
INTRODUCTION

Calorie restriction (CR) consists in the 20% to 40% reduction 
of the average daily caloric intake without incurring in malnu-
trition or deprivation of essential nutrients [1]. It encompasses 
the restriction of specific hypercaloric nutrients which can be 
substituted with others that are metabolized with less pro-
duction of energy. Mammals undergo a metabolic adaptation 
in response to food restriction. The circulating glucose con-
centration is the first to decline under CR condition, and this 
results in the utilization of stored glycogen as a main energy 
source. Once the glycogen stocks are depleted, the organism 
utilizes glycerol and fatty acids mobilized from the adipose 
tissue, and thus ketone bodies become the main fuel [2,3].
 CR has a huge impact on promoting longevity by delay-

ing the severity and the onset of inflammatory and several 
age-related diseases including obesity, cardiovascular, neuro-
degenerative and ophthalmic disorders, and cancer [4]. Such 
pleiotropic effects rely on several mechanisms, although the 
principal common denominator is the ability of CR to dampen 
the oxidative stress and inflammation [5,6]. 
 Aging is one of the major risk factors favoring the develop-
ment of many cancer types. As a matter of fact, epidemiolog-
ical studies reveal that five out of six cancer-related deaths 
occur in patients aged 60 years and older [7]. The continuous 
exposure to carcinogenic factors, which leads to the accu-
mulation of mutations and epimutations in cancer-sensitive 
genes surely accounts for the increased risk of cancer 
development with aging [8]. Additional contributors are the 
progressive decline of the immune surveillance, the efficien-
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cy of DNA repair and of autophagy; the dysregulation of the 
inflammatory process; the increased production of reactive 
oxygen species (ROS); increased levels of circulating insulin 
and many other hormones promoting cell growth, etc. [9-11]. 
CR may arrest and slow-down age-related decline of cellular 
protective systems, especially by improving autophagy and 
dampening inflammation and ROS production [12], as well 
as reducing circulating growth hormones [13], and this could 
result in reduced risk of cancer. 
 Preclinical and preliminary clinical data support the view 
that reducing calorie intake as well as periodic fasting or di-
etary restriction (in which intake of macronutrients is limited 
with no reduction in total calorie) has the potential to prevent 
and treat cancer [14,15]. 
 Typically, in a CR or dietary restriction regimen, carbohy-
drates (the main source of energy in the regular diet) are 
reduced and replaced partially or nearly completely (as in 
the ketogenic diet) by fat [16]. Indeed, reducing sugar intake 
seems to be a good strategy to fight cancer, given that cancer 
cells use glucose as the main fuel [17,18]. Likewise providing 
ketones as alternative energy source may limit cancer growth 
because cancer cells do not efficiently harness ketones for 
their anabolism [19,20]. 
 Here, we describe the cellular and molecular mechanisms 
underlying the pathophysiological effects of calorie and nutri-
ent restrictions and review the scientific proofs of their ben-
eficial effects in preventing cancer onset and progression as 
well as in improving the anti-cancer therapeutic effects. We 
also discuss the anti-cancer effects of drugs and nutraceu-
ticals with proven caloric restriction mimetic (CRM) activity. 
Finally, we present the clinical trials currently investigating the 
efficacy of caloric restriction dietary regimens as an adjuvant 
therapy in anti-tumor treatment.

MOLECULAR AND CELLULAR EFFECTS OF 
CALORIE RESTRICTION AT GLANCE

For long time, the beneficial impact of CR was regarded just 
as a result of the passive effect of nutrient limitation and slow 
metabolism. It is now recognized that the organismal effects 
of CR are actively regulated processes aiming to reduce oxi-
dative stress, and that CR triggers a robust defense program 
involving multiple metabolic pathways in which nutrient sen-
sors are centrally positioned in such regulation [21]. However, 
the effects of CR depend on multiple factors such as individu-
al characteristics and the dose and timing of CR [22].
 The metabolic adaptations to CR include (i) a decrease 
in growth factors and production of anabolic hormones [23]; 
(ii) an upregulation of anti-oxidant systems, which in turn de-
creases free radical-induced DNA damages [21]; (iii) a down-
regulation of pro-inflammatory cytokines and an increase in 
circulating levels of corticosteroids, ghrelin and adiponectin, 
collectively resulting in the reduction of inflammation [23,24]; 
and (iv) a delay of aging-associated deterioration of host im-

