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Introduction
Sepsis is a complex syndrome that is initiated by an infection 
and is characterized by a systemic inflammatory response. The 
global mortality rate of neonatal sepsis is around 1 million per 
year, which may be due to lack of potential diagnostic meas-
ures.1 Bacterial culture remains the gold standard in sepsis 
diagnosis; moreover, it takes at least 24 to 48 hours to provide 
the results, having only 60% sensitivity.2 Biological markers 
such as C-reactive protein (CRP), interleukins (ILs), procalci-
tonin, and erythrocyte sedimentation rate (mESR) have high 
sensitivity but poor specificity. As the search for potential diag-
nostics expands, the possibility of linking genetic variations 
with severity and susceptibility to sepsis and using them as 
prognostic/diagnostic markers is being explored.

MicroRNAs (miRNAs) are short noncoding RNAs that are 
involved in posttranscriptional gene regulation. The role of 
miRNAs is vital in biological processes such as cell growth, 
development, and activities. The biological significance of miR-
NAs is being analyzed by experimental methods such as induced 
deletion of specific miRNAs or using artificial miRNA. They 
also function as key regulators at different stages of host immune 
response, for example, miR-155 regulates proliferation of 
CD4+ CD25+ Treg cells; miR-146a downregulates interleu-
kin-1 receptor–associated kinase (IRAK1), IRAK2, tumor 
necrosis factor receptor–associated factor 6 (TRAF6); miR-150 
was found to be involved immune pathways such as MAP 
kinase pathway, Wnt signaling pathway, and insulin resistance; 
and miR-181b regulates vascular inflammation mediated by 
nuclear factor κB (NF-κB).3–6 The differential expression of 

some miRNAs circulating in serum and plasma during sepsis is 
listed in Table 1. However, the role of miRNAs in neonatal sep-
sis is not much explored. In this study, we attempted to estimate 
the expression levels of 4 candidate circulating miRNAs in 
small cohorts of septic and healthy newborns.

Materials and Methods
Study subjects and sample size

The study was approved by Institutional Human Ethics 
Committee (IHEC), JIPMER, Puducherry. To estimate the 
level of circulating candidate miRNAs in plasma, newborns with 
early-onset sepsis (n = 25) and without sepsis (n = 25) were 
recruited. Early-onset sepsis usually occurs within 72 hours, after 
birth. The inclusion criteria for cases are as follows: age ⩽3 days, 
term birth, clinically diagnosed sepsis with at least 2 screening 
tests positive such as mESR >age in days + 3 mm/h, CRP 
>4 mg/dL, band cell count (>20%), and no antibiotic treatment 
before blood sample collection. The exclusion criteria are as fol-
lows: surgical procedures, maternal history of infections, inflam-
mations or antibiotic therapy before delivery, APGAR score <6 
at 5 minutes, and presence of any congenital malformations.

In silico selection of candidate miRNAs

The candidate miRNAs were selected based on their signifi-
cance in sepsis-associated inflammatory pathways through lit-
erature, bioinformatics tools such as mirPath v2.0, microT-CDS 
v5.0, miRTarBase v6.0, and TargetScanHuman v6.2. The 
retrieved data were validated with miRecords (Bioleads, 
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Minnesota, MN, USA), which contains experimentally verified 
miRNA-target interactions.

Isolation of circulating miRNAs and synthesis of 
complementary DNA

After getting informed consent from the parent/guardian, 
0.5 mL of peripheral venous blood was collected from the neo-
nates in a vacutainer containing EDTA (ethylenediaminetet-
raacetic acid). The plasma was separated by centrifugation at 
3000 rpm for 10 minutes at 4°C, and the total RNA (messenger 
RNA, miRNA, and other RNAs) was extracted using miRNe-
asy Serum/Plasma extraction kit (Qiagen, Hilden, Germany) 
following the manufacturer’s protocol. The complementary 
DNA (cDNA) was synthesized through reverse transcription 
using miScript II RT Kit (Qiagen).

Expression levels of candidate miRNAs

The quantification of candidate miRNAs was done through real-
time polymerase chain reaction (PCR) approach in a 48-well, 
StepOne Real-Time PCR platform (Applied Biosystems, Foster 
City, CA, USA). The PCR reaction mixture was prepared using 
miScript SYBR green PCR assay kit (Qiagen) as follows: 2× 
miScript SYBR green master mix—10 µL, 10× miScript univer-
sal primer—2 µL, 10× miScript primer assay—2 µL, RNA sam-
ple—2 µL, and nuclease-free water—4 µL. The steps of thermal 
cycling conditions were as follows: initial denaturation at 95°C 
for 15 minutes, followed by 40 cycles of denaturation at 94°C for 
15 seconds, annealing at 55°C for 30 seconds, and extension at 
70°C for 30 seconds. Real-time PCR amplification was followed 
by melt curve analysis wherein the PCR products were melted 
from 60°C to 85°C with a gradual increment of 0.2°C/min. The 
melting temperature (Tm) of the amplified products was meas-
ured with fluorescence intensity (−dF/dT) using the software 
StepOne v2.1 (Applied Biosystems).

