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Abstract: Cornus walteri (Cornaceae), known as Walter’s dogwood, has been used to treat derma-
tologic inflammation and diarrheal disease in traditional oriental medicine. As part of an ongoing
research project to discover natural products with biological activities, the anti-inflammatory po-
tential of compounds from C. walteri in lipopolysaccharide (LPS)-stimulated mouse RAW 264.7
macrophages were explored. Phytochemical analysis of the methanol extract of the stem and stem
bark of C. walteri led to the isolation of 15 chemical constituents. These compounds were evaluated
for their inhibitory effects on the production of the proinflammatory mediator nitric oxide (NO) in
LPS-stimulated macrophages, as measured by NO assays. The molecular mechanisms underlying
the anti-inflammatory activity were investigated using western blotting. Our results demonstrated
that among 15 chemical constituents, lupeol and benzyl salicylate inhibited NO production in
LPS-activated RAW 264.7 macrophages. Benzyl salicylate was more efficient than NG-monomethyl-L-
arginine mono-acetate salt (L-NMMA) in terms of its inhibitory effect. In addition, the mechanism of
action of benzyl salicylate consisted of the inhibition of phosphorylation of IκB kinase alpha (IKKα),
IκB kinase beta (IKKβ), inhibitor of kappa B alpha (IκBα), and nuclear factor kappa B (NF-κB) in
LPS-stimulated macrophages. Furthermore, benzyl salicylate inhibited the expression of inducible
nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Taken together, these results suggest
that benzyl salicylate present in the stem and stem bark of C. walteri has potential anti-inflammatory
activity, supporting the potential application of this compound in the treatment of inflammatory
diseases.

Keywords: Cornus walteri; cornaceae; inflammation; nitric oxide; nuclear factor kappa B; inducible
nitric oxide synthase; cyclooxygenase-2

1. Introduction

Inflammatory responses are the biological reactions of body tissues to stimulation by
various cytokines secreted by a range of other cells [1]. Macrophages are inflammatory cells
that play an important role in the promotion of inflammatory responses by producing nitric
oxide (NO) as a proinflammatory mediator [2]. Therefore, the quantities of inflammatory
mediators and the activity levels in the signaling pathways that regulate these mediators
in macrophages may provide evidence of the effects of anti-inflammatory agents.

As part of an ongoing research project to discover bioactive compounds in diverse
natural resources [3–9], we investigated candidate phytochemicals from a methanol extract
of the stem and stem bark of Cornus walteri to explore their anti-inflammatory potential by
using a mouse macrophage cell line (RAW 264.7). Cornus walteri Wanger, belonging to the
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family Cornaceae, is known as Walter’s dogwood. This plant is a deciduous shrub grown in
eastern Asia, especially in China and Korea, as an economic crop for high-grade furniture
and agricultural tools. Traditionally, its fruits and leaves have been used in folk medicine
to treat the dermatologic inflammation caused by lacquer poisoning, as indicated in the
Chinese Materia Medica [10]. Its leaves have been also used as a Korean medicine herb
to treat diarrhea [11]. Previous pharmacological studies of this plant have reported that
C. walteri extracts exhibit therapeutic properties, including anti-hyperglycemic and anti-
obesity effects and anti-inflammatory and antioxidant properties [12,13]. A recent study
revealed that such extracts protect reconstituted human skin against photoaging caused by
ultraviolet B (UVB) [10]. In addition, previous chemical investigations of C. walteri have
demonstrated the presence of diverse types of chemical constituent, including lignans and
flavonoids [14,15]. However, few previous studies have been carried out to investigate the
chemical constituents of C. walteri, despite many studies on the pharmacological effects of
C. walteri extracts.