munosurveillance [25]. More in detail, many of the benefits 
exerted by CR are associated with the upregulation of genes 
promoting DNA repair (e.g., genes belonging to the base ex-
cision repair pathway), the removal of damaged cells through 
apoptosis, autophagy, stress response and anti-oxidant de-
fense, in parallel with the downregulation of pro-inflammatory 
genes and of energy metabolism pathways [23,24,26]. 
 Particularly, autophagy represents the primary stress re-
sponse to calorie and nutrient restrictions [12]. This process 
is in fact regulated mainly by two pathways that sense the 
lack of energy sources and ATP production in the cell, via 
the AMP-activated kinase (AMPK) and hexokinase 2 (HK2)-
mTOR complex 1 (mTORC1) pathway, and the lack of 
growth factors and of amino acids, via the protein kinase B 
(AKT)-mTORC1 pathway (Fig. 1). 
 Autophagy (herewith referring to macroautophagy) con-
sists in the p62/SQSTM1-mediated entrapment of cellular 
components, such as protein aggregates, membranes, and 
mitochondria (mitophagy) along with portions of cytoplasm, 
within a double-membrane organelle named autophagosome 
that upon fusion with the lysosome determines the degra-
dation of those components [27]. This process is regulated 
by several signaling pathways and autophagy-related (ATG) 
proteins that also include oncogene products and tumor sup-
pressors, which explains why this process is dysregulated in 
cancer [28]. Under metabolic stress conditions such as those 
determined by the lack of nutrients (amino acids, glucose) 
and of hormones and growth factors, autophagy is upregu-
lated to provide energy and substrates from degradation of 
redundant self-components [29]. 
 As illustrated in Figure 1, (i) amino acids (especially, me-
thionine, leucine and arginine) directly activate mTORC1 
(the mechanistic target of rapamycin complex 1), which then 
inhibits the axis Unc-51 like autophagy activating kinase 1 
complex 1 (ULKC1)-phosphatidylinositol 3-kinase catalytic 
subunit type 3 (PI3KC3)-BECLIN-1 that positively triggers 
autophagy; (ii) the presence of growth factors and hormones 
elicits the activation of mTORC1 via the PI3KC1-AKT path-
way thus resulting also in inhibition of autophagy; (iii) soon af-
ter entry, glucose is phosphorylated to glucose-6-phosphate 
(G6P) by HK2, and this prevents HK2 from interacting and 
inhibiting mTORC1, and this results in inhibition of autophagy 
as well. Therefore, autophagy is maximally induced when all 
these nutrients and growth factors are absent in the tumor 
microenvironment (TME), as for instance that occurs during 
starvation. Upregulation of autophagy in cancer cells may 
have several beneficial outcomes in terms of improved DNA 
repair efficiency [30], improved TME [31,32], reduced growth 
and migration/invasive ability [33,34].

