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Background: Cognition and gait have often been studied separately after stroke

whereas it has been suggested that these two domains could interact through a

cognitive-motor interference.

Objective: To evaluate the influence of gait changes on cognitive outcome after an

ischemic stroke (IS).

Methods: We conducted a prospective and monocentric study including patients

admitted for an acute supratentorial IS with a National Institute of Health Stroke

Score≤ 15. Cognition, gait andmotor disability were evaluated at baseline, 3months and

1 year post-stroke, using the Montreal Cognitive Assessment (MoCA), the 10-m walking

test (10-MWT) and the Fugl-Meyer motor assessment (FMMA). The effect of changes in

10-MWT over the year of follow-up on MoCA changes was estimated using a generalized

linear mixed model with FMMA, age and gender as covariates.

Results: Two hundred and Twelve patients were included (71% male, age 64 ± 13

years old). 10-MWT improved from baseline to 1 year (p < 0.001), as did MoCA (p <

0.001) and FMMA (p < 0.001) scores. Ninety-nine patients (47%) had a MoCA < 26

at 1 year. Changes in 10-MWT were independently associated with changes in MoCA

(β = −0.2, 95% CI −0.24 to −0.07, Bonferroni-corrected p-value = 0.002). Analyses

of MoCA sub-scores suggested that changes in gait performance was associated with

changes in executive functions and recall.

Conclusion: Gait performance is associated with cognitive outcome after a mild to

moderate IS, suggesting that they should be managed together to improve post-stroke

independence.
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INTRODUCTION

Cognitive and walking impairment are two major sources of post-stroke disability. Although
most of the stroke survivors experience some degrees of recovery in walking within the first
months following symptom onset, gait disturbances can persist and worsen functional outcome
(Baetens et al., 2013). The burden of cognitive and gait impairment has often been studied
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separately while the cognitive effort required to detect
environmental changes and to compensate postural
perturbations when walking suggests that these two domains
should be evaluated together (Montero-Odasso et al., 2012).
The strong interaction between cognition and gait has been
well-described in neurodegenerative disorders. Indeed, slowing
gait has been observed among patients with mild cognitive
impairment (Montero-Odasso et al., 2012), while cognitive
impairment could worsen motor abilities among patients
with parkinsonism (Amboni et al., 2012). More recently, this
cognitive-motor interference has been evaluated in post-stroke
studies (Haggard et al., 2000; Cockburn et al., 2003; Chen et al.,
2013), suggesting both concurrent gait and cognitive worsening
in dual tasks. A trend for the functional benefit of cognitive-
motor training on gait performance and dual task performance
following stroke has been observed in some studies, reinforcing
the clinical relevance of a combined evaluation of cognition
and gait (Montero-Odasso et al., 2012). However, most of these
studies included small samples of patients, did not consider the
dynamic process of post-stroke cognitive evolution and used
specific tasks with high cognitive effort, which are difficult to
apply in clinical practice.

The aim of the present study was to evaluate the relationship
between changes in gait performance assessed by walking speed
and cognitive outcome, evaluated by the Montreal Cognitive
Assessment scale (MoCA; 7) over a 1-year follow-up period in
a large sample of patients suffering from a recent ischemic stroke.

MATERIALS AND METHODS

Inclusion/Exclusion Criteria
Patients were recruited prospectively in a single center, the
Bordeaux University Hospital, from June 2012 to February 2015.
Inclusion criteria were men or women aged over 18 years old,
diagnosed with a supratentorial ischemic stroke between 24 and
72 h from onset (baseline) and with a National Institute of Health
Stroke Score (NIHSS) comprised between 1 and 15. Exclusion
criteria were a pre-stroke modified Rankin scale (mRS) ≥ 1,
pre-stroke dementia, psychiatric disorder matching with axis
1 DSM-IV criteria, history of chronic disease compromising
patient’s follow-up at 1 year, and incapacity to perform the
tests due to severe hemiplegia or aphasia. Demographic data
and cardiovascular risk factors were recorded, as well as the
treatment in the acute phase with intravenous thrombolysis.
This study was part of the “Brain Before Stroke” (BBS) study,
a biomedical research protocol that was accepted by the local
ethical board (CPP 2012/19 2012-A00190-43). An informed
consent was signed by all patients.

