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Previous studies have paid little attention to the spatial heterogeneity of residents’

marginal willingness to pay (MWTP) for clean air at a city level. To fill this gap, this

study adopts a geographically weighted regression (GWR) model to quantify the spatial

heterogeneity of residents’ MWTP for clean air in Shanghai. First, Shanghai was divided

into 218 census tracts and each tract was the smallest research unit. Then, the impacts

of air pollutants and other built environment variables on housing prices were chosen to

reflect residents’ MWTP and a GWRmodel was used to analyze the spatial heterogeneity

of the MWTP. Finally, the total losses caused by air pollutants in Shanghai were estimated

from the perspective of housing market value. Empirical results show that air pollutants

have a negative impact on housing prices. Using the marginal rate of transformation

between housing prices and air pollutants, the results show Shanghai residents, on

average, are willing to pay 50 and 99 Yuan/m2 to reduce themean concentration of PM2.5

and NO2 by 1 µg/m3, respectively. Moreover, residents’ MWTP for clean air is higher in

the suburbs and lower in the city center. This study can help city policymakers formulate

regional air management policies and provide support for the green and sustainable

development of the real estate market in China.

Keywords: air pollution, housing prices, geographically weighted regression, marginal willingness to pay, spatial

heterogeneity

INTRODUCTION

In recent years, the continuous increases in energy demand, industrial expansion, and private car
ownership in megacities have led to a serious deterioration of air quality (1). According to the 2019
Bulletin on the State of China’s Ecology and Environment, in 2019, only 157 of 337 cities at or above
the prefectural level met the air quality standard in China, while 180 cities exceeded the standard.
Air pollution has serious impacts on residents’ health, the development of the regional economy,
housing values, and the marginal willingness to pay (MWTP) for clean air (2–6). A recent study
pointed out that air pollution in Europe causes an average of 2.2 years of lost life expectancy and
about 1.85 million deaths from respiratory diseases each year (7). Similarly, as northern China
is dominated by coal-fired heating, the concentration of air pollutants in northern cities will be
significantly higher than that in the south, which has caused the average life expectancy of residents
in northern areas to decrease by 3.1 years (8).
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To achieve a win-win situation between public health and
economic development, quantifying the economic value of air
quality is very important for the sustainable development of
cities. However, previous research on the MWTP for urban clean
air has mainly focused on developed countries, such as those in
Europe and the United States (9–14). The purpose of this study is
to use the latest data to measure residents’ MWTP for clean air in
different regions of the city, which can improve public health and
provide scientific support for the development of region-specific
air quality improvement programs and policies.

We choose the impact of air pollutants on housing prices
as residents’ MWTP for clean air. The MWTP for clean air
cannot be directly queried or measured because it is not directly
reflected in capital market transactions. However, we can infer
the MWTP for clean air indirectly by discussing the relationship
between air quality and housing prices (11). As early as the 1960s,
some researchers began to explore the complex relationship
between air pollutants and housing prices. Ridker and Henning
(15) first discovered the negative impact of sulfide on housing
prices by using Washington’s air quality data in 1967. A few
years later, in 1971, Anderson and Crocker also confirmed that
air pollutants can reduce people’s expectations for the housing
market (16). In recent years, Bajari et al. found that housing
prices in polluted areas were relatively lower than those in
areas with better environmental quality by using the housing
transaction data of California from 1990 to 2006 (17). Zheng et al.
(18), Zou (19), and Chen and Jin (20) find the same evidence
in China.

As one of the factors affecting the quality of life, air
quality is considered an environmental factor affecting housing
prices, together with other built environmental factors, such as
transportation, shopping, entertainment, and education (21, 22).
According to the spatial equilibrium model of urban economics,
housing prices can reflect residents’ MWTP for environmental
factors, including clean air (23, 24). Improving air quality will
increase the value of houses, and this increase will be passed on
to the real estate market in the form of rising housing prices or
rents (25–27). In addition, residents’ expectations of air quality
also affect current housing prices (28). If real estate owners
expect the air quality around their houses to rise in the future,
they will have higher estimates of current housing prices, and
residents will pay more for the expected clean air. Therefore, as
the research object of the MWTP for clean air, housing price is a
very appropriate choice.

The hedonic method is the most representative and widely
used statistical method for revealing the complex relationship
between the built environment and housing prices (1, 4, 29).
Rosen first adopted the hedonic method to estimate the impact
of specific site facilities and clear air on the value of real estate
in 1974, and then this method began to be very popular in the
research of the impact of the built environment on house prices
(30). The hedonic method shows that the quality difference of a
commodity is a function of its own attributes, and the gradient
difference of price reflects people’s MWTP of the commodity
(18). Because people do not actively pay for clean air, the hedonic
method helps to create a virtual market to measure the hidden
value of clean air (11). Therefore, many researchers have used

this method to quantify people’s MWTP for clean air, as shown
in Table 1.

The hedonic method is generally implemented by ordinary
least squares (OLS) regression (1, 9, 10, 12, 13). The basic
assumption of OLS methods is that the data on housing prices in
different regions are spatially independent and static. However,
due to the local interaction and spatial instability between
different regions, housing prices and their influencing factors
show strong spatial heterogeneity, and the OLS method is not
applicable because it ignores spatial changes (31). Therefore,
some scholars have proposed using spatial econometric models
to explore the spatial relationship of house prices (32–35). The
geographically weighted regression (GWR) model is a statistical
regression model proposed by British scholars (36) to account
for the spatial heterogeneity of variables, and it is a kind of
spatial econometric model. It is generally believed that GWR
models improve upon the traditional spatial regression method,
and various studies have shown that GWR models are the best
method for exploring the spatial heterogeneity of housing prices
and their influencing factors (37–40). Therefore, we use a GWR
model to explore the relationship between housing prices and
air quality.

