9.947
http://doi.org/10.1136/jnnp.66.2.202
http://doi.org/10.1002/ana.20681
http://doi.org/10.1093/hmg/ddr071
http://www.ncbi.nlm.nih.gov/pubmed/21349918
http://www.ncbi.nlm.nih.gov/pubmed/20405026
http://doi.org/10.1093/brain/awn104
http://doi.org/10.1002/ajmg.a.30424
http://doi.org/10.1097/MLG.0b013e3180581944
http://doi.org/10.1136/jnnp.2003.017673
http://www.ncbi.nlm.nih.gov/pubmed/15026512
http://doi.org/10.1186/s12967-017-1129-4
http://doi.org/10.1172/JCI94351


Audiol. Res. 2021, 11 651

34. Tranebjærg, L.; Strenzke, N.; Lindholm, S.; Rendtorff, N.D.; Poulsen, H.; Khandelia, H.; Kopec, W.; Lyngbye, T.J.B.; Hamel, C.;
Delettre, C.; et al. The CAPOS mutation in ATP1A3 alters Na/K-ATPase function and results in auditory neuropathy which has
implications for management. Qual. Life Res. 2018, 137, 111–127. [CrossRef]

35. Santarelli, R.; Starr, A.; Michalewski, H.J.; Arslan, E. Neural and receptor cochlear potentials obtained by transtympanic
electrocochleography in auditory neuropathy. Clin. Neurophysiol. 2008, 119, 1028–1041. [CrossRef]

36. Santarelli, R.; Arslan, E. Electrocochleography. In Handbook of Clinical Neurophysiology; Celesia, G.G., Ed.; Disorders of Peripheral
and Central Auditory Processing; Elsevier: Amsterdam, The Netherlands, 2013; pp. 83–113.

37. Dallos, P.; Cheatham, M.A. Production of cochlear potentials by inner and outer hair cells. J. Acoust. Soc. Am. 1976, 60, 510–512.
[CrossRef]

38. Durrant, J.D.; Wang, J.; Ding, D.L.; Salvi, R.J. Are inner or outer hair cells the source of summating potentials recorded from the
round wi‘ndow? J. Acoust. Soc. Am. 1998, 104, 370–377. [CrossRef]

39. Pappa, A.K.; Hutson, K.A.; Scott, W.C.; Wilson, J.D.; Fox, K.E.; Masood, M.M.; Giardina, C.K.; Pulver, S.H.; Grana, G.D.; Askew,
C.; et al. Hair cell and neural contributions to the cochlear summating potential. J. Neurophysiol. 2019, 121, 2163–2180. [CrossRef]

40. Goldstein, M.H.; Kiang, N.Y. Synchrony of Neural Activity in Electric Responses Evoked by Transient Acoustic Stimuli. J. Acoust.
Soc. Am. 1958, 30, 107–114. [CrossRef]

41. Bourien, J.; Tang, Y.; Batrel, C.; Huet, A.; Lenoir, M.; Ladrech, S.; Desmadryl, G.; Nouvian, R.; Puel, J.-L.; Wang, J. Contribution of
auditory nerve fibers to compound action potential of the auditory nerve. J. Neurophysiol. 2014, 112, 1025–1039. [CrossRef]

42. Carelli, V.; Ross-Cisneros, F.N.; Sadun, A.A. Mitochondrial dysfunction as a cause of optic neuropathies. Prog. Retin. Eye Res.
2004, 23, 53–89. [CrossRef]

43. Olichon, A.; Guillou, E.; Delettre, C.; Landes, T.; Arnauné-Pelloquin, L.; Emorine, L.J.; Mils, V.; Daloyau, M.; Hamel, C.;
Amati-Bonneau, P.; et al. Mitochondrial dynamics and disease, OPA1. Biochim. Biophys. Acta 2006, 1763, 500–509. [CrossRef]
[PubMed]

44. Frezza, C.; Cipolat, S.; De Brito, O.M.; Micaroni, M.; Beznoussenko, G.V.; Rudka, T.; Bartoli, D.; Polishuck, R.S.; Danial, N.N.;
De Strooper, B.; et al. OPA1 Controls Apoptotic Cristae Remodeling Independently from Mitochondrial Fusion. Cell 2006, 126,
177–189. [CrossRef]

45. Lodi, R.; Tonon, C.; Valentino, M.L.; Iotti, S.; Clementi, V.; Malucelli, E.; Barboni, P.; Longanesi, L.; Schimpf, S.; Wissinger, B.;
et al. Deficit of in vivo mitochondrial ATP production in OPA1-related dominant optic atrophy. Ann. Neurol. 2004, 56, 719–723.
[CrossRef]

46. Amati-Bonneau, P.; Valentino, M.L.; Reynier, P.; Gallardo, M.E.; Bornstein, B.; Boissière, A.; Campos, Y.; Rivera, H.; de la Aleja,
J.G.; Carroccia, R.; et al. OPA1 mutations induce mitochondrial DNA instability and optic atrophy ’plus’ phenotypes. Brain 2008,
131, 338–351. [CrossRef]

47. Yu-Wai-Man, P.; Griffiths, P.G.; Gorman, G.S.; Lourenco, C.M.; Wright, A.F.; Auer-Grumbach, M.; Toscano, A.; Musumeci, O.;
Valentino, M.L.; Caporali, L.; et al. Multi-system neurological disease is common in patients with OPA1 mutations. Brain A J.
Neurol. 2010, 133, 771–786. [CrossRef]

48. Miyamoto, R.T.; Kirk, K.H.; Renshaw, J.; Hussain, D. Cochlear Implantation in Auditory Neuropathy. Laryngoscope 1999, 109,
181–185. [CrossRef]

49. Frewin, B.; Chung, M.; Donnelly, N. Bilateral cochlear implantation in Friedreich’s ataxia: A case study. Cochlear Implants Int.
2013, 14, 287–290. [CrossRef]

50. Rodríguez-Ballesteros, M.; Reynoso, R.; Olarte, M.; Villamar, M.; Morera, C.; Santarelli, R.; Arslan, E.; Medá, C.; Curet, C.;
Völter, C.; et al. A multicenter study on the prevalence and spectrum of mutations in the otoferlin gene (OTOF) in subjects with
nonsyndromic hearing impairment and auditory neuropathy. Hum. Mutat. 2008, 29, 823–831. [CrossRef]

51. Roux, I.; Safieddine, S.; Nouvian, R.; Grati, M.; Simmler, M.-C.; Bahloul, A.; Perfettini, I.; Le Gall, M.; Rostaing, P.; Hamard, G.;
et al. Otoferlin, Defective in a Human Deafness Form, Is Essential for Exocytosis at the Auditory Ribbon Synapse. Cell 2006, 127,
277–289. [CrossRef]
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