CALORIE RESTRICTION AND CANCER 
PROGRESSION

From a molecular point of view, several signaling pathways 
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collaborate and cross-talk to control carcinogenesis under 
CR conditions. To date, the major effectors known to be re-
sponsible for the CR-mediated anti-cancer activity include 
insulin-like growth factor-1 (IGF-1)/phosphatidylinositol-3-ki-
nase (PI3K)/AKT, mTOR, the Sirtuin family proteins, Aldolase 
A (ALDOA)/DNA-dependent protein kinase (DNA-PK)/p53, 
NF-κB and AMPK signaling pathways [21,35,36]. However, 
further studies aiming to characterize the molecular mech-
anisms by which CR mediates its cancer inhibitory effects 
are essential for development of new drugs and therapeutic 
regimens to prevent tumor initiation and/or interrupt tumor 
promotion and progression. CR can also modulate epigenetic 
changes, particularly DNA methylation, histone modifications, 
chromatin remodeling and generation of microRNA, which 
regulate the expression of genes involved in those processes 
responsible for CR anti-cancer activity [37,38].
 Notably, CR has been shown to have a wide impact not 
only on cancer cells but even on TME by allowing enhanced 
drug delivery, by decreasing the availability of substrate and 
growth factors for cancer cells, and by reducing inflammation 
[39-41].
 Tumor vascularization represents one of the most crucial 
steps in cancer progression by ensuring nutrients, soluble 
factors and oxygen to reach the tumor mass. CR has been 
capable of counteracting this aspect by hampering the secre-
tion of pro-angiogenic factors such as VEGF, factor VIII, inter-
leukin-6 [IL-6], TNF-α, plasminogen activator inhibitor-1 [PAI-
1], etc. [41-44]. Consequently, tumor neo-vascularization was 
delayed or even arrested as demonstrated by the reduction in 

the size, number and density of blood vessels in the CR-fed 
mice in comparison with the trends observed in ad libitum-fed 
ones [44,45].
 Additionally, CR can shape the tumor immune microen-
vironment by specifically decreasing the number of tumor 
associated macrophages, increasing the formation of a reser-
voir of CD8+ cytotoxic T cells and memory T cells while neg-
ative modulating immunosuppressive Treg cells’ activity and 
immunosuppressive cytokines levels [41,42,46,47].
 Other pivotal players in the TME are the cancer-associated 
fibroblasts (CAFs), that by releasing oncometabolites, growth 
factors, inflammatory cytokines and proteolytic enzymes co-
operate in the establishment of a malignant liaison between 
the stroma and cancer parenchymal cells [31]. The evolu-
tion of tumor fibrosis, that originates from cancerous lesion, 
causes an excessive deposition of extracellular matrix and, 
as a consequence, damaged epithelial cells produce a large 
amount of pro-inflammatory and pro-fibrotic cytokines, lead-
ing to a more and more aggravated deposition of collagen 
and fibrotic tissue [48]. In this context, CR can elicit an anti-fi-
brotic effects by downregulating TGF-β signaling, that normal-
ly promotes the phenotypic conversion of normal fibroblasts 
in CAFs. In this respect, a highly dense and viscous stroma 
prevents the cells of the immune system to target the tumor, 
thus making it much more resistant. By preventing fibrosis, 
CR may facilitate the interaction of immune cells with cancer. 
The remodeling of the TME mediated by CR is schematically 
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Figure 1. Molecular pathways triggered by caloric restriction at a glance. Caloric restriction impinges on nutrient-sensing pathways to modulate 
several aspects of cancer cell behavior. Briefly, amino acids availability influences protein synthesis, and hormones and growth factors elicit PI3KC1-
AKT axis, while glucose intake induces glycolysis that in turn results in lactic acid production. All these pathways cross-talk and converge on mTORC1 
that acts as the central hub governing cell metabolism. The latter is a negative regulator of autophagy, a lysosomal-driven catabolic pathway devoted 
to the macromolecular turnover that is upregulated in response to various cellular stimuli, such as nutrient shortage. PI3KC1, phosphatidylinositol 3-ki-
nase catalytic subunit type 3; HK2, hexokinase 2; AKT, protein kinase B; G6P, glucose-6-phosphate; mTORC1, mTOR complex 1; AMPK, AMP-acti-
vated kinase; ULKC1, Unc-51 like autophagy activating kinase 1 complex 1; BECN1, beclin 1; LC3, light chain 3.
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represented in Figure 2.