Clinical Evaluations
Patients were evaluated at baseline, 3 months and 1 year using
a standardized cognitive and motor evaluation. This evaluation
was performed in a dedicated room of the stroke unit, by a stroke
neurologist together with a trained clinical research assistant,
except for the Fugl-Meyer Assessment (FMA; Fugl-Meyer, 1980)
which was performed by a physical therapist. Global cognitive
performance was assessed by the MoCA scale (Nasreddine et al.,

2005), a 30-point score including sub-scores for the evaluation
of visuospatial and executive functions (5 points), naming (3
points), attention (6 points), language (3 points), abstraction (2
points), recall (5 points) and orientation (6 points). A different
version of the MoCA was used at each time point to avoid
learning effects. Gait speed was assessed with the 10-m walk test
(10-MWT; Graham et al., 2008). Patients were asked to walk
at a usual pace during two trials and the mean time to assess
these two trials, expressed in seconds, was reported. No verbal
instruction was given during the walking task. Global neurologic
deficit and motor function were evaluated with the NIHSS at
baseline, together with the total FMA and its motor sub-score
(FMMA; Bushnell et al., 2015) at baseline, 3 months and 1 year.
Mood changes were assessed at these three time-points using
the Hospital Anxiety and Depression scale (HAD; Zigmond and
Snaith, 1983). Functional outcome was evaluated using mRS at

TABLE 1 | Demographic, clinical and radiological data.

N = 212

Age, mean (SD) 64 ± 13

Male, n (%) 151 (71)

Cardiovascular risk factors, N (%)

Hypertension 105 (50)

Diabetes mellitus 35 (17)

Current smoking 58 (27)

Dyslipemia 87 (41)

History of atrial fibrillation 26 (12)

NIHSS at baseline, mean (SD) 3.7 ± 3.3

Intravenous thrombolysis, n (%) 100 (47)

mRS ≤ 2, n (%)

3 months 191 (90)

1 year 197 (93)

HAD, median (IQR)

Baseline 8 (4–13)

3 months 9 (5–13)

1 year 8 (4–13)

Stroke subtypes (TOAST classification), n (%)

Large-artery atherosclerosis 30 (14)

Cardioembolism 54 (26)

Small-vessel disease 20 (9)

Other 8 (4)

Undetermined 100 (47)

White matter hyperintensities (fazekas classification), N (%)

Periventricular

0 20 (9)

1 109 (52)

2 51 (24)

3 32 (15)

Deep white matter

0 43 (20)

1 98 (46)

2 38 (18)

3 33 (16)
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3 months and 1 year during a medical visit (van Swieten et al.,
1988). Functional independence was defined by a mRS ≤ 2.

Additionally, stroke subtypes were classified according to
the Trial of Org 10172 in Acute Stroke Treatment (TOAST)
classification (Adams et al., 1993). Periventricular and deep white
matter hyperintensities were assessed by a stroke neurologist
blinded to clinical evaluation, using the Fazekas classification
(Fazekas et al., 1987) on Fluid-attenuated inversion recovery
sequences (TE/TR/TI 142.8/9000/2358, FOV 24× 24 cm2, matrix
288 × 224, 3 Tesla brain MRI General Electrics Medical Systems
Discovery MR750W).

Statistical Analysis
Quantitative variables were expressed as means and standard
deviations (SD) or medians and interquartile ratios (IQR), and
qualitative variables were expressed as percentages. Comparisons
of quantitative variables between baseline, 3 months and 1 year
were performed using aWilcoxon rank-sign test after verification
of the required conditions.

Cognitive impairment was defined by a MoCA score < 26
at 1 year post-stroke (Lees et al., 2014). A cut-off of <26
is usually used to detect single-domain cognitive impairment
with a good sensitivity (Lees et al., 2014). Comparisons of
demographic and clinical data between groups of MoCA < 26
and ≥ 26 at 1 year were performed using unpaired two-samples
Wilcoxon test or Chi 2 test for qualitative variables. Estimation
of gait effects on cognitive outcome was evaluated using a
generalized linear mixed model with random slopes fitted by
restricted maximum likelihood (Breslow and Clayton, 1993;
Chu et al., 2011). A mixed effect model has the advantage of
assessing the association between changes in gait and cognitive
performance over the longitudinal follow-up while including
fixed effect predictors and random effects. We first performed

bivariate analyses with the total MoCA score as the dependent
variable, and 10-MWT, FMMA, age and gender as fixed effects.
These intermediate analyses are presented as Table S1. We then
performedmultivariate analysis including all significant variables
(p < 0.05) from the bivariate analysis. The model was validated
by a visual inspection of histograms showing that residuals and
random slopes had a nearly normal distribution. Analyses were
repeated for each MoCA sub-score. Statistical analyses were
performed with R software version 3.2.4, and the “lmerTest”
package was used for the construction of generalized linear
mixed models. Statistical significance was set at 0.05 for all tests.
Statistical adjustment for multiple tests (Bonferroni correction)
was used for the multivariate analysis.