In this context, our group focused on the potentially bioactive constituents of C. wal-
teri. In our previous chemical investigation of C. walteri, we identified triterpenoids and
δ-valerolactones, which showed cytotoxicity against several human cancer cell lines, using
bioassay-guided fractionation of the methanol extract of C. walteri [16–19]. In particular,
we found that betulinic acid, a triterpenoid, reduced the viability of A2780 human ovar-
ian carcinoma cells and induced apoptotic cell death through both extrinsic and intrinsic
apoptosis pathway [19]. Furthermore, we identified new tirucallane triterpenoids (cor-
nusalterins N-P) in C. walteri, along with bioactive tirucallane triterpenoids that control
adipocyte and osteoblast differentiation [20]. A nephroprotective agent has also been
identified in C. walteri extracts using a model of cisplatin-induced cell death in LLC-PK1
kidney proximal tubule cell line; it was found to decrease the proteins involved in intrinsic
apoptosis pathway [21]. As C. walteri extract has been known to inhibit NO production
in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS) [22], the present
study was carried out for further investigation of the methanol extracts of the stem and
stem bark of C. walteri to identify potential anti-inflammatory constituents. Herein, we
describe the isolation and structural characterization of compounds 1–15 and evaluate their
anti-inflammatory activity in LPS-stimulated RAW 264.7 macrophages.

2. Materials and Methods
2.1. Plant Material, Extraction and Isolation of Compounds 1–15

The information for plant material and extraction of the plant is included in Supple-
mentary Materials. The detailed procedure for the isolation of compounds 1–15 is also
included in Supplementary Materials.

2.2. RAW 264.7 Cells Culture

A mouse macrophage cell line, RAW 264.7 (American Type Culture Collection, Rockville,
MD, USA), was cultured in DMEM (Manassas, VA, USA) containing 4 mM L-glutamine,
antibiotics (1% penicillin/streptomycin), and 10% fetal bovine serum in humidified air
environment at 37 ◦C in a 5% CO2.

2.3. Measurement of Viability of RAW 264.7 Cells

RAW 264.7 cells (3 × 104 cells/well) were exposed to the indicated concentrations of
compounds 1–15 for 24 h at 37 ◦C and incubated for an additional 40 min with Ez-Cytox
solution (Daeil Lab Service Co., Seoul, Korea). Optical density at 450 nm was determined
using a spectrophotometer microplate (PowerWave XS; Bio-Tek Instruments, Winooski,
VT, USA).

2.4. Measurement of NO Produced by RAW 264.7 Cells

RAW 264.7 cells (3 × 104 cells/well) were exposed to the indicated concentrations of
compounds 1–15 for 1 h and then incubated for an additional 24 h with LPS (1 µg/mL). At
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the end of the incubation, each culture supernatant was blended with the Griess reagent to
determine NO production by RAW 264.7 cells. Optical density at 540 nm of mixture was
determined using a spectrophotometer microplate (PowerWave XS; Bio-Tek Instruments,
Winooski, VT, USA).

2.5. Western Blot Analysis

RAW 264.7 cells (4 × 105 cells/well) were exposed to the indicated concentrations of
benzyl salicylate (15) for 1 h and then incubated for an additional 24 h with LPS (1 µg/mL).
At the end of the incubation, the RAW 264.7 cells were lysed with lysis buffer (Cell Signaling
Technology, Beverly, MA, USA), supplemented with 1 mM phenylmethylsulfonyl fluoride,
for 20 min. For western blot analysis, 20 µg of the total protein from the cell lysate was
separated by 10% sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE).
The proteins were electro-transferred to a polyvinylidene fluoride (PVDF) membrane.
Each PVDF membrane was probed with primary antibodies (Cell Signaling Technology,
Beverly, MA, USA) overnight, incubated with horse radish peroxidase-conjugated anti-
rabbit antibodies (Cell Signaling, Beverly, MA, USA) for 1 h at room temperature, and
visualized using an enhanced chemiluminescence detection reagent (GE Healthcare, Little
Chalfont, UK). Western blot signals were detected by FUSION Solo Chemiluminescence
System (PEQLAB Biotechnologie GmbH, Erlangen, Germany).

