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Abstract: Beginning with LaFeO3, a prominent perovskite-structured material used in the field of
gas sensing, various perovskite-structured materials were prepared using sol–gel technique. The
composition was systematically modified by replacing La with Sm and Gd, or Fe with Cr, Mn, Co,
and Ni. The materials synthesized are comparable in grain size and morphology. DC resistance
measurements performed on gas sensors reveal Fe-based compounds solely demonstrated effective
sensing performance of acetylene and ethylene. Operando diffuse reflectance infrared Fourier
transform spectroscopy shows the sensing mechanism is dependent on semiconductor properties of
such materials, and that surface reactivity plays a key role in the sensing response. The replacement
of A-site with various lanthanoid elements conserves surface reactivity of AFeO3, while changes at
the B-site of LaBO3 lead to alterations in sensor surface chemistry.

Keywords: perovskites; gas sensor; DRIFTS; operando spectroscopy

1. Introduction

Calcium titanate (CaTiO3) was discovered in 1839 by German mineralogist Gustav
Rose in the Ural Mountains (Russia). Perovskite material shares the same crystal structure
as CaTiO3, and was subsequently named in honor of the Russian mineralogist Lev Alek-
seevich von Perovskiy [1]. Perovskites have played a potentially significant role over many
decades in various breakthrough technologies as innovative functional materials [1–3].
For example, in 1986, Bednorz and Müller discovered high-temperature superconductiv-
ity (HTSC) based on perovskite material (cuprate ceramics). They were jointly awarded
the Noble Prize in Physics in 1987 for their discovery [4]. Moreover, manganite, another
perovskite-structured material, shows a colossal magneto-resistive (CMR) phenomenon,
which is crucial in spintronic applications [5]. In recent years, perovskites are rapidly
becoming promising materials for inexpensive and high-efficiency photovoltaic cells [6–8].

In the gas sensors field, perovskites are promising candidate materials in gas sensor
applications, due to their unique electrical and catalytic properties [9–15]. Owing to the
general formula of perovskite, written as ABO3, where the A-site cation bears a greater ionic
radius than the B-site cation, this class of structures harbors a wide variety of possibilities
for structure tailoring of oxides, i.e., by replacing A- and B-sites with different elements.

Among various target gases, the detection of hydrocarbons is extremely useful in a
wide range of applications. For example, monitoring of dissolved gases (CH4, C2H4, C2H2,
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CO, CO2, and H2) in transformer oil provides beneficial information about transformer
status [16,17]. Moreover, in agriculture, ethylene emissions indicate the maturity state of
fruits; thus, detecting and controlling this gas is crucial for fruit ripening [18].

For the proper use and future development of selective gas sensors based on per-
ovskite materials, it is essential to understand the sensing mechanism, including the
molecular pathway of the reaction. However, few attempts were made to understand and
systematically compare the underlying sensing mechanism of perovskites. For example,
Arakawa and co-authors found a correlation between catalytic activity and the radius
of A-site-element for LnFeO3, where Ln is a lanthanoid element. In the case of LnCrO3,
however, the same correlation was unnoticeable. The effect of oxygen-binding energy
with metal ions of perovskites on the gas-sensing mechanism was considered by the same
group [19]. Furthermore, the influence of Ln elements and the surface composition of
LnFeO3 on sensing NO2 was reported [20]. Subsequently, Siemons et al. used different
lanthanoid elements (La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) in LnFeO3
and LnCrO3 perovskite structures in order to investigate their gas-sensing properties of
H2, CO, NO, NO2, and propylene via high-throughput impedance spectroscopy [21]. They
noted a correlation between binding energy of oxygen to metal ions and gas sensing; the
lower the binding energy, the greater the gas sensor signals (except for LuFeO3). Recently,
Gaskov and co-workers reported that modification of LaCoO3 with Ag nanoparticles may
lead to greater response and selectivity to H2S compared with pure LaCoO3. Additionally,
they employed in situ infrared spectroscopy to study the chemical reactions of H2S on the
sensor’s surface and observed an enhancement in H2S chemisorption as a result of Ag
nanoparticles present [22]. A summary of relevant material properties is given in Table 1.

Table 1. Properties of different perovskite materials.