BENEFITS OF CALORIC RESTRICTION IN 
ANTI-CANCER THERAPY

To date, chemotherapy is one of the main therapeutic strate-
gies for the treatment of several malignancies. However, this 
approach causes many side effects, such as cardio/neuro/
haematological toxicity, nausea, gastrointestinal symptoms, 
fatigue, weakness, hair loss and stomatitis, that can negative-
ly affect the cancer patients’ quality of life and cause discon-
tinuity of the therapy. Disappointedly, most of the drugs used 
to manage the symptoms of toxicities may themselves have 
significant adverse effects.
 Although most of the available studies regarding CR in 
anti-cancer therapy are still in the pre-clinical phase, CR 
appears a promising approach to modulate the chemother-
apy-induced side effects while enhancing the efficacy of the 
treatment [40,49,50]. Reduction of adverse effects would 
improve quality of life and potentially reduce costs of hospital-
ization as well as the use of drugs (e.g., anti-emetics, antibi-
otics, etc.) [51].
 In detail, CR can induce healthy cells to invest their ener-
gy in reparation and maintenance pathways rather than cell 
proliferation. This effect promotes an increased resistance of 
normal cells to chemotherapeutic drugs known as “differential 
stress resistance”. On the other hand, cancer cells bearing 
mutations in oncogenes (e.g., IGF-1R, Ras, AKT and mTOR 

pathways, that cause constitutive activation of proliferation 
pathways in external growth factor-independent manner) and 
onco suppressor genes (e.g., p53, p16 and Rb, that cause in-
sensitivity to growth-inhibitory signals) are not prone to adapt 
to fasting conditions and continue to proliferate at a high rate. 
This results in an enhanced sensitization of cancer cells to 
chemotherapy-induced apoptosis while protecting normal 
cells from such effect, leading to the so called “differential 
stress sensitization” [50-52].
 Several reports indicate that fasting potently triggers auto-
phagy, both in normal cells and cancer cells, to recycle critical 
components and produce energy [50]. The upregulation in-
duction of autophagy before chemotherapy may protect be-
nign cells by providing an alternative mechanism to remove 
damaged macromolecules and organelles, particularly when 
the proteasomal degradation pathway is saturated. How-
ever, autophagy may also play a pro-survival role in some 
cancer cells. On the other hand, overactivation of autophagy 
may lead to what is referred to as autophagy-associated cell 
death. Given the complex role of autophagy in tumor biology, 
which is strictly dependent on the context and the stage of 
malignancy, further studies are needed to dissect the balance 
between benefits and side effects related to CR-induced up-
regulation of autophagy [12,50,53].
 Even though CR displays numerous benefits in anti-can-
cer therapy, the real applicability of fasting regimens in the 
clinical practice could be limited to a small subset of cancer 
patients, as some potential risks may be associated with this 
approach, such as malnutrition, cachexia and sarcopenia, 
that are strongly associated with chemotherapy-related tox-
icity, reduced response to cancer treatment, low quality of life 
and a worse overall prognosis [54,55]. Another concern is 
related to the anti-inflammatory effect of CR that could be dis-
advantageous for those patients that experience immunode-
ficiency due to cancer progression and/or as a consequence 
of repeated chemotherapy treatments [56]. Therefore, more 
tolerable adjuvant regimens should be developed. In this per-
spective, fasting-mimicking dietary interventions as well as 
CRMs (that will be discussed more in detail in the next sec-
tion) may represent a more feasible therapeutic approach to 
circumvent these limitations. Overall, the global impact of CR 
and CRMs on the anti-cancer therapy is illustrated in Figure 
3.

CALORIC RESTRICTION MIMETICS

An alternative therapeutic strategy that extends life expectan-
cy and improves health markers, while reducing the devel-
opment of several age-related diseases (including cancer), 
involve use of the pharmacological group of compounds 
known as CRMs. These compounds act, either through direct 
interaction with signaling molecules or via epigenetic mecha-
nisms, those pathways that are triggered when energy intake 
is reduced, yet in the presence of adequate nutrition.

Figure 2. Impact of caloric restriction on the tumor micro
environment. The beneficial effects of caloric restriction are not re-
stricted not only to cancer cells but also involve the other cellular com-
ponents of the tumor microenvironment. Caloric restriction impinges on 
ECM remodeling (e.g. by reducing fibrosis), tumor vascularization (e.g. 
by delaying neo-angiogenesis and decreasing blood vessels density), 
immune cells (e.g. by counteracting the immune suppressive pheno-
type) and on CAFs (e.g. by impairing the phenoconversion of normal to 
activated fibroblasts). ECM, extracellular matrix; GFs, growth factors; 
CAFs, Cancer-associated fibroblasts; TAMs, tumor associated macro-
phages; PAI-1, plasminogen activator inhibitor-1; IL-6, interleukin-6.