2.6. Statistical Analysis

All assays were performed in triplicate and repeated at least three times. All data are
presented as the mean ± standard deviation (SD). Statistical significance was determined
using one-way analysis of variance (ANOVA) and multiple comparisons with the Bon-
ferroni correction. A p value of < 0.05 indicated statistical significance. All analyses were
performed using SPSS Statistics ver. 19.0 (SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Isolation and Identification of the Compounds

The stem and stem bark of C. walteri were extracted with 80% methanol under reflux
to obtain the methanol extract by rotary evaporation. The methanol extract was sequen-
tially partitioned using the organic solvents hexane, CHCl3, and n-butanol to yield each
solvent fraction (Figure 1). TLC analysis of the solvent fractions determined that the
hexane-soluble fraction possesses the major spots. Phytochemical analysis of the hexane
fraction was carried out by applying column chromatography and high-performance liquid
chromatography (HPLC) as well as LC/MS analysis. Semi-preparative HPLC separation
yielded 15 compounds (Figure 1): 5α-stigmast-3,6-dione (1) [23], 3β-sitostanol (2) [24], 6α-
hydroxy-β-sitostenone (3) [25], 6β-hydroxysitostenone (4) [26], norphytan (5) [27], phytone
(6) [28], methyl 3-O-acetylbetulinate (7) [29], 3-O-acetylbetulin (8) [30], sitostenone (9) [31],
leucophyllone (10) [16], lupeol (11) [32], lupenone (12) [33], betulinic acid (13) [34], betulinic
acid methyl ester (14) [35], and benzyl salicylate (15) [36]. The structures of compounds
1–15 (Figure 2) were determined by comparing their 1H and 13C NMR spectra with those
previously reported in the literature [16,23–36], and by LC/MS analysis.
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3.2. Effects of Compounds 1–15 on Nitric Oxide (NO) Production

The inhibitory effects of compounds 1–15 on NO production in LPS-activated RAW
264.7 macrophages were investigated. Among these compounds, only lupeol (11) and
benzyl salicylate (15) attenuated nitrite concentration in LPS-activated RAW 264.7 cells
(Figure 3). As shown in Figure 3K, compared with the LPS-only treatment group
(19.81 ± 0.22 µM), coincubation with 50 µM lupeol (11) and LPS resulted in a 13.26 ± 0.05 µM
lower nitrite concentration. As shown in Figure 3O, compared with the LPS-only treatment
group (20.13 ± 0.66 µM), coincubation with 50 µM benzyl salicylate (15) and LPS produced
a 5.74 ± 0.09 µM lower nitrite concentration with an IC50 value of 5.51 ± 0.39 µM. As
shown in Figure 3P, after coincubation with 50 µM of the NG-monomethyl-L-arginine mono-
acetate salt (L-NMMA) and LPS, the nitrite concentration was found to be 12.91 ± 0.14 µM
lower than that in the LPS-only treatment group (19.16 ± 0.07 µM).
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Figure 3. Effects of compounds 1–15 and NG-monomethyl-L-arginine mono-acetate salt (L-NMMA)
in RAW 264.7 mouse macrophages treated with lipopolysaccharide (LPS). (A–P) The effects of com-
pounds 1–15 and L-NMMA in RAW 264.7 mouse macrophages treated with LPS were investigated
(mean ± SD, *p < 0.05 compared to group treated with 1 µg/mL LPS alone). 5α-Stigmast-3,6-dione (1),
3β-sitostanol (2), 6α-hydroxy-β-sitostenone (3), 6β-hydroxysitostenone (4), norphytan (5), phytone
(6), methyl 3-O-acetylbetulinate (7), 3-O-acetylbetulin (8), sitostenone (9), leucophyllone (10), lupeol
(11), lupenone (12), betulinic acid (13), betulinic acid methyl ester (14), and benzyl salicylate (15).
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3.3. Effects of Benzyl Salicylate (15) on the LPS-Induced Expression of IKKα/β, I-κBα, and NF-κB
in RAW 264.7 Mouse Macrophages

