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The hierarchical organization of chromatin is known to associate with diverse cellular functions; however, the
precise mechanisms and the 3D structure remain to be determined. With recent advances in high-throughput
next generation sequencing (NGS) techniques, genome-wide profiling of chromatin structures is made possible.
Here, we provide a comprehensive overview of NGS-based methods for profiling “higher-order” and “primary-
order” chromatin structures from both experimental and computational aspects. Experimental requirements
and considerations specific for each method were highlighted. For computational analysis, we summarized a
common analysis strategy for both levels of chromatin assessment, focusing on the characteristic computing
steps and the tools. The recently developed single-cell level techniques based on Hi-C and ATAC-seq present
great potential to reveal cell-to-cell variability in chromosome architecture. A brief discussion on these methods
in terms of experimental and data analysis features is included. We also touch upon the biological relevance of
chromatin organization and how the combination with other techniques uncovers the underlying mechanisms.
We conclude with a summary and our prospects on necessary improvements of currently available methods
in order to advance understanding of chromatin hierarchy. Our review brings together the analyses of both
higher- and primary-order chromatin structures, and serves as a roadmap when choosing appropriate experi-
mental and computational methods for assessing chromatin hierarchy.
© 2018 Chang et al.. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Chromatin is a compact and organized assembly of DNA and
proteins [32] that is intricately folded into three dimensions, forming
different levels of organization in the nucleus. The highest order of
chromatin organization is visible during cell division as a chromosome.
In amammalian chromosome, DNA is condensed approximately 10,000
to 20,000-fold [58], and the structure of chromosomal DNA can be
categorized as “higher-order” and “primary-order” according to the
folding complexity (See Fig. 1 for an overview and assessment of the
hierarchical organization of chromatin).

The higher-order genome structure is most clearly visible during
the interphase and mitosis when chromatin fibers extensively fold
into chromosomes. An interphase chromosome is formed by a tightly
coiled 250 nm chromatid. Microscopic imaging has demonstrated that
each chromosome may be confined to genomic compartments [59].
Within these compartments, intra-chromosomal interactions are most
frequent within regions known as megabase-sized topologically associ-
ating domains (TADs). The active TADs are rich in genes, open chroma-
tinmarks, transcription factors and DNase I-hypersensitive sites (DHSs)
n).
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and show early replication. In contrast, the inactive TADs harbor few
genes and DHSs and show late replication [77,80,91].

On the other hand, the primary-order chromatin refers to the
unpacked chromatin fiber where 11-nm coils of nucleosomes are
exposed. The nucleosome is the fundamental unit of chromatin. Each
nucleosome comprises 147 bp of DNA wound 1.65 times around core
histones [54,74]. Chromatin can be categorized into two varieties:
euchromatin and heterochromatin [31]. They differ in terms of the over-
all compaction of nucleosomes, numbers of genes and transcription
levels. The loosely packed regions form the “euchromatin”, whereas
the densely-packed regions form the “heterochromatin” and represent
the less accessible part of the genome [5]. Typically, euchromatin is
enriched in genes, and transcription in this region is active. Heterochro-
matin usually consists of repetitive sequences and forms structures such
as centromeres. However, the condensed structure of some heterochro-
matin can become loose and transcription may take place when under
certain developmental or environmental conditions [38,45].

Gene expression and biological functions intimately rely on the
interactions between regions (higher-order structure) and the accessi-
bility of chromatin (primary-order structure), which are mediated by
protein complexes and epigenetic modifications [7,79,88]. The set of
chromatin-associated proteins and epigenetic modifications at a given
time in a genomic region constitutes the “chromatin state”. With the
latest sequencing techniques followed by computational analysis, it is
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Fig. 1.Genome organization in eukaryotes fromhigher to primary orders. Features of chromatin organization fromhigher- to primary-order. Techniques, experimental and computational
procedures for assessment of chromatin hierarchy. The active circle represents TADs rich in genes and show early replication. The inactive circle represents TADs that harbor few genes and
show late replication. *Among the chromatin accessibility profiling methods, only FAIRE-seq strictly requires crosslinking.
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nowpossible to detect chromatin interactions and its accessibility in the
context of functional significance.

This review aims to give a broad overview of NGS-basedmethods for
“higher-order” and “primary-order” chromatin assessment from both
experimental and computational aspects.We discuss the characteristics
and requirements of each sequencing method together with the com-
puting strategies and bioinformatics tools.

1.1. Assessment of Higher-order Chromatin Structure

1.1.1. Experimental Techniques for the Assessment of Higher-order
Chromatin

Microscopy-based imaging tools have been used to observe the
higher-order structure of chromatin and its dynamics for over a century
[42]. At a resolution of 50–100 nm, light microscopy reveals the shape
and distribution of chromosomes in single cells but fails to provide
comprehensive detail of the spatial interactions [46]. The development
of electron microscopy (EM) and fluorescence in situ hybridization
(FISH) have provided evidence of chromosomal territories and com-
partments, organization of TADs and non-randomorganization of geno-
mic loci within the nuclear periphery [71,104].

Over the past decade, a variety of chromosome conformation cap-
ture (3C)-based methods have allowed the detection of higher-order
structures of chromatin in unprecedented detail. The conventional 3C
method determines the physical interactions of chromatin between
two genomic regions (one vs. one) [30,84,102]. The experimental
steps include formaldehyde crosslinking to fix in vivo contacts, chroma-
tin fragmentation by restriction enzyme digestion and proximity liga-
tion of the digested ends. The restriction enzyme selection depends on
the size of target loci; for 3C, frequently cutting enzymes give rise to
smaller fragments and hence are more suitable for identifying smaller
loci. As a guideline, 4-bp cutters (i.e. frequent cutters) are used when
studying small loci sized below 10–20 kb, whereas 6-bp cutters are for
loci larger than 20 kb. Ligation junctions are detected in conventional
3C libraries via PCR followed by gel electrophoresis. In combination
with next-generation sequencing, the physical interactions of chroma-
tin can be detected with a higher resolution and greater sensitivity
[33,56].