Caloric restriction
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 Many CRMs are bioactive food components able to elicit 
anti-proliferative, pro-apoptotic and anti-metastatic effects 
[41], avoiding a fasting regimen that could not be tolerated 
by the cancer patient. The family of polyphenol substances 
are all a good source of potential CRMs, since they have a 
wide range of biological activities, including anti-oxidant, an-
ti-inflammatory, anti-carcinogenic and epigenetic modulation 
activities [57]. They include phenolic acids and derivatives, 
flavonoids, stilbenes, and coumarins [58].
 CRMs modulate energy- and nutrient-sensing pathway im-
pinging on many biological mechanisms, including activation 
of autophagy, enhancement of insulin sensitivity, inhibition of 
oxidative stress and inflammation, and modulation of glucose 
metabolism [59]. The molecular targets of CR involve sirtuins, 
acetyl-CoA, activated AMP protein kinase, insulin, and mTOR 
[60].

CRMs in clinical practice
We will focus on the beneficial effects of the most relevant 
and promising CRMs, summarized in Table 1, both FDA ap-
proved and not yet approved, and will illustrate their potential 
clinical applications as new effective anti-cancer strategies.

Resveratrol 
Resveratrol (3,5,4-trihydroxystilbene; RV) is a natural stilbene 
compound presents in vegetables and fruits in general, but 
especially abundant in grapes [41]. RV acts as a CRM as 
well as a protein restriction mimetic [61,62]. RV has pleio-
tropic beneficial effects not limited to cancer, but even to 
metabolic syndromes [63] and neurodegenerative diseases 
[64]. The tumor suppressive effects of RV on manifestation of 
malignant phenotype of cancer cells involve the repression 
of the drug resistance and metastatic ability, counteracting 
hypoxia, inhibition of inflammation and oxidative stress, etc. 
[65]. In details, RV reverts cell invasion, which is promoted by 

high generation of ROS through activation of the Hedgehog 
pathway [66,67].
 Cumulative studies have illustrated the impressive anti-in-
flammatory properties of RV [68]. In vivo experiments showed 
that mice treated with RV exhibit low levels of pro-inflammato-
ry cytokines like TNF-α, IL-6, IL-1 and IL-8, typical biomarkers 
of the inflammation [69]. Further, RV increases the number of 
T cells, specifically natural killer and CD8+ T cytotoxic cells, 
implementing anti-cancer immunosurveillance [70,71]. Anoth-
er anti-inflammatory property mediated by RV is the suppres-
sion of the NF-κB pathway and of TNF-α-induced cancer cell 
migration and invasion [72]. Additionally, RV can block tumor 
development by targeting cytochrome p-450 enzymes able to 
activate pro-carcinogenesis factors [73].
 Furthermore, RV positively impacts to expand lifespan as 
an epigenetic modulator [74], specifically through the activa-
tion of sirtuin deacetylases (SIRT1) and autophagy mediated 
via AMPK pathway [75-77]. Besides limiting glucose uptake 
and reverting the inflammatory phenotype of CAFs [78,79], 
RV is a potent autophagy inducer [77]. Many preclinical and 
clinical trials in different types of cancer (e.g., breast, colon, 
and prostate) support its anti-cancer effects [80].
 Although RV has many anti-carcinogenic properties, its 
poor bioavailability limits its clinical use. Nevertheless, there 
is evidence that RV, either alone or in combination with other 
agents, is active [81]. Therefore, an alternative strategy is to 
modify the RV structure for improving its bioavailability and 
reducing its toxicity [80]. Nowadays, it is clear that RV is a 
fascinating adjunctive cancer treatment when associated 
with standard chemotherapeutic agents, but there is still the 
necessity to define the optimal conditions to ameliorate the 
delivery and the efficiency [82].