RESULTS

Two hundred and Twelve patients were included in the analysis
(71% male, mean age 64 ± SD 13 years old, 90% right-handed).
Demographic data, stroke subtypes and severity of white matter
hyperintensities are presented in Table 1. Clinical scores from
baseline to the 1 year follow-up are summarized in Table 2. Total
MoCA scores significantly improved from 24 (20–27), median
(IQR) at baseline, to 26 (23–28) at 1 year (p < 0.001). All MoCA
sub-scores improved between the three time-points. Likewise,
FMMA scores improved from 96 (87–99), median (IQR) at
baseline to 99 (96–100) at 1 year (p < 0.001). 10-MWT also
improved between baseline and 1 year (11 ± 3.7 s, mean ± SD,
vs. 9.9 ± 4.9, p < 0.001). Improvement in 10-MWT and FMMA
scores mainly occurred in the first 3 months following stroke
onset. There was no significant change in HAD scores between
the three time-points (Table 1).

At 1 year post-stroke, 99 patients (47%) were cognitively
impaired with a MoCA score < 26. Patients with cognitive

TABLE 2 | Clinical scores at the three time-points.

N = 212 Baseline 3 months 1 year p-value†

(a) (b) (c) a–b b–c a–c

MoCA/30, mean (SD) 22.1 (6.3) 24.3 (4.6) 25 (4.1) <0.001 <0.001 <0.001

Median (IQR) 24 (20–27) 25 (22–28) 26 (23–28)

Executive and visuospatial functions/5 3.2 (1.7) 3.8 (1.2) 3.9 (1.2) <0.001 NS <0.001

Naming/3 2.8 (0.6) 2.8 (0.5) 2.9 (0.4) NS NS 0.03

Attention/6 4.6 (1.8) 4.9 (1.5) 5 (1.4) 0.006 NS <0.001

Language/3 2.2 (0.9) 2.4 (0.7) 2.4 (0.8) 0.002 NS 0.002

Abstraction/2 1.4 (0.7) 1.5 (0.6) 1.6 (0.6) NS 0.009 0.003

Recall/5 2.4 (1.8) 3.1 (1.7) 3.3 (1.6) <0.001 0.03 <0.001

Orientation/6 5.5 (1.3) 5.8 (0.7) 5.8 (0.6) <0.001 NS <0.001

10-MWT (seconds), mean (SD) 11.9 (3.7) 9.7 (3.9) 9.9 (4.9) <0.001 NS <0.001

FMA, MEDIAN (IQR)

Total/242 227 (211–237) 236 (229–240) 237 (232–240) <0.001 NS <0.001

FMMA/100 96 (87–99) 98 (95–100) 99 (96–100) <0.001 NS <0.001

NS, Not Significant; IQR, interquartile ratio; SD, standard deviation; 10-MWT, 10-m walk test; FMA, Fugl-Meyer Assessment; FMMA, Fugl-Meyer Motor Assessment; NIHSS, National

Institute of Health Stroke Scale; mRS, modified Rankin scale; MoCA subscores are expressed as means (SD).
†
Wilcoxon rank-sign test.
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impairment at 1 year were older (Table 3) and had 10-MWT
scores significantly higher at 3 months and 1 year than patients
without cognitive impairment (Figure 1). The rate of patients
with functional independence at 1 year was significantly lower
in the group with cognitive impairment (mRS ≤ 2: 88% vs. 97%
in the group MoCA < 26 and ≥ 26, respectively, p= 0.007). The
two groups were comparable in terms of history of hypertension,
diabetes mellitus, NIHSS at baseline and FMMA at 1 year.