More recent 3C-based technologies, such as 4C, 5C, and Hi-C,
incorporate next generation sequencing and thereby are capable of
providing quantitative measurements for intra (cis)- and inter (trans)-
chromosomal interactions. Circular chromosome conformation capture
(4C) uses restriction digestion, followed by inverse PCR, to identify
multiple loci interacting with one particular genomic site, referred to
as the “bait” or “viewpoint” (one vs. all) [89,93]. The size of a viewpoint
is dependent on the primary restriction enzyme used. The optimal size
of a viewpoint is approximately 1 kb; viewpoints larger than 1 kb tend
to have difficulties to form ligated products, whereas viewpoints that
are too short suffer from a lower probability to detect interactions
[98]. Furthermore, the reliability of identified close-range (cis) or long-
range (far-cis or trans) contact sites depends on experimental setups.
Analyses resulted from 4-bp cutter enzymes have been shown to have
low reproducibility of 4C signals between replicates, particularly in
far-cis and trans interactions; however, 4-bp cutters are effective in
identifying cis interacting loci in the vicinity (b10 kb) of the viewpoint
[35,99]. In comparison to 4-bp cutters, 6-bp cutters have proven
effective in characterizing reliable interactions in distance ranging
from 10 kb to 10 Mb [27,73,75]. For extremely long distance interaction
(N10 Mb), the signal-to-noise ratios can be improved by in situ ligation
that occurs inside the nuclei instead of “in solution,” thereby decreasing
the probability of false inter-chromosomal fusions [98].

Chromosome conformation capture carbon copy (5C) is employed
to study all contacts within a particular region (many vs. many), based
on highly multiplexed ligation-mediated amplification (LMA) [87].
This technique uses primer pairs that anneal on either side of all ligation
junctions in the region of interest in a 3C-based library. These fragments
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are amplified in a single amplification reaction, which can be analyzed
using microarrays or high-throughput sequencing.

Hi-C generates contact maps among all parts of the genome (all vs.
all) [78]. A biotin-labeled nucleotide is filled in after fragmentation,
followed by blunt-end ligation. An enrichment step via streptavidin
bead pull-down concentrates ligation junctions, which are subse-
quently analyzed using high-throughput sequencing. The Hi-C tech-
nique eliminates the need to design specific oligo primers and also
increases the resolution to ~1 Mb with 10 million pair-end reads [60].
Its resolution though is difficult to be further improved since a 10-fold
increase in resolution requires a 100-fold increase in sequence depth
[27]. Therefore, Hi-C can only resolve on theMb level for most multicel-
lular organisms and correlation with specific genes or epigenetic marks
still remains implausible. Nevertheless, Hi-C still is a powerful tool for
Table 1
Techniques for assessment of higher-order and primary chromatin structure.

Techniques Target Method Requirements

Higher-order
Non-NGS-based method
3C 1 -vs-1 -Cross-linking

-Fragmentation
-Intra-molecular ligation
-Reverse crosslink
-Purification
-qPCR detection

-2 × 107–2.5 × 107 cells
-Primer: long, high Tm,
unidirectional

NGS-based method
4C 1-vs-All -Cross-linking

-Fragmentation
-Immunoprecipitation
-Re-ligation
-Enrichment
-Amplification
-Microarray/NGS

−4 bp-cutter
-Inverse PCR-sequencing
-Min. Reads: 1–2 million
(human)

5C Many-vs-Many -Cross-linking
-Fragmentation
-Immunoprecipitation
-Re-ligation
-PCR/sequencing

Multiplexed LMA sequencing
-Min. Reads: 25 million
(human)

Hi-C All-vs-All -Cross-linking
-Fragmentation
-Biotin labeling
-Re-ligation
-Streptavidin binding
-Shearing
-Sequencing

−300-500 bp fragment
- 8.4 to 100 million reads
(human)

-2 × 107–2.5 × 107 cells

Primary-order
NGS-based method
MNase-seq Nucleosomes;

Inferred closed
regions

-Cross-linking (optional)
-MNase digestion
-Size selection
-Sequencing

-Size selection: 25–200 bp
-Paired-end or Single-end
-Min. Reads: 150 to
200 million (human)
- 106–107 cells

DNase-seq Open chromatin -Cross-linking (optional)
-DNase I digestion
-Size selection
-Sequencing

-Size selection: 50–100 bp
-Paired-end or Single-end
-Min. Reads: 20 to 50 million
(human)
−106–107 cells

FAIRE-seq Open chromatin -Cross-linking
-Sonication
-Phenol-chloroform
extraction
-Reverse cross-linking
-Sequencing

-Paired-end or single-end
-Min. Reads: 20 to 50 million
(human)
- 105 - 107 cells

ATAC-seq Open/closed
chromatin

-Fresh nuclei isolation in
most cases
-Tn5 transposition
-Sequencing

-Paired-end
-Min. Reads: 100 to
160 million (human)
-5 × 102 to 5 × 104 cells
revealing chromosome territories and genome compartmentalization.
Table 1 highlights the workflow, data analysis, experimental require-
ments, resolution, advantages and drawbacks common to 3C-based
technologies.

1.1.2. Computational Approaches for Assessing Higher-order Chromatin
The advancement of 3C-based technologies and rapid accumulation

of data challenge the computational analysis and interpretation. Here,
we describe the key features of 3C-based data analysis, with key steps
outlined in Fig. 2. For the detection of chromatin interactions using
high-throughput sequencing, the general steps in the analytical pipeline
start with the preprocessing of paired-end raw reads. After quality
filtering based on Phred scores and user-defined filters, the remaining
reads are mapped to the genome of interest via alignment strategies.
Resolution Pros and cons Reference

~1–10 kb Pros
High dynamic range, quantitative, easy data analysis
Cons
Cannot detect novel contacts
Low throughput

[108]

~10 Mb Pros
Detects novel contacts, high resolution, sensitivity for
long-range contacts, high-throughput, reproducible
Cons
Limited to unique viewpoint

[90,109]

~4 kb Pros
High dynamic range, complete contact map of a locus,
overcomes junctional problems
Cons
Probe bias, limited to the selected region

[90,110]