To sum up, most of previous studies explored residents’
MWTP for clean air from a macro perspective (focusing on
major cities in China) (5, 19, 20, 31, 41) and a micro perspective
(focusing on communities, considering the building structure,
such as the floor area and house age) (1). There is a lack of
meso level research, which focuses on each census tract of a
city. To fill this gap, this study explores residents’ MWTP for
clean air from a meso perspective. Specifically, this study makes
the following three contributions: First, an empirical study was
conducted in Shanghai using a GWRmodel to explore the spatial
heterogeneity of the MWTP for clean air in each census tract.
Second, the latest data were used to quantify the economic value
of urban clean air and to measure residents’ MWTP in different
census tracts, which is conducive to achieving a win-win situation
between public health and economic development. Third, the
actual losses caused by air pollution in Shanghai were computed
from the perspective of asset value depreciation in the entirety
of the Shanghai housing market. The results of this study can
provide a reference for the government to formulate regional air
pollution prevention and control policies.

The remainder of this paper is structured as follows. In
section Data and Variables, the datasets and initial variables used
in this study are described. In section Methodology, the basic
framework of our GWR model is introduced. Section Results
and Discussion discusses the main results of the empirical study,
quantifies the MWTP for clean air, and estimates the total losses
caused by air pollution in Shanghai. Finally, section Conclusions
and Recommendations provides the main conclusions and
recommendations of this study.

DATA AND VARIABLES

Study Area and Background
Shanghai, the most populous urban area in China, is also
China’s international economic, financial, trade, shipping, and
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TABLE 1 | Research about the impact of air pollution on the real estate market.

References Study area Method Air pollutant Conclusion

Smith and Huang (14) U.S. cities The hedonic method

(MAD and OLS)

TSPs (total suspended

particulates)

A decrease in TSPs of 1 µg/m3 results in a 0.05–0.10% increase

in property values

Zabel and Kiel (11) U.S. cities The hedonic method

(OLS estimates)

TSPs The average benefit per household from reducing TSP from 246 to

150 is $137

Chay and Greenstone (9) U.S. cities The hedonic method TSPs 1 µg/m3 reduction in TSPs increases the value of housing by

0.2–0.4%

Yusuf and Resosudarmo

(10)

Jakarta, Indonesia The hedonic method

(OLS estimates)

THC, SO2, and CO Per family value of clean air in Jakarta ranges from $28 to $85 per

µg/m3

Le Boennec and Salladarre

(13)

Nantes, France The hedonic method NOx Air pollution had no significant impact on the housing price

Chen et al. (1) Shanghai, China The hedonic method

(OLS estimates)

SO2 and PM10 The property value would drop by 159 and 238 Yuan/m2 when the

mean concentrations of SO2 and PM10 rise by 1 µg/m3

Carriazo and

Gomez-Mahecha (12)

Bogota, Colombia The hedonic method PM10 An increase of 1 µg/m3 is accompanied by a monthly average rent

reduction of 0.61 % for apartments

Zou (19) 282

prefecture-level

cities in China

Combing OLS and

GWR model

PM2.5 A 1 µg/m3 increase in the PM2.5 is associated with up to a 36

Yuan/m2 reduction in housing prices

Chen and Jin (20) 286

prefectural-level

cities in China

The econometric model

(OLS estimates)

PM2.5 A 10% increase in PM2.5 concentrations causes a 2.4% reduction

in local housing prices

Dong et al. (5) 282

prefecture-level

cities in China

Spatial dobbin model PM2.5 A 1 µg/m3 increase in the PM2.5 is associated with up to a 22.7

Yuan/m2 reduction in housing prices

innovation center. As of 2020, the city had 16 districts under
its jurisdiction, with a total area of 6,340.5 square kilometers.
The built-up area covers an area of 1,237.85 square kilometers,
with a permanent population of 24.2814 million and an urban
population of 21.3919 million, with an urbanization rate of
88.10% (Shanghai Statistical Yearbook, 2020). In Shanghai,
housing prices have been rising year after year, with the sales price
of commercial housing rising from an average of 3,866 Yuan/m2

in 2001 to 23,804 Yuan/m2 in 2017 (China City Statistical
Yearbook, 2001–2017). As one of the largest cities in China, the
study of Shanghai can reflect the MWTP of people in the eastern
and southern coastal areas of China. Thus, we choose Shanghai as
the study area. In addition, to make the research more detailed,
Shanghai is divided into 218 tracts based on the sixth National
Population Census, as shown in Figure 1.

We focus on air pollutants around residential areas. Figure 2
shows the mean daily concentrations of SO2, NO2, and PM10

in Shanghai from 2001 to 2019. Overall, air quality in Shanghai
has improved over the years, which is mainly due to the active
governance of the Chinese government. The daily concentration
of SO2 across different monitoring sites in Shanghai in 2019
was 7 µg/m3 (attaining the Grade I national standard for air
quality), that of NO2 was 42 µg/m3 (exceeding the Grade
II national standard of 2 µg/m3), and that of PM10 was
45 µg/m3 (attaining the Grade II national standard for air
quality) (Shanghai Municipal Bulletin on the Status of Ecological
Environment, 2019).

FIGURE 1 | Study area.
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FIGURE 2 | The annual mean concentrations of air pollutants in Shanghai, 2001–2019.