Material Bandgap Conduction Type Color

LaCrO3
3.4 eV [23,24]

2.8 eV [25]
p-type [21]
n-type [19] dark green

LaNiO3 metallic [23,26] metallic
p-type [27,28] black

LaCoO3
2.2 eV [29,30]
0.6 eV [23,31]

p-type [22]
n-type [19] black

LaMnO3
0.7 eV [23,32]
0.33 eV [33]

p-type [34]
n-type [19] black

LaFeO3
2.6 eV [35]

2.1 eV [23,36] p-type [19,21] light brown

SmFeO3 2.2 eV [37] p-type [21] light brown

GdFeO3
3.5 eV [38]
2.3 eV [39] p-type [21] brown

In our previous work, we used operando DRIFT spectroscopy to investigate the molec-
ular pathway underlying the reaction of LaFeO3 (LFO)-based sensors during ethylene and
acetylene exposure. We demonstrated that the sensor response of LFO is associated with
formation of surface formats as opposed to oxidation–reduction of the oxide surface [40].

This work aims to examine the validity of our novel mechanism for different perovskite
compounds where La is replaced by other trivalent lanthanoid ions (Sm, Gd) or the
transition metal ion Fe at the B-site is replaced by Cr, Mn, Ni, and Co. This systematic
approach allows us to assess the role of both metals in the gas-sensing process. The
sensing properties of all perovskite materials towards various hydrocarbons were examined.
Moreover, operando DRIFT spectroscopy was used to investigate the molecular interaction
between hydrocarbons and perovskite surfaces.
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2. Experimental Details
2.1. Synthesis and Structural Characterization of Perovskites

Sol–gel technique was used to prepare LaCrO3, LaNiO3, LaCoO3, LaMnO3, LaFeO3,
SmFeO3, and GdFeO3 perovskite powders. Stoichiometric amounts of different metal
nitrates were used as received, shown in Table 2, and dissolved using a (1:1) ratio of citric
acid for each compound. Each mixture was then dissolved in deionized water. Following
this, each solution was neutralized by adding ammonium hydroxide into the vigorously
stirred precursor solution. The obtained gel was dried at 90 ◦C for 4 h. Finally, the powder
was calcined at 600 ◦C for 2 h.

Table 2. Details of the raw materials used for sensitive materials preparation.

Perovskite Material Metal Precursors

LaCrO3

La(NO3)3 · 6H2O (Fluka, (Buchs, Switzerland), Puriss.
p.a., ≥99.0%) and Cr(NO3)2.9H2O (Sigma, (Buchs,

Switzerland), Puriss. p.a., ≥99.0%)

LaNiO3

La(NO3)3 · 6H2O (Fluka, (Buchs, Switzerland), Puriss.
p.a., ≥99.0%) and Ni(NO3)2.6H2O (Sigma, (Buchs,

Switzerland), Puriss. p.a., ≥99.0%)

LaCoO3

La(NO3)3 · 6H2O (Fluka, (Buchs, Switzerland), Puriss.
p.a., ≥99.0%) and Co(NO3)2 · 6H2O (Sigma, (Buchs,

Switzerland), Puriss. p.a., ≥99.0%)

LaMnO3

La(NO3)3 · 6H2O (Fluka, (Buchs, Switzerland), Puriss.
p.a., ≥99.0%) and Mn(NO3)2 · 4H2O (Sigma, (Buchs,

Switzerland), Puriss. p.a., ≥99.0%)

LaFeO3

La(NO3)3 · 6H2O (Fluka, (Buchs, Switzerland), Puriss.
p.a., ≥99.0%) and Fe(NO3)3 · 9H2O (Fluka, (Buchs,

Switzerland), Puriss. p.a., ≥99.0%)

SmFeO3

Sm(NO3)3 · 6H2O (Acros Organics, (Geel, Belgium),
≥99.9%) and Fe(NO3)3 · 9H2O (Sigma Aldrich, (Buchs,

Switzerland), ≥99.0%)

GdFeO3
Gd(NO3)3 · 6H2O (Aldrich, ≥99.9%) and Fe(NO3)3 ·
9H2O (Sigma Aldrich, (Buchs, Switzerland), ≥99.0%)

To confirm the perovskite phase formation of the prepared powders, X-ray diffractome-
ters (MiniFlex 600, Rigaku, Tokyo, Japan and D8 discover, Bruker, Billerica, MA, USA) were
used with nickel filtered Cu-Kα and Co-Kα radiation, respectively, in the diffraction range
of 0◦ to 65◦. Moreover, the morphologies of the perovskite powders were investigated
using a field emission scanning electron microscope (FE-SEM, JEOL-7600F, Tokyo, Japan).