As 10-MWT at baseline was similar in the two groups but
different at 3 months and 1 year, we analyzed the relationship
between changes in 10-MWT over the year of follow-up and
the evolution of MoCA scores. Using a generalized linear
mixed model, changes in 10-MWT were significantly associated
with changes in MoCA scores (corrected p = 0.002, Table 4)

TABLE 3 | Clinical scores by groups of MoCA measured at 1 year.

MoCA < 26

N = 99

MoCA ≥ 26

N = 113

p

Age, mean (SD) 70 (12) 59.4 (12.6) <0.001†

Male, n (%) 64 (65%) 87 (77%) 0.05‡

Hypertension, n (%) 54 (54.5) 51 (45.1) 0.17‡

Diabetes mellitus, n (%) 19 (19.2) 16 (14.2) 0.3‡

NIHSS at baseline, mean (SD) 4 (3.5) 3.4 (3.1) 0.19†

HAD at baseline, median (IQR) 9 (3.25–14) 8 (4–11.5) 0.4†

HAD at 1 year, median (IQR) 9 (6–14) 8 (5–13) 0.2†

10-MWT at baseline, mean (SD) 11.7 (2.7) 12 (4.3) 0.6†

10-MWT at 1 year, mean (SD) 10.39 (4.01) 9.57 (5.63) 0.004†

FMMA at baseline, median (IQR) 94 (84–98) 96.5 (88.5–99) 0.03†

FMMA at 1 year, median (IQR) 98 (96–100) 99 (96–100) 0.2†

mRS ≤ 2 at 1 year, n (%) 87 (88) 110 (97) 0.007‡

SD, standard deviation; IQR, interquartile ratio; HAD, Hospital Anxiety and Depression

scale; 10-MWT, 10-m walk test; FMMA, Fugl-Meyer Motor Assessment; mRS, modified

Rankin scale.
†
Unpaired two-samples Wilcoxon test,

‡
Chi 2 test.

independently of age, gender and FMMA severity. To evaluate
whether the association between gait and cognition concerned a
specific cognitive domain, we considered the sub-scores of the
MoCA. Changes in gait performance over 1 year were associated
with changes in executive functions (β = −0.04, 95% confidence
interval [95% CI] −0.07 to −0.01, corrected p = 0.01) together
with changes in recall (β = −0.06, 95% CI −0.1 to −0.03,
corrected p= 0.002, Table 4).

DISCUSSION

The main results of this study are that (i) in a population of
mild to moderate stroke, change in gait function over 1-year
post-stroke is associated with the evolution of global cognitive
performance; and (ii) among the cognitive domains, executive
functions and recall are the most linked to change in gait velocity.

Some cross-sectional studies have already identified a strong
association between gait and post-stroke cognition but few
used longitudinal evaluation to assess the interaction between
these two functions (Haggard et al., 2000). In addition, these
studies mostly focused on the influence of dual-task cognitive
stimulation on gait patterns, which is difficult to translate into
clinical practice. In order to improve the feasibility of such
evaluations in routine practice, we used the MoCA which allows
for an evaluation of global cognitive performance. Moreover, it
offers the possibility of exploring which cognitive domains are
the most relevant in tasks with cognitive interference such as gait
(Nasreddine et al., 2005). The MoCA has been frequently used
in studies which explored the evolution of post-stroke cognitive
impairment. Recently, Delavaran et al. (2016) have reported that
61% of stroke patients with a median NIHSS at baseline of 3 had
cognitive impairment 10-year post-stroke. They suggested that
the MoCA was more accurate in the detection of long-term post-
stroke cognitive impairment as compared to other scales such as
the Mini-Mental State Evaluation. Moreover, Nijsse et al. (2017)
detected 66.4 and 51.9% of post-stroke cognitive impairment

FIGURE 1 | Changes in 10-MWT and FMMA by groups of MoCA measured at 1 year. Graphs show medians, first and third quartiles, and ranges.
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TABLE 4 | Multivariate analyses.