Data Description and Processing
The data used in this study include housing price data, air quality
data, and other built environment data in Shanghai. All the
data used in this paper were collected in 2018 so that the time
dimension can be unified.

The housing price information of 27,608 residential areas in
Shanghai constituted the housing price data in this study. These
data were taken from a platform for real estate transactions
in Shanghai (http://cd.lianjia.com/) and included the address,
average housing price, construction time, number of housing
units, and latitude and longitude coordinates of each community.

The air quality data came from the Shanghai Municipal
Bureau of Ecology and Environment. We collected data from 10
national controlled air quality monitoring stations of Shanghai
in 2018. These data included the hourly mean concentrations of
CO, O3, SO2, NO2, PM10, and PM2.5, the monitoring time, and
the current air pollution levels, which can be used to calculate the
annual mean concentrations of air pollutants in different census
tracts of Shanghai.

Figures 3–6 show that the air pollutants in Shanghai are
diverse, mainly concentrated in the outer suburbs with heavy
industries and the city center with heavy traffic. For example, the
areas with the highest mean concentrations of SO2 and PM10

are the Baoshan District, Jinshan District, Yangpu District, and
Jiading District, where there are many polluting factories, such as
power plants, steel mills, and automobile factories. Furthermore,
the large trucks that travel in these areas during the day also
contribute to air pollution. The areas with the highest mean
concentrations of NO2 and PM2.5 are mainly located in the inner
ring area because of traffic congestion.

The built environment variables can be measured by the
“5 Ds,” namely, density, design, diversity, distance to transit,
and destination accessibility (42–44). In this study, the initial

FIGURE 3 | Distribution of SO2 (µg/m3 ) in Shanghai.

environmental data were composed of population data, urban
road network data, and point of interest (POI) data. The
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FIGURE 4 | Distribution of NO2 (µg/m3) in Shanghai.

population data came from the 6th Census of China. The
urban road network data of Shanghai were extracted from the
Open Street Map (OSM). The POI data were obtained from
Baidu.com, which is one of the largest Chinese web mapping
service applications. These data provided 14 types of locations,
such as schools, restaurants, hospitals, parks, supermarkets, and
transportation facilities (45). The total number of POIs in this
dataset is 603,085, and for each POI, the basic information
includes the name, type, location, and latitude and longitude.

The smallest research unit of this study is one of the 218
census tracts in Shanghai; thus, the three types of data above
need to be processed. As shown in Figure 7, this processing
mainly includes data cleaning, data analyses, data extraction, and
variable calculation.

Variable Calculation
Based on the existing data and referring to relevant references,
we determined the dependent and independent variables of this
study and performed a descriptive statistical analysis of all the
variables, as shown in Table 2. There are 6 types of air quality
data, namely, CO, O3, SO2, NO2, PM10, and PM2.5 data. The
other built environment variables include 18 indicators of the “5
Ds.” In particular, land-use diversity is measured by the entropy
index, which ranges in value between 0 and 1, where 0 means
that the land use is single and homogeneous and 1 means that all

FIGURE 5 | Distribution of PM2.5 (µg/m3 ) in Shanghai.

types of land use are evenly distributed (43, 46). The calculation
formula of land use diversity is defined as follows:

Ei =
∑

j

(pij ln pij)/lnN (1)

where Ei is the entropy for land uses within the spatial unit
i, pij is the proportion of the jth land use at spatial unit i,
and N is the number of land use categories. In this study, 14
land uses (restaurants, retail, hotels, tourist attractions, medical
facilities, educational buildings, residences, parks, and so on) are
considered (N = 14).

To measure the straight-line distance from the city center,
we chose the location of the Shanghai Municipal People’s
Government as the downtown of Shanghai, where there are more
than 10 large-scale shopping malls, the headquarters of dozens
of well-known corporations, and hundreds of logistics, trade,
information technology, and media enterprises.

In addition, the mean-centered method is used to eliminate
the dimensional influence of all variables, including house prices.
The formula is as follows:

xik =
Xik

Xk

(2)
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FIGURE 6 | Distribution of PM10 (µg/m3 ) in Shanghai.

where xik is the input value of the model, Xik is the original value
of the k-th characteristic variable at spatial unit i, Xk represents
the original average value of the k-th variable.

METHODOLOGY

Due to the obvious differences in the spatial distribution of
air pollutants and housing prices (47, 48), we speculate that
residents’ MWTP for clean air is also spatially heterogeneous.
Therefore, we choose a GWR model, which can represent the
spatial variation in independent variables (49). In addition, to
compare the applicability of the GWR model, we also establish
the OLS model used in many studies (1, 29).

Multicollinearity Test
Multicollinearity refers to the high linear correlation between
explanatory variables, which makes a model difficult to estimate
or the regression effect not ideal. To eliminate this phenomenon,
we adopted the value of the variance inflation factor (VIF) to filter
variables. The VIF is a measure of multicollinearity. Specifically,
when the VIF value of a characteristic variable is >7.5, it has
problems of multicollinearity with other independent variables
and should be removed from the model (50). The VIF of the
independent variables is positively associated with the coefficient

of determination (r2) for the regression, which can be computed
as follows:

VIF = 1

1− r2
(3)

Spatial Autocorrelation Test
Before using spatial regressionmodels, the spatial autocorrelation
of the variables should be tested. Moran’s I test is often used to
verify the spatial autocorrelation of variables (51), and Moran’s I
can be expressed as follows:

I = n
∑n

i=1

∑n
j=1 wij

·
∑n

i=1

∑n
j=1 wij (xi − x)

(

xj − x
)

∑n
i=1 (xi − x)2

(4)

where n is the number of spatial units, wij is the spatial weight
between units i and j, xi denotes the attribute value of unit i, and
x represents the average value of all units.