Normalization controls

The spike-in control (Caenorhabditis elegans miR-39 mimic) 
was used as exogenous control for normalization, to monitor 
the bias factors such as variation in input RNA concentration, 
the presence of RNA inhibitors, possible RNA degradation, 
and errors in sample handling. The spike-in control was 

reconstituted in 300 µL of nuclease-free water, resulting in 
2 × 1010 copies/µL of miR-39, from which 4 µL was taken and 
added to 16 µL nuclease-free water, reducing the concentration 
to 4 × 109 copies/µL. The working concentration 
(1.6 × 108 copies/µL) was prepared by adding 2 µL of diluted 
control with 48 µL of nuclease-free water. The primer assay for 
SNORD61 was used as endogenous control, whose expression 
is constant in all cell types and tissues with an amplification 
efficiency of 100%. The expression levels of candidate miRNAs 
were normalized with that of endogenous control.

Standard curve preparation and miRNA 
estimation

For the preparation of standard curve, 2 µL of the diluted 
spike-in control (4 × 109 copies/µL) was added to 78 µL of 
nuclease-free water, resulting in 1 × 108 copies/µL. This spike-
in control was reverse-transcribed to cDNA, following the pro-
tocol mentioned earlier. The components of revere transcription 
mixture were as follows: 2.2 µL spike-in control (1 × 108 cop-
ies/µL), 2 µL template RNA sample, 4 µL 5× miScript Hi 
Spec buffer, 2 µL 10× miScript nuclease buffer, 2 µL miScript 
reverse transcriptase mix, and 7.8 µL nuclease-free water. The 
standards were prepared by mixing different aliquots of spike-
in control cDNA with nuclease-free water. The cycle threshold 
(Ct) values obtained for standard cDNAs were used to create a 
standard graph, in which the Ct values for cDNAs from patient 
samples were extrapolated and the corresponding miRNA 
expression is found. The Tm of the amplicons was used to verify 
nonspecific amplification.

Statistical analysis

Statistical analysis was performed with SPSS v19 (IBM, 
Armonk, NY, USA) and Microsoft Excel at 95% confidence 
interval. Categorical data were represented as numbers and 
percentages. Independent Student t test was used to compare 
the expression levels of candidate circulating miRNAs between 
the groups.

Results
The cases and controls were matched for baseline demographic 
parameters such as age, sex, and birth weight. There is no sig-
nificant difference between the cases and controls.

Table 1.  Differential expression of miRNAs in serum and plasma during sepsis.

Fluid Regulation miRNAs

Serum Downregulated miR-2237, miR-146a4, miR-15a8, miR-1229

Upregulated miR-133a10,miR-15011, miR-1612

Plasma Downregulated miR-29713

Upregulated miR-574-5p13

Abbreviation: miRNAs, microRNAs.
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Four candidate miRNAs, miR-132, miR-146a, miR-155, 
and miR-223, were selected for the study via bioinformatics 
screening. The targeted genes and pathways of these miRNAs 
are given in Table 2.

The amplification plots of miRNAs and standards are 
shown in Figure 1. The standards were denoted as S1, S2, S3, 
and S4 that showed gradual increase in the Ct value due to 
decrease in miRNA concentration. The endogenous control is 
denoted as “N”. The normalized Ct values of candidate miR-
NAs were extrapolated in the standard graph to estimate their 
expression levels. The melt curves for the candidate miRNAs 
are shown in Figure 2. The melt curve analysis was performed 
from 65°C to 95°C to find out the melting temperature of the 
amplicon. As the amplicon size was around 250 bp (base pairs), 
the melting temperature falls in the range of 75°C ± 1°C.

The expression levels of circulating miRNAs determined 
from the standard graph were compared between the cases 
and controls. The levels of all candidate miRNAs were found 
to decrease in cases compared with controls, although only 
miR-223 and miR-132 were statistically significant (Figure 3). 
The negative expression shown in the figure was due to 

normalization with endogenous reference control. Positive 
expression of miR-223 showed that its expression level was 
higher than the reference control, whereas other miRNA 
expression levels were lower. The miR-146a expression was 
found to be very low in both cases and controls, compared 
with other miRNAs.