The effect of benzyl salicylate (15) on LPS-induced expression of IκB kinase alpha and
beta (IKKα/β), inhibitor of kappa B alpha (I-κBα), and nuclear factor kappa B (NF-κB) were
analyzed by Western blot. We found that the LPS-stimulated RAW264.7 cells overexpressed
IKKα/β, I-κBα, and NF-κB, whereas co-incubation with benzyl salicylate (15) inhibited
this overexpression (Figure 4).
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3.4. Effects of Benzyl Salicylate (15) on the LPS-Induced Expression of iNOS and COX-2 in RAW
264.7 Mouse Macrophages

In a subsequent experiment, we found that LPS-stimulated RAW264.7 cells overex-
pressed iNOS and COX-2, whereas coincubation with benzyl salicylate (15) inhibited this
overexpression (Figure 5).
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tein’s expression level (mean ± SD, * p < 0.05 compared to group treated with 1 µg/mL LPS alone).



Pharmaceutics 2021, 13, 443 7 of 10

4. Discussion

In previous study, C. walteri extract has been known to inhibit nitric oxide (NO)
production in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS) [22].
However, little is known about the corresponding bioactive compounds isolated from
C. walteri and their possible mechanism of action. Phytochemical analysis in the present
study was conducted to isolate the 15 chemical constituents from hexane fraction of the
stem and stem bark of C. walteri.

Nitric oxide (NO) is synthesized during the inflammatory response to lipopolysaccha-
ride (LPS), an endotoxin; NO production has been extensively used as a model for the study
of inflammation in the mouse macrophage cell line RAW 264.7 [37–40]. Overproduction of
NO under abnormal conditions causes an inflammatory response [37–42]. In the present
study, the inhibitory effects of compounds 1–15 on NO production in LPS-activated RAW
264.7 macrophages were investigated [43]. Among these compounds, only lupeol (11)
and benzyl salicylate (15) attenuated nitrite concentration in LPS-activated RAW 264.7
cells. Interestingly, benzyl salicylate (15) was more efficient than L-NMMA in inhibiting
NO production in LPS-activated RAW 264.7 macrophages. In previous studies, benzyl
salicylate was shown to be an active compound with estrogenic activity [44], and a pro-
tective agent against cisplatin-induced damage to cells of the LLC-PK1 kidney proximal
tubule cell line [21]. However, to the best of our knowledge, there are no reports available
regarding the inhibition of NO production in LPS-activated RAW 264.7 macrophages by
benzyl salicylate. To investigate the mechanism that inhibits NO production by benzyl
salicylate in LPS-activated RAW 264.7 macrophages, western blot analysis was performed.

Upon stimulation by LPS or proinflammatory cytokines, the two catalytic subunits of
IKK (IKKα and IKKβ) contribute to the phosphorylation of I-κBα, which enables the acti-
vation of NF-κB [45]. NF-κB is a key regulator of the expression of inflammatory cytokines,
such as iNOS and COX-2 [46]. In the present study, the LPS-stimulated RAW264.7 cells
overexpressed IKKα/β, I-κBα, and NF-κB, whereas co-incubation with benzyl salicylate
(15) inhibited this overexpression. Thus, benzyl salicylate (15) inhibited LPS-induced NO
production through the inhibition of NF-κB/I-κBα pathway in RAW 264.7 cells.

Activation of NF-κB increases iNOS expression by increasing its binding to the iNOS
promoter to produce NO [47,48]. This simultaneously activates COX-2 synthesis [49].
In the present study, LPS-stimulated RAW264.7 cells overexpressed iNOS and COX-2,
whereas coincubation with benzyl salicylate (15) inhibited this overexpression. These
findings suggest that benzyl salicylate (15) inhibited LPS-induced NO production by
reducing iNOS and COX-2 expression in LPS-stimulated RAW 264.7 cells. Furthermore,
they suggest that benzyl salicylate (15) simultaneously inhibited LPS-induced inflammatory
responses by blocking the degradation of I-κBα and thereby inhibiting NF-κB, based on
the experimental evidence associated with the inhibition of COX-2 and iNOS expression
(Figure 6). Although its bioavailability and bio-accessibility should be verified through
additional studies, including animal experiments, our data suggest that benzyl salicylate
(15) has potential as an anti-inflammatory agent for the treatment of inflammatory diseases.
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