Moran’s I is a rational number, and it ranges between −1
and 1. Specifically, the larger the positive value of Moran’s I, the
stronger the spatial correlation. While the value of Moran’s I <0
indicates a negative spatial correlation, and the smaller the value
of Moran’s I, the greater the spatial difference. A value near zero
means a spatially random distribution. The null hypothesis of
Moran’s I test assumes that each explanatory variable is spatially
independent, meaning that it is sufficiently close to 0. The Z-score
is usually computed to verify the null hypothesis of Moran’s I test
and is defined as follows:

Z (I) = I − E (I)√
Var (I)

(5)

where E(I) and Var(I) represent the expectation and standard
deviation of Moran’s I, respectively. The significance level in this
study is P < 0.01, and the critical Z-score values are −2.58 and
+2.58 when using a 99% confidence level.

Geographically Weighted Regression
Model
GWR models are based on the traditional linear regression
model, which attempts to build a linear relationship between a
given dependent variable and a set of independent variables (52).
The GWR model tries to establish a linear regression equation
for each spatial unit by considering the geographical changes
among variables. As other observations are closer to the spatial
unit, their influence on the coefficient estimation of this spatial
unit is greater. This feature of the GWRmodel takes into account
the local specific relationship between the dependent variable and
independent variable of spatial variation during modeling. The
calculation formula of the GWRmodel is as follows:

yi = β0 (ui, vi) +
∑

k

βk (ui, vi) xik + εi , i = 1, 2, 3, . . . , n (6)

where xik is the independent variable, yi is the dependent
variable, (ui, vi) are the spatial latitude and longitude coordinate
points of spatial unit i, εi is the Gaussian error term, εi ∼
N

(

0, δ2
)

,Cov
(

εi, εj
)

= 0(i 6= j), β0 (ui, vi) is the intercept
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FIGURE 7 | Diagram of the data processing.

of spatial unit i (the constant term), βk (ui, vi) represents the
relationship weight value of the k-th characteristic variable at
spatial unit i, and n is the sample size of the spatial unit.

The implementation process of the GWRmodel is as follows:
Step 1: Determine the optimal bandwidth.

Bandwidth b is used to explain the functional relationship
between wj(i) (spatial weight function) and dij (the distance
between spatial unit i and unit j). Excessive bandwidth will
generate non-significant differences in parameter estimates
between different regions, which will affect the accuracy of model
parameter estimation. However, a bandwidth that is too small
will lead to a large variation. The Akaike information criterion
(AIC) is one of the criteria used to measure the optimal fitness of
statistical models (53). In this study, the corrected AIC (AICc) is
used to determine the optimal bandwidth. Compared with other
methods of determining bandwidth, such as the cross-validation
method and designated bandwidth method, the AICc method
can usually obtain a better degree of fit. Specifically, the smaller
AICc value indicates that the model is better. The calculation
formula of AICc is defined as follows:

AICc
(

b
)

= 2nln
(

σ̂
)

+ 2nln (2π) + n

[

n+ tr (S)

n− 2− tr (S)

]

(7)

where σ̂ is the maximum likelihood estimate of the variance in
the random error term, σ̂ = RSS

n − tr(S), RSS denotes the sum of
residual squares, and tr(S) is the trace of S matrix. The S matrix

can be expressed as follows:

Ŷ = S · Y (8)

where Ŷ =











ŷ1
ŷ2
...
ŷn











. Y =











y1
y2
...
yn











.

Optimal bandwidth b0 corresponds to the minimum value of
AICc, which is obtained as follows:

b0 = arcmin
b>0

AICc
(

b
)

(9)

Step 2: Select the spatial weight function.
In general, spatial weight function wj (i) is computed by the

Gaussian kernel function or the Bi-square kernel function, which
are both distance-decay functions. The weight of the Gaussian
kernel is continuous and gradually decreases from the center of
the kernel but never reaches zero, while the bi-square kernel has
a specific range with a non-zero kernel weight, which controls
the k-th nearest neighbor distance of each regression position.
Furthermore, bandwidth b can be constant (fixed kernel) or
variable (adaptive kernel). The adaptive kernel is suitable for
creating a nuclear surface based on the density of sample points.
If the distribution of elements is close, the coverage of the nuclear
surface will be small; otherwise, it will be large.
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TABLE 2 | Variable definitions and statistics.