~1 Mb Pros
Detects all intra- and inter-chromosomal interactions
Cons
High cost

[60,90]

~ 1–10 bp Pros
Detects TF footprints,
method of choice for genome-wide nucleosome core
positioning
Cons
Accessible regions are indirectly inferred, large numbers
of reads for sufficient depth, MNase sequence bias

[111]

~1 bp Pros
Detects TF footprints,
greater sensitivity at promoters than FAIRE-seq
Cons
Time-consuming, DNase I sequence bias

[112]

~200 bp Pros
Simple experimental procedure
Cons
Variable crosslink efficiency, lower resolution, high
noise-to-signal ratio, complicated computation and
interpretation

[113]

~1 bp Pros
Simple, fast sample preparation, lower input, detects TF
footprints, detects nucleosome occupancy
Cons
Fresh tissue isolation,
mitochondrial DNA contamination, sequence bias of Tn5
transposase, immature data analysis tools

[16]



Fig. 2. Common computational analysis strategy and specific steps for assessing higher-order and primary-order chromatin structures. The common computational steps are outlined in
the center. Steps specific to the higher-order or primary-order analysis are indicated on each side. The raw reads from 3C-based techniques follow the pipeline to the left to reveal higher-
order chromatin interactions. The raw reads for chromatin accessibility analysis follow the pipeline to the right.
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Appropriate bin size is then selected according to the distance between
interacting sites, followed by normalization that reduces bias and
enables comparisons between different samples. Identification of intra-
and inter-chromosomal interactions then is determined with visualiza-
tion. Specific tools for each of these steps are listed in Table 2.

1.1.2.1. Pre-processing and Alignment. Raw reads are pre-processed by
filtering out PCR duplicates and potential artifact reads reduces false-
positive signals. Sequencing adaptors can also be removed prior to
alignment. There are two types of alignment strategies, the full-read
approach and chimeric alignment. The full read alignment method
employs standard alignment software such as Bowtie2 [57] or the
Burrows-Wheeler Aligner (BWA) [58], with which read pairs are inde-
pendently aligned to a reference genome using an end-to-end
approach. The unmapped reads from full-read alignment are mainly
composed of chimeric fragments spanning the ligation junction. In
order to rescue those unmapped reads, the chimeric alignment can be
performed with read splitting [83] or iterative mapping [47]. Since
chimeric alignmentmethod is capable of identifying the different align-
ment positions of the sequences at two sides of the junction, chimeric
alignment usually maps more reads than the full-read approach which
cannot align reads spanning across the junction sequence. The differ-
ence in the proportion of mapped reads between these two alignment
approaches becomes more apparent when the read length increases.
In order to reach proper coverage and depth, sufficient mapable
sequencing reads must be obtained. In the case of human genome,
Sims et al. [90] summarized the minimal numbers of reads for 4C (1–
2 million), 5C (25 million) and Hi-C (8.4 to 100 million) (Table 1).
Among those, Hi-C needs the most number of reads in order to identify
interactions between all possible sites in the whole genome.

1.1.2.2. Binning and Generating Contact Matrices. In 3C analysis, the
signal-to-noise ratio decreases with increased distance between two
target loci. To overcome this limitation, binning is employed in more
advanced 3C-based techniques. A bin is a fixed, non-overlapping geno-
mic span into which reads are grouped to increase the signal of the

Image of Fig. 2


Table 2
Computational tools for the assessment of chromatin hierarchy.

Tools Function References

Common to both higher- and primary-order assessment
Aligners
Bowtie2
BWA
SOAP
RMAP
Cloudburst
SHRiMP

-Ultrafast, sensitive, accurate and memory-efficient gapped read aligner.
-Maps low-divergent sequences against a large reference genome.
-Efficient gapped and ungapped alignment of short oligonucleotides to reference.
-Maps reads from short-read sequencing technology.
-Parallel read-mapping algorithm optimized for mapping NGS data.
-Fully gapped local alignment of short reads to targets.

[114]
[58]
[59]
[91]
[80]
[77]

Higher-order
4C
FourCSeq -Uses R to detect specific interactions between DNA elements and identify differential

interactions between conditions.
[115]

5C
HiFive -A Python package for normalization and analysis of chromatin structural data produced using either

the 5C of HiC assay.
[79]

Hi-C
Fit-Hi-C
GOTHiC
HOMER
HIPPIE
HiCCUPS
HiCPipe
Juicer

-Assigns statistical confidence to mid-range cis-chromosomal contacts.
-Models contact-frequency uncertainty as binomial distribution.
-Designed for high-resolution Hi-C data.
-Identifies chromatin interactions in a genome.
-Detect sub-TAD chromatin interactions (cis).
-Provides scripts and programs that correct Hi-C contact maps.
-Aligns, filters and normalizes, identifies and compares TADs, loops and compartments and display using Juicebox.

[7]
[116]
[41,42]
[46]
[71]
[104]
[29,30]

HiGlass -Enables multiscale navigation of TAD interactions along with 1D genomic tracks [52]
TAD calling
TADbit
TADtree
Armatus

-TADbit includes quality control module, and aligns reads to the reference.
-Identifies hierarchical topological domains.
-Uses dynamic programming to call TADs in different resolutions.

[84]
[102]
[33]

Primary-order
Primary assessment
ArchTEX
DANPOS-profile
CEAS
Artemis
EagleView
Integrative Genomics Viewer

-Java-based tool for identification of optimal extension of sequence tags.
-Dynamic nucleosome analysis at single-nucleotide resolution.
-Provides statistics on fragment enrichment in important genomic regions.
-Java-based free genome browser, annotation and visualization tool.
-Viewer for next-generation genome assembles with data integration capability.
-Lightweight visualization tool for intuitive real-time exploration of diverse data.

[56]
[19]
[87]
[78]
[117]
[118]

Peak-calling
MNase-seq GeneTrack

iNPS
DANPOS

-Employs Gaussian smoothing for nucleosome calling.
-Detects nucleosomes from the first derivative of the Gaussian smoothed profile.
-Allows comparison of datasets and identification of dynamic nucleosomes.