2.2. DC Measurements

Thick film sensors were prepared by screen printing the powders onto alumina
substrates as described in [41]. Afterwards, the sensors were calcined at 500 ◦C to remove
residual organic solvents in the paste. For DC resistance measurements, the sensors
were mounted in a test chamber connected to a gas-mixing system. The resistive heater
on the backside of each sensor substrate was individually calibrated with an infrared
thermometer (KTR2300, Maurer, Kohlberg, Germany). The sensors were mounted in a
PTFE measurement chamber and exposed to test gases in a background of 0%, 10%, and
50% relative humidity (measured at 25 ◦C) at operating temperatures of 150 ◦C and 250 ◦C.
The sensors were exposed to concentrations of 50, 100, 200, and 500 ppm of methane,
ethane, ethylene, and acetylene for 30 min. Analyte gases (Westfalen AG) were mixed
with dry and humid air in a gas-mixing system equipped with mass flow controllers
(Bronkhorst). The resistance was measured with a Keysight 34972A multimeter. The range
of the device was increased as necessary by connecting a 100MOhm precision resistor in
parallel to the sensor.
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2.3. Operando DRIFT Spectroscopy

DRIFTS was performed on a Bruker Vertex 80 v spectrometer equipped with DLaTGS
and MCT detectors. Absorbance spectra were calculated from the spectra which were
recorded after two hours of the gas exposure referenced to the ones which were taken
initially in clean air. DRIFTS experiments were performed on sensors as described above at
150 ◦C in dry air.

3. Results
3.1. Material Characterization

Figure 1 shows the XRD patterns of synthesized LaCrO3, LaNiO3, LaCoO3 LaMnO3,
LaFeO3, SmFeO3, and GdFeO3 materials. Due to our usage of two different X-ray sources,
one with Cu and one with Co anode, we separated our XRD results into two figures,
Figure 1a,b. Moreover, each figure contains its reference peaks, card no. JCPDS 37-1493
in Figure 1a and card no. ICSD 204,689 in Figure 1b. All samples show peaks related to
perovskites structure.
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Figure 1. The XRD patterns of prepared perovskite materials using (a) Cu anode and (b) Co anode.
The referenced peaks are indicated by red lines at the bottom.

The SEM images of the prepared perovskites are shown in Figure 2. All samples
appear to contain nanoparticles with shapes of similar uniformity. The grain sizes range
primarily between 50–100 nm diameter. XRD results confirm SEM findings indicating



Sensors 2021, 21, 8462 5 of 11

the following grain sizes: LaFeO3: 63 nm, LaMnO3: 61 nm, LaCoO3: 80 nm, LaNiO3:
38 nm, LaCrO3: 42 nm, GdFeO3: 92 nm, and SmFeO3: 101 nm. Fe-based compounds
show less nanoparticle agglomeration and tend to form mesopores with greater ease than
other compounds.
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3.2. Electrical Characterization

To determine whether the materials react as p-type or n-type semiconductors, sensors
were equilibrated in dry nitrogen and subsequently exposed to dry air. The change in

resistance is plotted in Figure 3a. The sensor signals (defined as
Rnitrogen

Rair
) range from 1.1

(LaCoO3) to 89 (GdFeO3). For all materials, a decrease in resistance was observed, except
for LaMnO3, where resistance increased (S = 0.98). This indicates all materials except
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LaMnO3 react as p-type semiconductors. The results are supported by at least one of the
references given in Table 1.
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Figure 3. DC resistance measurements in dry air: (a) transition from nitrogen to air at 150 ◦C,
(b) exposure different analyte gases at 150 ◦C, and (c) 250 ◦C. The shaded areas indicate periods,
where the sensors were exposed to different concentrations of the analyte gases.

Figure 3b shows the resistance of gas sensors during exposure to different analyte
gases in dry air at 150 ◦C. When La ions are replaced by Sm, the baseline resistance increases
by a factor of 10, while replacing La with Gd increases the baseline resistance by another
order of magnitude. When the Fe site is replaced by other transition metal ions, the opposite
behavior is observed. For LaCrO3 and LaMnO3 the resistance is significantly decreased.
For LaCoO3 and LaNiO3, the resistance ranges from 10 to 20 Ohms, which is comparable
to the resistance of the metallic electrodes on the substrates.