Variables Variable description Unit Mean S.D. Min Max

Dependent variable

Housing prices Average housing price Yuan*/m2 50,090 24,235 11,061 111,382

Air quality variables

CO Mean concentration of CO µg/m3 0.59 0.04 0.45 0.71

O3 Mean concentration of O3 µg/m3 53.07 4.93 42.20 68.67

SO2 Mean concentration of SO2 µg/m3 6.67 0.55 5.23 8.34

NO2 Mean concentration of NO2 µg/m3 42.33 10.02 10.61 55.48

PM10 Mean concentration of PM10 µg/m3 59.19 2.09 54.23 64.28

PM2.5 Mean concentration of PM2.5 µg/m3 43.19 1.37 38.86 47.84

Built environment variables

PopD Population density number/km2 15314 15971 68.06 68129

MetroSD Metro station density number/km2 0.30 0.40 0 1.96

MetroLD Metro line density km/km2 1.00 1.34 0 1.96

BusD Bus stop density number/km2 5.46 3.99 0.19 21.98

RoadD Road network density km/km2 8.96 6.24 0.34 39.11

PLD Parking lot density number/km2 29.52 34.78 0 150.25

Edu Percentage of educational service POIs % 0.32 0.47 0 3.63

Leis Percentage of leisure place POIs % 0.41 0.34 0.01 2.17

Stad Percentage of stadium POIs % 0.51 0.42 0 2.20

Med Percentage of medical institution POIs % 1.26 0.33 0 2.37

Park Percentage of park POIs % 0.77 0.44 0 3.36

Tour Percentage of tourist attraction POIs % 1.28 0.96 0 11.31

Super Percentage of shopping mall and supermarket POIs % 0.51 0.36 0.01 1.90

Tbh Percentage of telecom business hall POIs % 1.01 0.38 0 2.58

Res Percentage of restaurant POIs % 0.57 0.36 0 2.20

Landuse Entropy index of the land use mix – 0.23 0.17 0.06 0.95

Discent The straight-line distance from the city center km 19.78 15.70 0.18 58.64

*A basic unit of the Chinese currency (RMB).

In this study, we selected the adaptive Gaussian kernel
function for the following two reasons. (1) We choose 218 census
tracts of Shanghai with different areas, leading to denser tracts
in the city center and fewer tracts in the suburbs. (2) Air quality
is greatly affected by the distance factor. The adaptive Gaussian
kernel function can be expressed separately as follows:

wj (i) = exp

[

−
(

dij

b

)2
]

, j = 1, 2, 3, . . . , n (10)

where dij is the distance between spatial unit i and unit j, which
can be obtained by calculating the distance between the centroids
of unit i and unit j by the Toolbox tool in ArcGIS; b is the optimal
bandwidth, which can be obtained by Step 1.
Step 3: Compute the regression coefficient

Regression coefficient βk (ui, vi) of spatial unit i
can be obtained by the local weighted least square
method. The calculation formula of parameter β (i) =
[β0 (ui, vi) β1 (ui, vi) . . . βk (ui, vi) ]

T
is as follows:

β (i) =
[

XTW (i)X
]−1

XTW (i)Y (11)

where X =











1 x11 . . . xk1
1
...
1

x12 . . . xk2
...
. . .

...
x1n . . . xkn











, W (i) =











w1(i)
w2(i)

. . .

wn(i)











= diag
[

w1(i) w2(i) . . . wn(i)
]

.

Calculation of MWTP
MWTP represents the change speed of the current willingness to
pay, that is, the coefficient of the independent variable (the slope),
which means adding one unit of independent variables (such as
NO2, PM2.5, the density of metro stations and road networks)
and how much are residents willing to pay more for the housing
price. However, to eliminate the dimensional influence of the
independent variable and the dependent variable (the housing
prices), the mean-centered method was adopted to normalize the
variables in the GWR model. Therefore, the coefficients of the
GWRmodel need to be transformed to calculate the MWTP. The
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TABLE 3 | OLS regression results.

Variables Coefficient t P-value VIF

Intercept 0.5995 10.7019 <0.000001*** /

NO2 −0.1263 −4.2164 <0.000001*** 1.8592

PM2.5 −0.0769 −2.7490 0.0065*** 1.6492

MetroSD 0.3144 5.0672 <0.000001*** 2.7616

RoadD 0.7093 8.5758 <0.000001*** 3.0392

PLD 0.1198 2.1490 0.0328** 2.1413

Edu 0.1510 1.9819 0.0489** 2.7115

Stad 0.2023 2.5412 0.0118** 5.2884

Med 0.1313 2.1091 0.0347** 3.4045

Park 0.2153 2.4739 0.0240** 1.9841

Discent −0.5095 −12.8072 <0.000001*** 3.2372

The ***p < 0.01 and **p < 0.05 statistical significance level, respectively.

TABLE 4 | Results of Moran’s I test.

Variables Moran’s I Expected index Z-score P-value

NO2 0.376775 −0.004831 31.485821 <0.000001

PM2.5 0.416511 −0.004831 34.653344 <0.000001

MetroSD 0.667202 −0.004831 55.290328 <0.000001

RoadD 0.756185 −0.004831 62.687319 <0.000001

PLD 0.494304 −0.004831 41.047587 <0.000001

Edu 0.611992 −0.004831 50.968685 <0.000001

Stad 0.814504 −0.004831 67.351090 <0.000001

Med 0.696556 −0.004831 58.052220 <0.000001

Park 0.464463 −0.004831 39.658548 <0.000001

Discent 0.727585 −0.004831 60.034994 <0.000001

specific formula is as follows:

MWTPik =
βk (ui, vi)Y

Xk

(12)

where MWTPik is the MWTP of the k-th characteristic variable
at spatial unit i, Xk represents the original average value of the k-
th variable, and Y represents the average value of the dependent
variable, which is the housing price in this paper.

RESULTS AND DISCUSSION

Results Analysis
First, the Toolbox tool in ArcGIS was used to carry out
multicollinearity tests on all the independent variables in Table 2,
and the variables with VIF values >7.5 were removed. Then,
stepwise OLS regressions were adopted to test the impact
of independent variables on housing prices and select the
variables with significant performance. Only 10 independent
variables were left: the mean concentration of PM2.5, the mean
concentration of NO2, metro station density, road network
density, parking lot density, the percentage of educational service
POIs, the percentage of stadium POIs, the percentage of medical

FIGURE 8 | Observed housing prices (Yuan/m2 ) in Shanghai.

institution POIs, the percentage of park POIs, and the straight-
line distance from the city center.