[4]
[20]
[19]

DNase-seq MACS2
Hotspot
F-seq
ZINBA

-Models length of DNA fragments for spatial resolution of predicted binding sites.
-Identifies regions of local enrichment of short-read sequence tags.
-Identifies chromatin accessible regions and tentative TF footprints.
-Generates peak calls that are consistent with known biological patterns.

[106]
[49]
[14,15]
[72]

FAIRE-seq MACS2
ZINBA

-Models length of DNA fragments for spatial resolution of predicted binding site.
-Generates peak calls that are consistent with known biological patterns.

[106]
[72]

ATAC-seq MACS2
Hotspot
HOMER
F-seq
ZINBA

-Models length of DNA fragments for spatial resolution of predicted binding site.
-Identifies regions of local enrichment of short-read sequence tags.
-Motif discovery and transcript identification analysis.
-Identifies chromatin accessible regions and tentative TF footprints.
-Generates peak calls that are consistent with known biological patterns.

[14,15]
[106]
[49]
[41,42]
[72]

Accessibility analysis
CENTIPEDE
V-Plots
DNase2TF

-Infers regions of the genome bound by transcription factors.
-Plots to reveal chromatin features of transcription factor binding sites.
-Footprinting algorithm with accurate detection and less computing time.

[67,68]
[43]
[94]
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interaction frequency. Smaller bins usually are used for more frequent
intra-chromosomal interactions, and larger bins are for less frequent
inter-chromosomal interactions [12]. As a general rule, selected bin
size should be inversely proportional to the expected number of interac-
tions in a region. For long range chromatin interactions, binning may
reduce the complexity resulted from local interactions. Filtering out
bins with fewer interactions can also improve the signal strength.
Such bins normally occur in regionswith lowmappability or high repeat
content. The interactions between bins are simply summedup to aggre-
gate the signal thus, reducing biases to infer a meaningful interaction
profile fromweak raw signals. The above are examples of how choosing
a proper bin size is critical for data analysis. For the data to be reported
without binning, there should be a sufficient signal strength and repro-
ducibility at the level of individual restriction fragments. Hi-C read
counts are typically summarized at the level of genomic bins with a
fixed width. The range of the bin size varies from 5 kb to 1 Mb. With a
determined bin size, the interaction frequency is stored as a contact
matrix. The contact matrix is symmetric and two-dimensional, with
each entry representing contact frequency between two genomic bins.

1.1.2.3. Normalization. Several biases arise as a result of the experimental
steps. The goal of normalization is to reduce such biases. Normalization
also enables the direct comparison of data from different replicates and
conditions on a common scale. There are two general approaches for
bias correction: explicit and implicit normalization. Explicit models
take into account of known bias factors. In Hi-C experiments as an
example, several systematic biases influence the Hi-C read counts,
including the distance between restriction enzyme cut sites, the GC
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content of trimmed ligation junction and uniqueness of sequence reads
[104]. In order to remove these systematic biases, several approaches,
such as integrated probabilistic background model and Poisson regres-
sion model can be used for data normalization [44,104]. Since it is im-
probable to include all bias factors, alternatively is the use an implicit
approach, also known as iterative correction [47]. This procedure
corrects the matrix by equalizing the sum of every row and column in
the matrix. The procedure is based on the assumption that all loci
should have equal visibility since we are detecting the entire genome
in an unbiased manner. This implicit, iterative correction algorithm, is
relatively faster and therefore preferred.

1.1.2.4. Identification of Intra- and Inter-chromosomal Interactions.
The most popular and intuitive algorithms for identifying intra-
chromosomal interactions, known as TADs, include the directionality
index (DI) [28] and the insulation index (ID) [119]). DI is a statistic for
quantifying the degree of upstream or downstream interaction bias in
the genome and varies considerably around TADs [28]. It is calculated
for individual bins by collecting the reads that fall into the bin and ob-
servingwhether the paired reads aremapped upstream or downstream
of the bin. A positive DI indicates downstream bias of the read pairs.
Based on DI, TAD boundaries are demarcated by strong directionally bi-
ased loci. In contrast, ID uses a slidingwindow approach to sum up con-
tacts within a given region surrounding each locus [49]. TADs are
demarcated by boundaries consisting of insulators that impede DNA
contacts across nearby domains. ID sums up contacts within a given re-
gion surrounding each locus - as TADs are regions of increased contacts,
they can easily be identified via contact count cutoffs. Tools for identify-
ing TADs are referred to as TAD callers.

Most TAD calling tools have the options for both DI and ID for TAD
calling. For example, TADtool (as a Python package) enables the direct
export of TADs called using a set of parameters for both directionality
and insulation indices [14]. Other TAD callers, such as TADbit [72],
Armatus [33], and TADtree [72], exhibit balanced performance for
most parameters for experimental and simulated data. Interaction cal-
lers, such asHOMER [14] andHiCCUPS, [30,71] yield the highest propor-
tion of biologically significant chromatin interactions. HiCCUPS maps
Hi-C data to a specified reference genome and removes artifacts but
does not perform genome binning and normalization and requires
other tools, such as HiCPipe [104], for downstream processing.

Most research in this area has focused on the interactions within
individual chromosomes, and those between different chromosomes
have received less attention. A major challenge is the identification of
reliable and reproducible inter-chromosomal contacts; for example,
false inter-chromosomal fragments could result from random ligations
and in which case the contact profile shows an enrichment of inter-
chromosomal interactions and a depletion of intra-chromosomal ones
[44]. As the signal-to-noise ratio for long range contacts is lower [98],
the inter-chromosomal contact analyses must be handled carefully
and the results interpreted with caution. One strategy to search for
inter-chromosomal interactions is the use of binary contact matrices.
For instance, on a Hi-C dataset the interactions between numerous
siteswerefirst simplified into binarymatriceswith a cutoff for the inter-
action probabilities [50,55]. These binary contactmapswere thenmath-
ematically transformed into inter-chromosomal segment interaction
networks. Using this method, Kaufmann et al. [50] found a strong
non-random clustering in both human and mouse genomes. Both
genomes exhibit similar structural characteristics such as increased
flexibility of specific Y chromosome regions and co-localization of
centromere-proximal region [50]. This characterization of common
structural properties between species points to new regulatory mecha-
nisms based on the spatial distances between different chromosomes.