Curcumin
Curcumin is a polyphenol compound, FDA-approved, for 

Figure 3. Differential effects of 
caloric restriction and caloric re
striction mimetics on benign and 
cancer cells. The cartoon compares 
the differential impact of restriction 
regimens on normal cells and cancer 
cells. The differential stress resistance 
elicited on benign cells is associated 
with decreased toxicity of therapy and 
improvement of patients’ quality of life, 
while the differential stress sensitization 
observed in cancer cells reflects an 
enhanced efficacy of anti-cancer treat-
ment.
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Table 1. Overview of the ongoing clinical trials with caloric restriction mimetics (CRMs)

CRMs Chemical structure Cancer type Metabolic effects No. of 
clinical trials

Resveratrol

HO

OH

OH Liver
Colon
Breast
Follicular lymphoma

NAD depletion
Apoptosis
Suppression of 

inflammation
Tumor growth 

inhibition

17

Curcumin

HO

O

OH

H CO3OCH3

O Colorectal
Prostate
Breast

Anti-inflammatory
Anti-oxidant
Anti-angiogenic
Cancer prevention

72

Rapamycin/sirolimus

O

OH

HO
O

OO

O
O

O

O

HO

O

N

O

Gynaecological
Breast
Lung
Thyroid

Tumor growth 
inhibition

Anti-aging
Anti-inflammatory

765

Everolimus

O

OH

HO
O

OO

O
O

O

O

HO

O

N

O

O Advanced breast
Renal carcinoma
Intracranial 
meningioma

Tumor growth 
inhibition

Apoptosis
Anti-inflammatory

621

Metformin

N
H

H N2 N
CH3

CH3

NH NH Endometrial
Breast
Pancreatic

Anti-inflammatory
Glucose metabolism 

reduction
Anti-oxidant

386

Halofuginone

N

O

HN

OH

CI

Br N
O

Kaposi’s sarcoma
Colorectal

Anti-fibrotic
Anti-angiogenic
Apoptosis
Tumor growth 

retardation

2

Spermidine
H N2

H
N NH2

Prostate
Skin
Colorectal

Tissue renewal
Cardio-protective
Tumor growth 

inhibition

9

The table reports the CRMs employ in ongoing clinical trials in cancer patients. Table elaborated with data extracted from the site https://
clinicaltrials.gov/.
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CRM properties that has caught the attention of many re-
searchers. It is the main bioactive compound isolated from 
the rhizomes of Curcuma longa (Turmeric) [83]. Several in-
vestigations have revealed the multitude of biochemical and 
biological activities of curcumin with therapeutic potential, 
including anti-inflammatory, anti-oxidant, anti-cancer and an-
ti-androgenic effects [84]. 
 Particularly remarkable is its anti-cancer activity exerted 
through induction of apoptosis, inhibition of cell proliferation 
and of tumor invasion [85], and downregulation of NF-κB, 
COX-2, and STAT3 [84]. Furthermore, curcumin counteracts 
the Warburg effect (i.e., the aerobic glycolysis occurring in 
cancer cells) via the suppression of pyruvate kinase M2 
(PKM2) [86]. Additionally, curcumin suppresses the PI3K/Akt/
mTOR pathway (by decreasing Akt and mTOR phosphory-
lation in parallel with PTEN upregulation) thus promoting cell 
death in cancer cells [87].
 Of note, curcumin also abrogates CAF-induced aggres-
siveness of cancer cells through the inhibition of the mTOR/
HIF-1α signaling [88]. The anti-carcinogenic property of cur-
cumin is well-documented in several types of cancer, which 
makes it a promising co-adjuvant agent in cancer therapy 
[84].