The OLS regression results of these independent variables
are shown in Table 3. The results show that PM2.5 and NO2

have a significant negative impact on housing prices, which
are consistent with Chen and Chen (54) and Dong et al. (5),
and the coefficients of other built environment variables are
basically consistent with the theoretical and expected values.
Specifically, Housing prices fall as the residential property move
further away from the city center and housing prices rise with
the increase of the number of subway stations, schools, and
other infrastructures. Furthermore, the VIF values of these 10
independent variables are all relatively small, indicating that the
collinearity among the variables is very weak.

The global Moran’s I test was conducted to examine
whether the 10 independent variables screened above had spatial
autocorrelation.Table 4 shows the results, which includeMoran’s
I, the expected index, the Z-score, and the P-value of the
independent variables. All independent variables show spatial
autocorrelation with a significance level of P < 0.01, and all Z-
scores are>2.58. Therefore, it is necessary to use the GWRmodel
to reveal the geographical variability of each variable.

Figures 8, 9 show the actual housing prices and the housing
prices predicted by the GWR model, indicating that the GWR
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FIGURE 9 | Predicted housing prices (Yuan/m2) in Shanghai based on the

GWR model.

TABLE 5 | OLS and GWR comparison results.

Indicators OLS GWR

RMSE (Yuan/m2 ) 10,746 6,981

MAE (Yuan/m2 ) 8,499 5,029

MRE 0.233 0.187

R2 0.803 0.876

Adjusted R2 0.793 0.863

AICc −313.374 −396.005

model has a high degree of fitting accuracy. To further prove
the superiority and feasibility of the GWR model, we compared
it with the OLS model, and both models adopted the same
explanatory variables mentioned above. We computed the root
mean square error (RMSE), mean absolute error (MAE), mean
relative error (MRE), R2, adjusted R2, and AICc values of these
two models, as shown in Table 5. From these six indicators, we
can find that the prediction accuracy of the GWRmodel is better
than that of the traditional OLS model. Meanwhile, the MAE and
R2 of the GWRmodel are 5,029 and 0.876 Yuan/m2, respectively,
which further reflects the high prediction accuracy of the GWR
model. Furthermore, we computed 6 eigenvalues of the estimated
coefficients of different variables to describe their influence range,

namely, the average value, minimum value, maximum value,
lower quartile, median, and upper quartile, as shown in Table 6.
From the average value of the estimated coefficient, the GWR
model results are consistent with those of the OLS regression as a
whole, which shows that the mean concentration of PM2.5, mean
concentration of NO2, and distance from the city center have
negative effects on housing prices and that the other independent
variables are all positively correlated. In addition, the value
symbols of the maximum and minimum values are the same,
proving that there is no directional difference in the influence of
different variables on housing prices in Shanghai, and all variables
are either promoting or inhibiting factors.

Spatial Heterogeneity Analysis of MWTP
There are many estimates of coefficients output by the GWR
model because one important characteristic of GWR models is
that the estimated coefficients of each independent variable vary
with each census tract, which indicates that each selected variable
is affected by local characteristics (49). Therefore, the results of
the GWR model can provide a reference for the government
to formulate regional policies. In addition, we can calculate
residents’ MWTP for each variable by Equation (12). This study
focuses on the analysis of residents’MWTP for clean air, as shown
in Figures 10, 11, and the MWTP for other variables are shown
in Figures 12–16.

Figures 10, 11 indicate that residents’ MWTP for clean air has
obvious spatial heterogeneity, Shanghai residents, on average, are
willing to pay 50 Yuan/m2 to reduce the mean concentration of
PM2.5 by 1 µg/m3, and the lowest absolute value of MWTP is 16
Yuan/m2 in the central Jing’an District and the highest absolute
value of MWTP is 163 Yuan/m2 in the Pudong New Area.
Shanghai residents are, on average, willing to pay 99 Yuan/m2

to reduce the mean concentration of NO2 by 1 µg/m3. The
lowest absolute value appears in the Putuo District, where it
is 10 Yuan/m2, while the highest absolute value appears in the
Qingpu District, where it is 250 Yuan/m2. In other words, ceteris
paribus, our results show that a 1 µg/m3 reduction in the mean
concentrations of PM2.5 and NO2 results in a 0.1 and 0.2%
increase in Shanghai property value, respectively (in 2018, the
average housing price in Shanghai was 50,090 Yuan/m2, and the
mean concentrations of PM2.5 and NO2 were 43.19 and 42.33
µg/m3, respectively). Meanwhile, this result is slightly lower than
that in developed countries, such as the US (1 µg/m3 reduction
in TSPs increases the value of housing by 0.2–0.4%) (9), and it is
similar to the study of prefecture level cities in China (a 1 µg/m3

increase in the PM2.5 is associated with up to a 36 Yuan/m2

reduction in housing prices) (19, 20). We speculate that there are
two possible reasons: (1) China is currently a developing country,
and people pay less attention to air pollution than developed
countries. (2) Housing prices in Shanghai are very high, resulting
in a small proportion of clean air.

This result shows that Shanghai residents’ MWTP for
reducing NO2 levels is higher than that for reducing PM2.5

levels, which is similar to the OLS model results. The reason
is that the effect of NO2 on Shanghai residents is more
obvious. NO2 is the main pollutant that causes acid rain, and
the acid rain frequency was 53.8% in 2018, up 6.2% from
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TABLE 6 | GWR modeling results (the coefficients of different variables).