Hi-C dataset analysis requires powerful computers with high com-
puting capacity as numerous interactions between all loci are exam-
ined. Although standard computers equipped with high-performance
specs are usually sufficient for standard Hi-C analysis, some software
packages require specialized hardware. For instance, HiCCUPS requires
a general-purpose graphics processing unit (GPU) due to the large
number of pixels (trillions) in a kilobase-resolution Hi-C map [29].
In some cases, specialized hardware is not required but could greatly
accelerate the process. In a study comparing the performance of four
different cluster systems that process 1.5 billion paired-end Hi-C reads
using Juicer [71,104], the total required times varied from ~12,000 to
~600 h. This 20-fold increase in computing efficiency was achieved
largely by incorporating general-purpose graphics processing units
and field-programmable gate arrays (FPGAs) in the setup [30].

1.1.2.5. Visualization. Chromatin interactions can be visualized as a
heatmap in which the x- and y-axes represent loci in genomic order,
and each pixel is the number of observed interactions between them.
Plotting contact probabilities versus genomic distance typically reveals
an inverse relationship between these two parameters. Hi-C data can
be visualized using Juicebox [29], my5C [72] and 3D genome browsers
[67] and HiGlass [52]. Epigenome Browser combines web technology
with intuitive graphical design to visualize long-range interaction data
[43,107]. Beside chromatin interaction data, epigenome browsers
allow visualization of other omics data such as RNA-Seq, WGBS or
ChIP-seq for a genomic region, providing a complete view of regulatory
landscape and 3D genome structure for a given gene.

1.2. Assessment of Primary-order Chromatin

The spatial organization of the genome, and thus, cellular functions
are also regulated at the primary scale. Chromatin compaction is deter-
mined by nucleosome density. Genomic regions with dense nucleo-
somes are more tightly packed (i.e., “closed”), whereas nucleosome-
depleted regions are more accessible (i.e., “open”) for interactions
with regulators and are therefore regarded as the primary locations
of regulatory elements. Currently, NGS enables genome-wide investiga-
tions of chromatin accessibility [63,86,97]. In this section,we provide an
overview of the common methods for profiling genome-wide chroma-
tin accessibility and the data analyses involved. A comparison of these
methods, in terms of experimental requirements and specificities, is
shown in Table 1. An overall computational analysis strategy is outlined
in Fig. 2, and specific bioinformatics tools are listed in Table 2.

1.2.1. Experimental Techniques for Assessing Primary-order Chromatin
Currently, the most widely used methods for assessing primary-

order chromatin state include MNase-seq, DNase-seq, FAIRE-seq and
ATAC-seq (Fig. 1). For MNase-seq, an endo-exonuclease (MNase) that
cleaves linker DNA between nucleosomes, with its endonuclease activ-
ity digesting linker DNA unprotected by the nucleosome core, resulting
in nucleosome-bound DNA sequences. DNA regions with a high density
ofMNase-seq reads represent nucleosome-dense, tightly packed, closed
chromatin [9,40,81]. Currently, MNase-seq is the method of choice for
probing genome-wide nucleosome positioning [23]. It is noteworthy
to point out that although euchromatic and heterochromatic regions
are both accessible to MNase digestion, heterochromatin tends to
give rise to longer, multiple nucleosome-sized fragments that can be
excluded by size selection prior to MNase-seq analysis [105]. Hence, in
standard MNase-seq data analysis, the reads included are usually pre-
dominantly from euchromatic regions, and higher MNase-seq read
abundance represents the relatively small and closed regions in euchro-
matin. The proportion of euchromatin reads to heterochromatin reads
varieswith factors such as the chromatin state, enzymedigestion condi-
tion, and sequence read size selection limit.

In contrast, DNase-seq was developed to identify open chromatin
regions based on the notion that accessible regions of the genome
show hypersensitivity to DNase I endonuclease [39]. Upon endonucle-
ase digestion, open regions that are unprotected by nucleosomes are
cleaved into sub-nucleosomal fragments (b150 bp). These two
enzyme-basedmethods can also be employed to identify transcriptional



49P. Chang et al. / Computational and Structural Biotechnology Journal 16 (2018) 43–53
factor-boundDNA regions at a nucleotide resolution using librarieswith
subnucleosome-sized fragments down to 25 bp facilitates the identifi-
cation of both nucleosomes and transcription factor (TF) binding sites
[43,94,100].

FAIRE (formaldehyde-assisted isolation of regulatory elements)-seq
[36,92] is a method for identifying open regions in the genome. DNA is
crosslinked to nucleosomes using formaldehyde, which is subsequently
removed by phenol-chloroform extraction. The remaining nucleosome-
free DNA is sequenced to profile accessible regions. This experimental
procedure is relatively simple but generally yields a lower resolution
and high noise-to-signal ratio.

ATAC (assay of transposase-accessible chromatin)-seq identifies
open and closed chromatin. The Tn5 transposase cleaves DNA frag-
ments from open chromatin regions. After cleavage, Tn5 inserts adaptor
sequences into integrated sites, eliminating additional ligation steps
prior to sequencing. In addition to a simplified sample processing proce-
dure, ATAC-seq generally requires two to four orders of magnitude
fewer tissues/cells (see Table 1). Most ATAC-seq experiments have
been performed on native (not crosslinked) cells, yet it was recently re-
ported that formaldehyde fixation does not affect the Tn5 tagmentation
efficiency in intact nuclei [21]. An alternative to profile accessible
regions for fixed cells is NicE-seq (nicking enzyme assisted sequencing).
A nicking enzyme targets open chromatin and these open regions are
labeled with biotin due to the incorporation of biotinylated dNTPs.
The biotin-labelled genomic DNA fragments are extracted and se-
quenced [69].

For both animals and plants, 500–50,000 fresh cells are adequate,
as opposed to MNase-seq or DNase-seq which requires at least 106–
107 cells [16,62]. The high-resolution nature and small sample require-
ments of ATAC-seq make it an excellent tool for genome accessibility
profiling; in fact, it was employed as a primarymethod for investigating
the human epigenome in the ENCODE project [13,51].