Discussion
Microarray analysis of peripheral blood leukocytes revealed 
differential expression levels of miRNA and was found to be 
associated with plasma cytokine levels.14 Candidate miRNA 
study found that lipopolysaccharide (LPS)-induced inflamma-
tion is downregulated by miR-15a/16.15 In this study, the 
expression levels of 4 candidate miRNAs, miR-146a, miR-223, 
miR-155, and miR-132, were analyzed. The circulating miR-
NAs were selected, as miRNAs originated from cells were like 
monocytes, and endothelial cells were differentially expressed 
during microbial infections.16 Although the expression of all 
miRNAs was downregulated in cases, only miR-132 and miR-
223 were found to be statistically significant.

In a similar study by Wang et al,7 miR-146a and miR-223 
were found to be significantly low in septic cases when com-
pared with patients with systemic inflammatory response syn-
drome and controls. MiR-146a was also found to regulate IL-6 
expression, controlling the proliferation of monocytes.17 In 
contrast to the observations from this study, Vasques-NÓvoa 
et  al18 found increased plasma miR-155 expression in both 
human and experimental septic shock. Similar observation of 
increased miR-155 expression in plasma was observed by 
Wang et  al,3 among sepsis patients when compared with 
healthy controls.

MiR-223 is a blood cell–specific miRNA with significant 
roles in the development of myeloid lineages, differentiation of 
granulocytes, and suppression of red blood cell differentia-
tion.19–22 MiR-223 was also found to play a critical role in 
regulating polarization of macrophages in a specific pattern, 
thus preventing mice from conditions such as diet-induced 
inflammation and insulin resistance. It was also found that 

Table 2. L ist of microRNAs selected along with their target genes and pathways.

Gene 
name

No. of 
target 
genes

Examples No. of 
pathways

Some pathways

miR-132 294 PIK3CA, MAPK1, VDAC2, 
ADCY3, BIRC4, GHR, EP300

62 TLR signaling pathway, cell cycle, ubiquitin-mediated proteolysis, 
cell communication, NK cell–mediated cytotoxicity, cytokine-cyto-
kine receptor interaction, T-cell receptor signaling pathway, B-cell 
receptor signaling pathway, calcium signaling pathway, apoptosismiR-146a 143 TRAF6, CD80, IRAK1, 

HDAC1, NFAT5, ERBB4
31

miR-155 340 FOS, MAP3K14, NFAT5, 
IFNAR1, SOS1, SMAD2

73

miR-223 228 UBE2W, STAT1, MAPK10, 
PPP3CB, IL6ST, E2F1

46

Figure 1.  Amplification plots of the microRNAs and standards showing 

the Ct values.
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miR-223 targeted the gene Pknox1, resulting in the suppres-
sion of macrophage infiltration.23 MiRNA-223 was found to 
be associated with sepsis, rheumatoid arthritis (RA), and 
hepatic ischemia and type 2 diabetes.24–26 In this study, the 
expression of miR-223 was found to be decreased in cases 
when compared with controls. In contrast to this finding, a 
recent study stated that miR-223 was upregulated among pedi-
atric patients with sepsis and was correlated with inflammatory 
cytokines such as IL-10 and TNF-α.27

Expression of miR-132 was found to modulate infection-
associated inflammation at the early stages, which was stimu-
lated by LPS.28 The plasma levels of miR-132 were found to be 
decreased in patients with RA, when compared with healthy 
controls.29 MiR-132 was shown to target the gene, SirT1, 

resulting in the synthesis of the inactive SirT1 enzyme. Due to 
the absence of SirT1, its substrate NF-κB gets activated which 
promotes inflammation, followed by increased production of 
IL-8 in adipocytes.30 In this study, a highly significant decrease 
in expression levels of miR-132 in septic cases was observed, 
compared with nonseptic controls. Increased expression of 
miR-132 was found to reduce inflammation by targeting ace-
tylcholinesterase, whereas decreased miR-132 levels resulted in 
exaggerated inflammation through production of a pro-inflam-
matorycytokines such as IL-6 and TNF-α.31

In conclusion, this study shows that miR-132 and miR-223 
were downregulated in newborns with early-onset sepsis. 
Downregulation of these miRNAs may cause aberrant changes 
in inflammation associated with infection. The major 

Figure 2.  Melt curves showing the melting temperature of amplicon for each microRNA: (A) miR-223, (B) miR-132, (C) miR-146a, and (D) miR-155.
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limitations of the study are small sample size and lack of 
microorganism-specific analysis. Further research with large 
sample size and differential analysis is required to evaluate the 
potential of miRNAs as diagnostic markers.
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