Variables Average Minimum Maximum Lower quartile Median Upper quartile

Intercept 0.4621 0.2258 0.7611 0.3692 0.4590 0.5418

NO2 −0.0838 −0.2114 −0.0086 −0.1388 −0.0626 −0.0269

PM2.5 −0.0430 −0.1407 0.0140 −0.0700 −0.0350 −0.0085

MetroSD 0.2962 0.2822 0.3218 0.2868 0.2922 0.3050

RoadD 0.6182 0.5609 0.7381 0.5743 0.6006 0.6572

PLD 0.0856 0.0443 0.1953 0.0641 0.0738 0.0975

Edu 0.1412 0.1363 0.1516 0.1383 0.1401 0.1435

Stad 0.2004 0.1566 0.2476 0.1880 0.2001 0.2138

Med 0.1671 0.1053 0.1957 0.1527 0.1759 0.1857

Park 0.2028 0.1791 0.2534 0.1937 0.1983 0.2072

Discent −0.6203 −1.5254 −0.0896 −0.8114 −0.5871 −0.3664

FIGURE 10 | The spatial heterogeneity of MWTP for PM2.5.

the previous year (Shanghai Municipal Bulletin on the Status
of Ecological Environment, 2018). Moreover, NO2 can cause
photochemical pollution and swelling of the human lungs (55).
Furthermore, residents’ MWTP for reducing levels of PM2.5

and NO2 increased from the city center to the suburbs. The
possible reasons are as follows: (1) There are many factories
in the suburbs that emit a lot of air pollutants, especially
thermal power plants, machinery manufacturing industry, and
automobile factories (Shanghai Municipal Bulletin on the Status

FIGURE 11 | The spatial heterogeneity of MWTP for NO2.

of Ecological Environment, 2019), such as heavy machinery
manufacturing in Pudong New Area, Shanghai Volkswagen
in Jiading District, and petrochemical industry in Jinshan
District (Shanghai Statistical Yearbook, 2020). Compared with
traffic emissions, air pollutants emitted by these factories are
concentrated and visible. Therefore, suburban residents living
near these factories may be more disgusted with the air pollution
and more willing to pay for clean air (56, 57). (2) Even though
there are fewer infrastructure resources in the suburbs, more
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FIGURE 12 | The spatial heterogeneity of MWTP for metro station density.

and more people move from the urban areas to the suburbs in
order to enjoy a better quality of life, and these people attach
great importance to the living environment (Shanghai Municipal
People’s Government, 2021). However, residents who live near
the city center value other built environmental factors, such
as convenient transportation, closer workplaces, and abundant
educational and medical resources (1, 5, 24). (3) The result
may be different from some previous studies on multiple cities
(from a macro perspective) or multiple communities (from a
micro perspective) with large economic differences (5, 9, 31).
Because our study focuses on each census tract in Shanghai
(from ameso perspective), where the economic gaps are relatively
small. Even some rich people may prefer to move to the
suburbs to enjoy better quality of life, especially in the five
new towns.

The density of metro stations and road networks are both
important indicators of urban traffic convenience. Figures 12, 13
show the spatial variation in residents’ MWTP for the density of
metro stations and road networks, respectively, with estimated
MWTP ranging from 4,712 to 5,373 Yuan/m2 and from 3,136
to 4,126 Yuan/m2, respectively. Both indicators are positively
correlated with housing prices. In addition, there is a decreasing
trend from the suburbs to the city center of residents’ MWTP for
metro stations and road networks. The possible reasons are as
follows: the density of metro stations in the center of Shanghai

FIGURE 13 | The spatial heterogeneity of MWTP for road network density.

is relatively dense, with 1 subway station per km on average
and 1 subway station per 5–10 km in the suburbs (Shanghai
Statistical Yearbook, 2020). The density of road networks in
the center of Shanghai is also relatively large, with a dense
distribution of secondary trunk roads and branch roads, while
it is sparse in the suburbs. Therefore, suburban residents are
more eager to increase the density of metro stations and road
networks. This result suggests that compared to increasing the
density of metro stations and road networks in the city center,
increasing these two indicators in the suburbs is more effective
for improving the real value of land, especially in areas with poor
traffic services.

Figures 14, 15 show the spatial differences in Shanghai
residents’ MWTP for educational services and medical
institutions, with estimated MWTP ranging from 2,133 to
2,377 Yuan/m2 and from 419 to 778 Yuan/m2, respectively.
In general, educational services and medical institutions are
positively correlated with housing prices. Spatially, residents’
MWTP for educational services is lower in the city center
and higher in the suburbs, while it is opposite for residents’
MWTP for medical institutions. The reason is probably that
China advocates “going to school nearby,” and Chinese residents
attach great importance to school district houses, while there
are fewer schools in the suburbs, and suburban residents are
crazier about school district houses, even though such houses
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FIGURE 14 | The spatial heterogeneity of MWTP for educational services.

are more expensive. Regarding medical institutions, people are
eager to obtain the best medical services when they are sick,
and the city center has abundant medical resources. Therefore,
both urban and suburban residents are more willing to go to
the city center to see a doctor, so residents’ MWTP for medical
institutions is higher in the city center. For these reasons, it is
necessary to promote the balanced development of education
and medical care between the city center and the suburbs
of Shanghai.

Figure 16 shows the spatial impact of the straight-line
distance from the city center on housing prices. In general,
the distance from the city center is negatively correlated with
housing prices, and the range of the GWR model’s coefficient is
from −0.0896 to −1.5254. Based on Equation (12), we convert
it to MWTP, which ranges from −227 to −3,863 Yuan/m2.
Spatially, the absolute value of MWTP for the distance from the
city center is higher in the inner suburbs, while it is lower in
the downtown and outer suburbs. The reason is probably that
residents in the inner suburbs are more dependent on downtown
resources (such as shopping malls, parks, and stadiums), which
will make them tend to buy houses as close to the city center
as possible. This result indicates that residents in the inner
suburbs are more sensitive to the distance from the city center,
while residents in the outer suburbs are more sensitive to other
built environmental factors of housing, such as air quality and
traffic convenience.