For all above methods, at least two biological replicates are neces-
sary to ensure the reproducibility. Based on the ENCODE Experiment
Guidelines, the replicates must be independently derived from the
same cell/tissue type/state. To be considered as reproducible data, the
following criteria should be met: a) the number of mapped reads and
the length of target lists from replicates should be within a factor of
two of each other, and either b) 80% of the top 40% fraction of the target
lists of the two replicates should overlap and same for the reciprocal, or
c) there must be N75% of targets in common when all available reads of
both replicates are compared (https://www.encodeproject.org/about/
experiment-guidelines).

1.2.2. Computational Approaches for Assessing Primary-order Chromatin
The key features of the pipeline developed to analyze high-

throughput sequencing data for primary-order chromatin structure
are outlined in Fig. 2. As shown in the figure, the analysis to discover
chromatin accessible regions (right panel) follows steps common to
the pipeline developed to identify higher-order chromatin structure.
The following discussion focuses on features and tools specific for chro-
matin accessibility profiling. A summary of the computational tools
employed for chromatin accessibility studies is shown in Table 2.

1.2.2.1. Pre-processing andAlignment. The sequence reads arefirst quality
checked and filtered to remove redundant reads and adaptors. At this
stage, size selection is performedwhen required. InMNase-seq, smaller
fragments (approximately 25–50 bp) represent transcription factor
binding sites. ATAC-seq data containing specifically mapped fragments
below 38 bp are removed, as 38 bp is the minimal distance between
neighboring transposition sites generated by the Tn5 transposase [2].
In addition, reads originating from the mitochondrial genome are
discarded. Subsequently, filtered reads are aligned to a user-defined ref-
erence genomeusing similar toolsmentioned for higher-order structure
assessment (Table 2). The minimal required number of sequencing
reads for each method in the case of human is listed in Table 1; 150–
200 million reads for MNase-seq, 20–50 million for DNase-seq and
FAIRE-seq, and 100–160 million for ATAC-seq (Table 1).

1.2.2.2. Preliminary Assessment. In the preliminary assessment of the
sequencing results, composite plots are utilized to visualize read abun-
dance as a function of the distance to a particular genetic feature. An
increase in read abundance at positions corresponding to accessible
regions indicates a good library. For example, transcription start sites
(TSSs) have been demonstrated to be accessible chromatin locations.
Hence, DNase-, FAIRE- and ATAC-seq data are expected to show an
overall increase in abundance at these locations, whereas a decrease
at TSSs is expected for MNase-seq data. For ATAC-seq specifically, an
additional size distribution plot of inserts (i.e., fragments resulting
from Tn5 transposition) can be generated using Picard tools (http://
broadinstitute.github.io/picard/). The size distribution of inserts in a
successfully prepared library depicts an array spanningfive to six nucle-
osomal units. In addition to examining read abundance at the locations
of certain genetic features, the visualization of read abundance across
the entire genome provides a general read density profile. Publicly
available genome browsers, such as Integrative Genomics Viewer
(IGV) (see Table 2 for more tools), can be employed for this purpose.
Among these browsers, IGV is one of themost powerful tools supporting
the integrative analyses of genetic, epigenetic and expression data.

1.2.2.3. Peak Calling. After preliminary assessment, mapped reads are
used to detect open chromatin regions represented as “peaks” where
the maximum number of reads are mapped. This “peak calling” step
is perhaps the most critical step for chromatin accessibility profiling,
revealing nucleosome-dense, closed regions (MNase-seq) or open
chromatin regions (DNase-seq, FAIRE-seq, and ATAC-seq). In some
cases, transcription factor binding sites can also be identified when
small fragments (25–50 bp) are included in the sequencing library.
For better clarity, specific analysis features and tools for each method
are discussed individually below.

1.2.2.4. Peak Calling for MNase-seq. For MNase-seq data, sequenced in
single-end mode, the 5′ end of the mapped sequence for the forward
or reverse strand represents the nucleosome border, and the midpoint
or full nucleosome length can be identified by shifting the ends 73 bp
[3] or extending the ends from 120 to 147 bp in the 3′ direction. For
paired-end sequencing, the midpoint of the forward and reverse reads
is assigned as the nucleosomemidpoint. GeneTrack [4] employs Gauss-
ian smoothing to generate a probability-based continuous map where
nucleosome positions are assigned according to a user-defined exclu-
sion distance between neighboring nucleosomes, whereas iNPS [20]
detects nucleosomes from the first derivative of the Gaussian smoothed
profile. DANPOS [19] enables the comparison of MNase-seq datasets
and the identification of dynamic nucleosomes that respond to environ-
mental conditions and development stages.

1.2.2.5. Peak Calling for DNase-seq and FAIRE-seq. For DNase-seq data
analyses, algorithms such as F-seq [15] and Hotspot [8,49] are specifi-
cally designed to manage the unique features of DNase-seq data. F-seq
implements a smooth Gaussian kernel density estimation and has
been implemented in combination with ChIP-seq in many studies to
identify chromatin-accessible regions and tentative TF footprints. One
unique feature of the Hotspot tool is that it reports statistical signifi-
cance for identified DHSs. In addition, general peak-calling tools, such
as MACS [106] and ZINBA [72], have been successfully employed as
peak-calling software for DNase-seq data [101]. ZINBA uses a regression
model to identify enriched regions, and regions within a defined dis-
tance are combined to form a broad region in which the positions of
maximal sharp signals are identified using a shape-detection function.
The model-based algorithm MACS was originally designed for ChIP-
seq datasets but has been effectively applied to identify enrichment re-
gions for DNase-seq data. MACSmodels the shift size and implements a
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Poisson distribution as a background model to detect enrichment. For
FAIRE-seq data, the shift-size parameter should be set as the midpoint
of the average size of sonicated fragments. ZINBA can also be used to
detect enrichment for FAIRE-seq, as this technique shows better detec-
tion accuracy than MACS2 when the signal-to-noise ratio is low.