Changes in scores

N = 212

Estimate β 95% CI p†

TOTAL MoCA

10-MWT −0.2 −0.24; −0.07 0.002

FMMA −0.0006 −0.04; 0.03 NS

Age −0.09 −0.13; −0.05 <0.001

Male 0.05 −1.1; 1.2 NS

EXECUTIVE AND VISUOSPATIAL FUNCTIONS

10-MWT −0.04 −0.07; −0.01 0.01

FMMA −0.003 −0.01; 0.01 NS

Age −0.02 −0.04; −0.01 <0.001

Male 0.3 0.04; 0.06 0.03

NAMING

10-MWT −0.002 −0.01; 0.008 NS

FMMA 0.002 −0.002; 0.007 NS

Age −0.004 −0.008; 0.0006 NS

Male 0.009 −0.1; 0.1 NS

ATTENTION

10-MWT −0.02 −0.05; 0.01 NS

FMMA 0.007 −0.006; 0.02 NS

Age −0.02 −0.03; −0.004 0.04

Male 0.2 −0.2; 0.5 NS

LANGUAGE

10-MWT −0.01 −0.03; 0.001 NS

FMMA 0.002 −0.005; 0.008 NS

Age −0.004 −0.01; 0.003 NS

Male −0.01 −0.2; 0.2 NS

ABSTRACTION

10-MWT −0.007 −0.02; 0.006 NS

FMMA 0.002 −0.004; 0.007 NS

Age −0.008 −0.01; −0.003 0.005

Male 0.1 −0.04; 0.2 NS

RECALL

10-MWT −0.06 −0.1; −0.03 0.002

FMMA −0.002 −0.02; 0.01 NS

Age −0.02 −0.04; −0.009 0.005

Male −0.3 −7; 0.1 NS

ORIENTATION

10-MWT −0.01 −0.03; 0.003 NS

FMMA −0.009 −0.02; −0.001 NS

Age −0.002 −0.008; 0.003 NS

Male −0.2 −0.3; −0.002 NS

Predictors of changes in MoCA scores and sub-scores over 1 year post-stroke

considering changes in gait, adjusted for FMMA, age and sex (generalized linear mixed

model).

NS, Not Significant; 95% CI, 95% confidence interval;
†
Corrected p-values (Bonferroni

correction).

defined by a MoCA score < 26, after 2 months and 6 months,
which is in line with the 47% of cognitive impairment reported at
1 year post-stroke in the present study. In addition, Ben Assayag
et al. (2015) have recently reported that gait performance was a
significant risk marker of cognitive decline 2 years after stroke.

In the current study, a strong influence of changes in gait
performance on the evolution of executive functions and recall
between baseline and 1 year was observed. This finding is in

accordance with previous studies performed in aging and central
nervous system disorders such as Alzheimer’s disease, Parkinson’s
disease, stroke or traumatic brain injury. These studies showed
an association between gait performance and impairment in
attention, processing speed, verbal fluency, executive functions
and memory (Al-Yahya et al., 2011). After stroke, more than two-
thirds of patients were reported to suffer from working memory,
executive functions and episodic memory impairment (Jaillard
et al., 2010). This high frequency highlights the potentially
deleterious functional impact of these forms of cognitive
impairment on stroke outcome.

While still poorly understood, the close interaction between
cognition and gait could be related to a cortical competition
amidst cognitive and motor processes (Montero-Odasso et al.,
2012). This phenomenon could be exacerbated by different brain
changes which are often observed in stroke patients, the main
one being the extent of white matter lesions and, as was recently
described, the amyloid brain burden (Ly et al., 2012; Del Campo
et al., 2016; Kim et al., 2016).

These results should be interpreted cautiously due to some
limitations. First, as indicated by the low NIHSS at baseline,
patients were highly selected, excluding those with severe
hemiplegia or severe aphasia impeding clinical evaluation. For
this reason, our results might not be generalized to more severe
patients. However, the low level of physical disabilities of our
sample provided the opportunity to evaluate cognition and gait
without a major influence of severe neurological deficits. Second,
evaluations included only the MoCA for cognitive assessment
and that of gait velocity (while more discerning tests are available
including dual-task paradigms). However, the observation of
a strong association between the two domains through these
simple tasks indicates the strength of their association and
the need to evaluate these two simple markers in clinical
practice. Third, although MoCA sub-scores have been used
in a few studies (Lam et al., 2013; Wu et al., 2013; Washida
et al., 2014), their validity for the determination of impairment
in the corresponding cognitive subdomain remains to be
demonstrated.

CONCLUSION

This study highlights the strong association between change in
gait performance and global cognitive outcome in a population
of mild to moderate stroke. It reinforces the hypothesis that
cognition should be evaluated in patients with gait complaints
after stroke, and that post-stroke gait rehabilitation should also
include cognitive rehabilitation programs.
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