FIGURE 15 | The spatial heterogeneity of MWTP for medical institutions.

Actual Losses Caused by Air Pollution in
Shanghai
Based on the above estimates, we attempt to compute the actual
losses caused by air pollution in Shanghai from the perspective
of asset value depreciation in the entirety of the Shanghai
housing market. In 2018, the total building area of the housing
stock in Shanghai was 594.6 million m2 (Shanghai Academy of
Social Sciences, 2019). If the mean concentrations of PM2.5 and
NO2 increased by 1 µg/m3, the estimated losses of the entire
Shanghai real estate market would be 29.730 and 58.865 billion
Yuan, respectively.

In general, our research proves that air pollution has caused
great economic losses in Shanghai. Shanghai residents are very
sensitive to air pollution, and residents’ MWTP for clean air is
lower in the city center and higher in the suburbs, especially in the
outer suburbs, such as the Qingpu District, Pudong New Area,
and Jinshan District.

CONCLUSIONS AND IMPLICATIONS

Under the poor air quality conditions in China, residents’
demand for clean air increases as their incomes rise (58). To
improve public health and formulate regionally specific air
quality improvement plans and policies, we adopted a GWR

Frontiers in Public Health | www.frontiersin.org 13 December 2021 | Volume 9 | Article 791575

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Lai et al. Air Pollution and Spatial Heterogeneity

FIGURE 16 | The spatial heterogeneity of MWTP for the distance from the

city center.

model to explore the spatial heterogeneity of residents’ MWTP
for clean air in different areas of Shanghai. The main findings are
as follows:

(1) In this case study, the GWR model performed better than
the OLS model for the same variables, with significantly smaller
AICc values, higher R2 values, and adjusted R2 values.

(2) At the level of Shanghai as a whole, air pollutants have
a negative impact on housing prices. Using the marginal rate
of transformation between housing prices and air pollutants,
Shanghai residents, on average, are willing to pay 50 and 99
Yuan/m2 to reduce the mean concentration of PM2.5 and NO2

by 1 µg/m3, respectively.
(3) From the perspective of Shanghai census tracts, residents’

MWTP for clean air has obvious spatial heterogeneity. Suburban
residents pay more attention to air quality, which indicates
that they have a higher MWTP for clean air, especially in the
southeast, such as Pudong New Area, and southwest, such as
Jinshan District and Songjiang District. In contrast, residents in
the city center value other built environment factors, such as
convenient traffic and abundant educational resources.

(4) We also measured the actual losses caused by air pollution
in Shanghai from the perspective of housing market value. The
results show that if the mean concentrations of PM2.5 and
NO2 increased by 1 µg/m3, the estimated losses of the entire

Shanghai real estate market would be 29.730 and 58.865 billion
Yuan, respectively.

The view that air quality can be capitalized by housing prices
is fully confirmed in this study. Based on the conclusions above,
several policy recommendations are proposed:

(1) Air pollutants seriously endanger people’s health and can
lead to cancer, respiratory diseases, and low immunity of humans
(55, 59). The intensification of air pollution will also lead to
an increase in the cost paid by residents. The measurement of
MWTP can evaluate the value of air quality, a public good that
is difficult to be priced through the market mechanism. This
study can provide a scientific and empirical basis for evaluating
the economic benefits of environmental protection projects
and environmental governance policies. Relevant government
departments can conduct a preliminary benefit-cost analysis of
pollution control.

(2) NO2 can cause photochemical pollution and swelling of
the human lungs (60). Compared with PM2.5, Shanghai residents
have higher MWTP for reducing NO2, which is mainly related
to congested traffic and the boiler waste gas. The government
should promote the development of the new energy vehicle
industry and encourage citizens to take public transportation
or carpool to go out. City policymakers should design scientific
and reasonable air pollution control measures and improve
the relevant regulations and policy system of atmospheric
environment control.

(3) Regionally targeted air governance policies contribute
to the rapid improvements in public health and land value.
City policymakers can use differential taxation and government
intervention to improve the energy structure and reduce
industrial emissions. The areas with higher MWTP for clean
air should be considered as key areas for air pollution control,
such as Jinshan District, Pudong New Area, and Jiading District.
Boiler retrofitting, urban sprinkling and dust suppression can be
strengthened by charging air taxes and enterprise sewage tax.

(4) Air quality control requires a lot of funds, and the
source of funds is the practical difficulties faced by local
governments. The results of MWTP can provide a possible
reference for the financing of related public health governance
projects (61). In policy practice, the government can adopt
a value slightly lower than Equation (12) based on housing
price to levy environmental tax, which can be used to
increase investment in environmental renovation on the one
hand and improve the overall welfare of homebuyers on the
other hand.

This study computes residents’ MWTP for clean air in
different census tracts of Shanghai, and it can help Shanghai
and other cities achieve a win-win situation of economic
development and public health. However, this study has some
limitations. In this study, the GWR model is linear and cannot
reflect the non-linear relationship between the independent
variables and housing prices. In the future, we can develop
non-linear machine learning algorithms based on spatial and
temporal dimensions. Furthermore, more variables affecting
housing prices (per capita income, the demographic structure,
land policy, etc.) should be considered in the model development
of future studies.
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