1.2.2.6. Peak Calling for ATAC-seq. Paired-end sequencing is performed
for ATAC-seq. Paired-end 50-cycle reads generally provide accurate
alignments, and approximately 50 million mapped reads are sufficient
for human samples [16]. The read start sites require adjustment because
the Tn5 transposase binds as a dimer and inserts adaptors separated by
9 bp [2]. Generally, reads aligned to the + strand are offset by +4 bp,
and reads aligning to the - strand are offset by −5 bp. ATAC-seq data
can reveal both small transcription factor binding sites (indicated
by narrow peaks) and larger regions of open chromatin (indicated
by broad peaks). Broad peaks cover broad regions of enrichment, and
localized/narrow peaks span small regions of approximately 50–500 bp.
In most cases of chromatin accessibility profiling, the target open chro-
matin regions are a few kilobase pairs or longer and are presented as
broad peaks. Open chromatin regions can be inferred from peaks using
peak-calling tools. Common tools for the recognition of regions or peak
calling for ATAC-seq include MACS [106], ZINBA [72], Hotspot [49],
HOMER [41] and F-seq [14].

The MACS2 peak caller is a popular tool for ATAC-seq peak calling,
as it can detect both narrow and broad peaks and considers the false
discovery rate and noise. Similar to MACS2, ZINBA calls both broad
and narrow regions of enrichment across a range of signal-to-noise
ratios. Additionally, ZINBA accounts for factors that co-vary with the
background or experimental signal. Hotspot can detect regions of
enrichment of variable sizes and performs automatic normalization for
large regions with elevated read levels, reflecting features such as high
copy numbers. F-Seq is a Java package that continuously estimates the
read density and identifies regions of higher density and was used to
identify broad accessible regions in the ENCODE project. In contrast,
HOMER was employed to call localized narrow peaks as HOMER was
originally developed to identify short (8–12 bp) motifs for ChIP-seq
analysis. An R module called “atac-seq” which implements the ATAC-
seq pipeline of ENCODE, including F-seq, HOMER, and MACS2, with
data visualization was recently made available (https://github.com/
blikzen/atac-seq).

1.2.3. Chromatin Accessibility Analysis
Accessible regions are determined based on peak-calling results.

Positions of nucleosome occupancy can be assigned from MNase-seq
data using various algorithms and TF-binding site tools, such as
V-plots [18,103]. For DNase-seq, regulatory elements in open chromatin
regions are identified using footprinting algorithms. Among these tools,
DNase2TF [96] offers better detection accuracy and requires less com-
puting time. In the analysis of ATAC-seq data, the positions of both
nucleosome and TF-binding chromatin are identified using CENTIPEDE
[68]. As algorithms exhibit various sensitivities and specificities, it is
beneficial to analyze data using more than one tool because discrepan-
cies in peak calling have been reported [53,95]. Additionally, cross-
comparison of chromatin accessibility profiles generated using different
methods to obtain consensus peaks or regions will be beneficial for
downstream analyses.

1.3. Profiling the Chromatin Hierarchy in Single Cells

The use of 3C-based methods in large populations of cells generates
population-averaged maps of chromosomal contact frequencies. To
understand the cell-to-cell variability in the chromosome architecture,
Flyamer and co-workers developed an in situ Hi-C approach [34].
Conventional Hi-C methods include biotin labeling and enrichment for
ligated fragments, which limits fragment retrieval; hence these steps
were omitted in the in situ Hi-C protocol. These authors reported up to
1.9 × 106 contacts per oocyte in mice after filtering, yielding 1–2 orders
of magnitude more contacts than previously reported single-cell Hi-C
data [66]. The same study showed that loops and compartments were
formed by distinct mechanisms. In another study, Ramani and col-
leagues developed a single-cell combinatorial Hi-C (sciHi-C) index
method, in which combinatorial cellular indexing was applied to
capture the chromosome conformation [70]. In combination with
other single-cell studies of methylomes and transcriptomes, compre-
hensive details of the interplay between these hierarchical levels can
be obtained.

A non-3C-based method, called genome architecture mapping
(GAM), combine ultrathin cryosectioning with laser microdissection
andDNAsequencing to capture three-dimensional proximities between
genomic loci without the ligation step [11]. Based on the assumption
that physically proximal loci are found more frequently in the same
thin nuclear section than distant loci, GAM infers the chromatin spatial
structure by determining the presence or absence of genomic loci in a
set of single slices (one slice per nucleus) from a population of nuclei.
The co-segregation of loci among a large collection of nuclear profiles
is used to create a matrix that is further analysed to identify chromatin
contacts genome-wide. Notably, in mouse embryonic stem cells the
identified contacts were enriched for regions that are highly transcribed
or contain super-enhancers.

Similarly, the profiling of chromatin accessibility often requires a
large population of cells. The chromatin landscapes of each cell type
are lost when only the average profile is assessed. Hence, the need for
epigenetic investigation within complex and heterogeneous tissues
drives the development of accessibility profiling techniques at single-
cell resolution [6,22,82].

An investigation of open chromatin regions in single cells has been
demonstrated based on a modified DNase I protocol [48]. Using the
described single-cell DNase-seq (scDNase-seq) technique, a resolution
of 300,000 mapped reads per single cell was achieved. Comparative
analysis among individual cells revealed that constitutive DHSs reside
in highly expressed gene promoters and enhancers associated with
multiple active histone modifications. In addition to DNase-seq, two
single-cell level ATAC-seq methods have also been demonstrated
recently. The first method employs a “combinatorial indexing” strategy
in which tagmentation is performed on 96 reactions involving a few
thousand nuclei, introducing a unique barcode to each reaction. The
96 reactions are subsequently pooled and split, prior to a second
round of tagging via PCR. This two-step process results in a unique
barcode combination for each individual cell [24]. In the secondmethod,
a microfluidics device is used to encapsulate individual cells within
aqueous droplets, in which the transposition reaction occurs [17]. This
approach results in a large increase in resolution compared with the
combinatorial indexing method, with an average of 70,000 reads per
cell. scATAC-seq shows great potential for elucidating the cellular varia-
tion of the chromatin landscape [17,24], and the assessment of chroma-
tin accessibility requires a different computational analysismethod. One
suchmethodwas described by Buenrostro et al. [17]; a set of chromatin
peaks was first identified from the aggregate accessibility track. The
fragment abundance at these peakswas adjusted based on the expected
abundance within individual cells. The cellular variance was subse-
quently calculated as a “variability” score, which was corrected against
the background signal resulting from technical and sampling errors.
Further development in single-cell chromatin profiling techniques will
advance our understanding in the role of chromatin accessibility in
physiological heterogeneity related to vital biological processes.