Metformin 
Metformin (dimethylbiguanide hydrochloride) is a derivative of 
natural biguanidines isolated from the French lilac, Galega of-
ficinalis, a plant used for the treatment of type 2 diabetes and 
metabolic syndrome since 1960’s. Metformin administration 
is not yet certified as adjuvant of anti-cancer therapy [89].
 Mechanistically, it suppresses hepatic gluconeogenesis 
and decreases insulin levels thus acting as a hypoglycemic 
drug. This effect is attributed to the activation of energy sen-
sor AMPK via the repression of the mitochondrial electron 
transport chain complex I, thus leading to the inhibition of 
mTORC1 [90]. For this reason, this molecule is associated 
with prolonged lifespan, promotion of autophagy, and sup-
pression of oxidative stress and inflammation. As epigenetic 
modulator, metformin inhibits class II HDACs [91], while stim-
ulates class III HDAC SIRT1 activity [92].
 Another important physiological action of metformin in-
volves the immune system. This compound can modulate 
lymphocyte differentiation during the aging process, promot-
ing CD8+ memory T cell differentiation, and simultaneously 
reducing the expression of several pro-inflammatory cyto-
kines [93]. The latter aspect could represent a relevant op-
portunity to counteract the development of immune evasion 
within the TME.
 Taken together, metformin has crucial functions in modu-
lating energy metabolism, while its capacity in retarding or 
contrasting cancer progression is less addressed. In addition, 
recent clinical trials are also testing its anti-cancer activity, 
especially in colon, breast, ovarian, prostate and lung tumors 
[94-97]; however, further investigations are needed.

Spermidine
Spermidine is a polyamine naturally found in a variety of 
foods, including wheat germ, soybean, mushrooms, and 
mature cheese [98]. Further, it is produced by the intestinal 
microbiota [98].
 The activities of this polyamine include the extending lifes-
pan in many model organisms, an effect correlated to induc-
tion of autophagy and inhibition of acetyltransferase activity 
[99,100]. Moreover, spermidine stimulates AMPK, while it 
limits the mTORC1 activity [101]. Predominantly, spermidine 
is able to stimulate mitophagy in both in vitro [102] and in vivo 
assays [100], sustaining its capability to slow down aging pro-
cess and to sustain tissues renewal.
 Another molecular mechanism underlying the cancer pre-
ventive action of spermidine involves the competition of sper-
midine with acetyl-CoA for EP300 binding which may con-
tribute to a reduced cancer-related mortality in patients [103]. 
The inhibition of acetyl transferase EP300 triggers autophagy 
by the deacetylation of many ATG genes [103]. Furthermore, 
spermidine, through autophagy activation, can also improve 
anti-cancer immunosurveillance [104]. To explore and sup-
port the spermidine administration as adjuvant anti-cancer 
treatment, more clinical trials are needed.

Hydroxycitrate
Hydroxycitrate (HC) or hydroxycitric acid (HCA) is a CRM 
present in tropical plants as Garcinia cambogia and Hibiscus 
sabdariffa. It is widely used as a weight-loss drug in obese 
patients, but it also possesses anti-cancer activity.
 A HC’s peculiarity is its ability to block acetyl-CoA synthesis 
by inhibiting the enzyme ATP citrate lyase, thus representing 
an innovative approach to target cancer metabolism [41]. 
This compound enhances autophagy flux, since it reduces 
lysine acetylation of cellular proteins [101]. It has been found 
that the treatment of HC promotes the depletion of regulatory 
T cells from the tumor, improving immunosuppressive ability 
and counteracting lung cancer progression [105].
 Based on these premises, further synthetic agents, namely 
acetyl-CoA inhibitors, have been proposed as CRMs: perhex-
iline maleate is now used in the clinical practice as an anti-an-
ginal agent with cardioprotective and anti-tumor effects [106].