The response to the analyte gases tested in this study varies substantially between
Fe-based compounds and their counterparts. The response to saturated hydrocarbons
methane and ethane is small for all materials. In contrast, ethylene and acetylene are clearly
detected by all materials containing Fe, while the response is far lower for other materials.
LaMnO3 is the only material that shows a decrease in resistance upon contact with reducing
gases. This is in keeping with findings of the oxygen exposure results. Interestingly, in the
cases of LaFeO3, SmFeO3, and GdFeO3, 30 min for one step of concentration was sufficient
to reach equilibrium for acetylene, but not ethylene, even though the change in resistance is
comparable. The reaction with acetylene is apparently faster at this temperature. At 250 ◦C
(Figure 3b) the signals are smaller and the response is faster for all material–target gas
combinations. For ethylene, this effect is more pronounced than acetylene. The baseline
resistance is decreased for all materials except LaNiO3. The low resistance in addition to
the negative temperature coefficient of resistance represent properties of a metal rather
than a semiconductor.

Figure 4 summarizes sensor signals for all investigated materials in different condi-
tions. Methane remained undetected except for low signals from GdFeO3 and SmFeO3
sensors at 150 ◦C. Regarding ethane, the situation is similar, however the gas is detectable
with the LaFeO3 sensor and with greater sensor signals than methane. At 250 ◦C, a small
sensor response may be observed with Fe-containing materials. For ethylene, sensor sig-
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nals are greater by several orders of magnitude for Fe-containing materials. In a humid
background, the sensor signals are smaller than in dry air. The sensor response to acetylene
is more influenced by humidity than ethylene. This is due to dissociation of acetylene at the
sensor surface being inhibited by the additional formation of OH groups, as demonstrated
in our previous work [40]. The agreement of this study’s data with earlier publications
confirms reproducibility of the results [9]. Among other materials, only LaCrO3 shows
a response undiminished in a humid background. At greater temperatures the signals
for ethylene are significantly decreased, particularly in humid air where only GdFeO3
shows a response. For acetylene, the influence of humidity on materials containing Fe is
more pronounced than for ethylene. With other materials showing a response, i.e., LaCrO3,
LaCoO3, and LaNiO3, the influence of humidity remains small.
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These findings indicate Fe ions at the B-site of this class of materials play a key role
in the gas-sensing mechanism, and that the occurrence of different surface reactions are
expected, as observed from the different response of materials to acetylene and ethylene.
The sensor response increases with baseline resistance of Fe-containing materials. The
sensor signals of LaNiO3 and LaCoO3, however, reveal that a low baseline resistance does
not necessarily exclude a response. A potential explanation for the differences among the
sensor signals of Fe-containing materials may be their different morphology.

3.3. Surface Characterization

To compare the surface reactions on various materials, operando DRIFT spectroscopy
was applied. The condition of 500 ppm of acetylene in dry air at 150 ◦C was chosen for
comparison, as a majority of materials show a sensor signal. Additionally, the detection
of acetylene is less influenced by the operating temperature and electrode material. The
absorbance spectra with dry air as reference are presented in Figure 5. The presence of two
bands at 2959 and 2850 cm−1, together with 1580 and 1377 cm−1, indicates the formation
of formate species [40,42]. The two peaks at 2959 and 2850 cm−1 are attributed to C-H
vibrations (asymmetric and symmetric), and the 1580 and 1377 cm−1 bands are associated
with OCO vibrations (asymmetric and symmetric). The peak at 1430 cm−1 may be assigned
to δ C-H [43,44]. Moreover, two small peaks in the OH region can be observed: a decreasing
peak in around 3671 cm−1 indicates consumption of terminal OH groups.
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Figure 5. Absorbance DRIFT spectra of different materials at 150 ◦C. The spectra recorded after 2 h of
exposure to 500 ppm acetylene were referenced to dry air. For increased visualization, the spectra are
stacked and the magnitude of the spectrum of LaCrO3 increases. The dashed lines mark the position
of gas phase species.