1.4. Biological Relevance of Chromatin Organization

The higher-order organization of chromatin has implications in
major cellular functions [10]. For example, inmice and humans the effi-
ciency of DNA repair depends on the higher-order chromatin structure
[37,65]. Furthermore, chromosomal abnormalities in the form of
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translocations and aneuploidy are a general hallmark of cancer cells
[64]. The genes associated with chromosomal translocations in human
lymphomas are in the physical proximity of each other and are located
towards the nuclear interior. The translocations depend on the “higher-
order spatial organization” of the genome, rather than the sequences of
the genes involved [76]. Similarly, the primary-order chromatin struc-
ture regulates several biological functions. Understanding the dynamics
of the chromatin landscape provides clues about disease development
and cell differentiation. For example, changes in accessibility of specific
transcription factors were identified as a determining factor for cancer
development [25]. In a chromatin accessibility profiling study using
scDNase-seq, thousands of tumor-specific DNase I-hypersensitive sites
were identified [48]. It was found that these hypersensitive sites are
highly associated with cancer development.

1.5. Integrative Approaches for Assessing the Chromatin Hierarchy

Other high-throughput technologies have been combined with
chromatin conformation capture methods for validating chromatin
interactions and examining their biological relevance. Chromatin
interaction analysis based on paired-end tag (ChIA-PET) sequencing
combines ChIP with chromatin conformation capturing techniques,
potentially facilitating the identification of chromatin contacts with
sites bound by a protein of interest [26]. Imaging tools such as fluores-
cent in situ hybridization (FISH) and electron microscopy (EM) can be
combined with 3C-based technologies to overcome their limitations in
terms of resolution and scale [85]. Imaging can also be combined with
chromatin accessibility profiling. Chen et al. [21] developed “ATAC-
see” that employs bifunctional Tn5 transposomewith fluorescent adap-
tors to mark the accessible genome in situ. Moreover, a recently devel-
oped method called NicE-seq (nicking enzyme assisted sequencing)
has been demonstrated for its capacity to identify open chromatin
regions, and this technique's potential to visualize open chromatin
when coupled with fluorescent-labeled dNTPs has been proposed [69].

Integrating chromatin accessibility data obtained from ATAC-seq
and other techniques with RNA-seq and ChIP-seq enables researchers
to elucidate associations of chromatin states with gene expression and
regulation. For example, by correlating the accessibility map generated
using ATAC-seq with RNA-seq data, candidate cis-regulatory elements
responsible for cell differentiation were identified [1]. Likewise, the
combination of the newly developed scATAC-seq method and ChIP-
seq analysis revealed trans-regulatory elements that induce or suppress
cell-to-cell heterogeneity [17]. In another single-cell profiling study
using scATAC-seq, the integration of RNA-seq data led to the identifica-
tion of a cell surface marker that co-varies with chromatin accessibility
changes associated with cancer cell heterogeneity [61]. These integra-
tive approaches demonstrated that the combination of different tech-
niques provides complementary information that help elucidate the
regulatory mechanisms of various cellular functions.

2. Summary and Outlook

Cellular functions are often a consequence of the coordinated action
of the chromatin hierarchy. Integrating chromatin studies of higher-
order and primary-order structures sheds light on the potential link
between these two levels of chromatin structures. For example, it has
been demonstrated that genomes from bacteria to mammals segregate
into domains wherein segments of DNA preferentially interact, and this
preference is associated with epigenetic signatures of the primary chro-
matin structure. This link between primary-order chromatin accessibil-
ity and higher-order chromatin compartmentation was also reported in
a single-cell level chromatin profiling ofmammalian cells using scATAC-
seq [17]. Clearly, the interactions of chromatin in a three-dimensional
space depend on its primary structure and associated epigenetic
marks. However, the underlying mechanism remains unclear.
Several limitations challenge the assessment of the higher-order
chromatin hierarchy. First, experimental steps including crosslinking,
chromatin fragmentation, biotin labeling and ligation introduce biases
that complicate the interpretation of detected interactions. Moreover,
long-range chromatin interactions and the principles of chromatin
dynamics require more accurate, sensitive and reproducible methods.
Some of these issues can be addressed by integrating data frommultiple
biological replicates because higher reproducibility indicates higher
reliability and/or stability of the detected interactions. Binning is a
critical step that increases the signal of the interaction frequency.
Furthermore, most multicellular organism are diploid but the current
pipelines for chromatin conformation prediction consider the genome
as haploid. To address the issue, single-nucleotide polymorphisms
(SNPs) and insertion deletion polymorphisms (Indels) can serve as
markers separating sister chromatids; these markers can be incorpo-
rated into the computational pipeline to increase the accuracy of chro-
matin conformation.

For primary order structure analyses, future opportunities and
challenges include the incorporation of chromatin interactions and
accessibility profiles with genetic and epigenetic features to eluci-
date the intricate regulatory network. Such analyses should also include
the association of chromatin interactions and accessibility with allele
specificity for functionally relevant SNPs. Combining the results from
genome-wide accessibility profiles with quantitative trait locus studies
can aid the identification of disease phenotypes. These challenges
highlight the need for robust computational tools tailored specifically
towards an integrative approach. Furthermore, as single-cell analysis
contributes to the clarification of relationships between gene expres-
sion and epigenetics, we foresee that this technique will provide
new insights into the role of chromatin accessibility in physiological
heterogeneity related to cell differentiation, development, health and
disease. However, low sequencing coverage is a major issue for single-
cell-level techniques which therefore require advancement in sequenc-
ing techniques.
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