These peaks are additionally present on GdFeO3 and SmFeO3, but with slightly
different relative heights. Notably, the ratios of peaks in the OH region differ, indicating
either a marginally different reaction or a different surface coverage prior to acetylene
exposure. For GdFeO3, gaseous CO2 is visible around 2351 cm−1. The situation concerning
materials LaMnO3, LaCoO3, and LaNiO3 is very different. Change at the surface cannot
be observed. These materials exhibit low reflectance and the low intensity at the detector
leads to high noise levels. A very different behavior is observed for LaCrO3. The same
formate peaks as seen with LaFeO3 are observed, albeit at a much lower intensity. A broad
band around 3400 cm−1 indicates the formation of interacting hydroxyl groups. Moreover,
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the distinctive double band for gaseous CO2 can clearly be seen at 2351 cm−1. Based on
our previous investigation [40], complete combustion of hydrocarbons, indicated by CO2
formation in DRIFT spectra, is not generally accompanied by a strong sensor response.
However, incomplete combustion of hydrocarbons, which can lead to the formation of
formate species at the perovskite surface, playing a key role in effective gas sensing. As
observable from DRIFT spectra, the complete combustion section of surface chemical
reactions is more pronounced for LaCrO3 than Fe-based materials; therefore, the LaCrO3
sensors show a lower gas response.

Kremenic et al. investigated the catalytic properties of a series of LaBO3 (B=Cr, Mn,
Fe; Co, Ni) perovskites. In this series, LaFeO3 bears the greatest tendency for absorption of
isobutene, but the lowest for oxygen [45]. Moreover, the catalytic conversion of isobutene
at temperatures comparable to our study was investigated. The lowest reaction rate for
complete combustions for LaFeO3 was observed, followed by LaCrO3. The incomplete
combustion was assessed by analyzing the amount of oxygenated organic compounds
where the highest values were found for LaCrO3 and LaFeO3. These results support the as-
sumption that the incomplete combustion of hydrocarbons and strong sensor performance
is correlated.

The molecular orbitals (MO) with symmetry eg centered at the B-site of the perovskite
with the highest energy and eg symmetry are populated by 0 (Cr3+), 1 (Mn3+, Co3+, Ni3+),
or 2 (Fe3+) electrons and interact differently with simple gas molecules such as CO, NO
or O2 [46]. The reaction sequence involves multiple intermediates, whose energies are
dependent on the composition of the perovskite [47] The creation of formates requires
preadsorbed oxygen, provided by oxygen in the gas phase. This is consistent with the
finding that materials with greater signals to oxygen additionally show a better response
to hydrocarbons. Moreover, we assume the reception of gas molecules investigated in this
study relies on the transfer of electrons between molecular orbitals of the hydrocarbons
and the B-site cations of the perovskite. The structure of the analyte gases used in this
study is more complex than O2 or CO. In contrast to methane and ethane, acetylene and
ethylene contain additional π-MOs to interact with metals. A possible explanation for
the high sensor signals of ethylene and acetylene may be interaction of these π-MOs with
dx

2−y
2 MO of the Fe centers. This orbital is occupied solely for LnFeO3 [46]. This effect in

combination with different reactivity to oxygen is suspected to be responsible for different
sensing performances of materials with different B-sites. The exchange of La with Sm or Gd
does not alter the number of electrons in MOs at the B-site. However, other factors such as
ionic radii, electronegativity, magnetic properties, and differences in morphology of sensing
layers may explain different sensor responses. Further research on surface chemistry and
DFT calculations is planned to investigate the interplay between the perovskite surface,
oxygen, and hydrocarbon molecules.

4. Conclusions

Lanthanoid-based perovskites present a promising class of materials for gas sensing
due to their notable response to unsaturated hydrocarbons at low temperatures. As
expected from the chemical properties of pure elements, exchanging different transition
metal cations at the B-site drastically alters the electrical, chemical, and optical properties
of the perovskite. Only Fe-based compounds showed clear sensor signals to acetylene and
ethylene among other prepared perovskites. It appears from DRIFT spectra that surface
reactivity, particularly the formation of formates, determines sensing behavior. In the case of
LaCrO3, which additionally showed clear surface reactivity, the lower response to acetylene
may be attributed to complete combustion of gases. Therefore, the most promising element
for gas-sensing applications at the B-site is iron. In addition, modifications on the A-site
(lanthanoids) of Fe-based perovskites maintain overall gas-sensing properties.
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