Halofuginone 
Halofuginone (HF) is a synthetic derivative of febrifugine, a 
natural quinazolinone alkaloid found in the plant Dichroa feb-
rifuga Lour, known for its anti-protozoal activity and used as 
anti-malarial agent in traditional Chinese medicine [107].
 Its ability includes inducing amino acid starvation response 
(AAR) in cancer cells in parallel with the concomitant acti-
vation of autophagy. Accordingly, the molecular explanation 
is that HF inactivates mTORC1 by causing its detachment 
from the lysosomes and its degradation in proteasome, while 
promoting the nuclear translocation of the ATG transcription 
factor TFEB [108]. 
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 Furthermore, HF shows its anti-inflammatory propriety by 
inhibiting the differentiation of inflammatory Th17 cells, an ef-
fect clearly linked to induction of AAR [109]. More significantly, 
HF is a well-known inhibitor of collagen type I synthesis due 
to the repression of the TGF-β pathway [110]. Further, HF 
prevents keloid fibrosis by reducing the deposition of ECM 
and decreasing the proliferation and migration of TGF-β-acti-
vated myofibroblasts [111]. In agreement with this, HF found 
clinical application as a therapeutic agent in fibrotic disease 
[112] and in some types of malignancies, such as lung and 
bladder cancer [113,114]. In this respect, more clinical trials 
are needed to validate the anti-fibrotic property of HF in a 
wide range of tumors. 

Rapamycin 
Rapamycin, also known as sirolimus, is a macrolide com-
pound firstly isolated in 1975 from the bacterium Streptomy-
ces hygroscopicus, found in the soil of Easter Island. Rapa-
mycin is the most promising CRM with an anti-cancer activity, 
and its efficacy has been addressed in various clinical trials. 
Its molecular mechanism entails the inhibition of mTOR, a 
major regulator of cell proliferation and protein synthesis, 
by binding the protein FKBP12 [115]. Since rapamycin is 
an inhibitor of mTOR, this CRM promotes autophagy [115]. 
Consequently, sirolimus provokes the deregulation of mTOR 
downstream effectors resulting in a prolonged lifespan and in 
a healthier metabolism [116]. 
 Additionally, this macrolide mediates immunosuppressive 
effects by controlling survival and proliferation of regulatory 
T-cells [117]. Because of side effects, including risk of cata-
ract, insulin-resistance and increased infections, it was man-
datory to broaden the search for analogues of rapamycin, 
called rapalogs (e.g., NVP-BEZ235, OSI-027, and RapaL-
ink-1). Everolimus, which belongs to the first-generation rapa-
logs, was certified for the treatment of hormone receptor-pos-
itive, HER2/neu-negative advanced breast cancer [118], 
whereas temsirolimus (first-generation drug) is identified as 
a therapeutic agent in metastatic renal cell carcinoma [119]. 
Therefore, rapamycin’s and rapalogs’s anti-cancer ability is 
under investigation in several clinical trials, opening several 
possibilities for innovative anti-cancer treatments. 
 To sum up (Table 1), it is well established that CRMs can 
mimic the actions of CR, or rather delay aging and extend the 
patients longevity in parallel with improvement of physiologi-
cal function and reduction of many chronic diseases risk. This 
results in the avoidance of many side effects occurring with 
CR together with a better patient’s compliance. Neverthe-
less, even CRMs-based therapeutic approaches show some 
limitations. For instance, many of them have not been inves-
tigated in a sufficient number of clinical trials (e.g., HF, HC, 
spermidine) in order to guarantee the safety and the feasibil-
ity of their applications. Moreover, some CRMs fail to extend 
lifespan to the same degree as CR, suggesting that CR might 
suppress distinct mechanisms that are partially targeted by 

CRMs [57].
 Accordingly, innovative clinical protocols for the employ-
ment of CRMs are investigated. Recently, the anti-tumor 
effects of everolimus combined with metformin have been 
examined. This combination results in an improvement of 
clonogenicity suppression, cancer cell death and inhibition of 
mTOR signaling. Therefore, combining different CRMs could 
synergize their anti-cancer activities in order to achieve health 
benefits [120]. 
 Additionally, to escalate CRMs effectiveness, it is possible 
to combine these substances with non-CRM compounds or 
with nutritional approaches (as CR, intermittent fasting and 
physical exercise). In this respect, HC, rapamycin and met-
formin, in association with standard chemotherapeutic drugs, 
are already applied as anti-cancer therapies [41].
 Finally, a great attention is focused on to the relation be-
tween CRMs and the “personalized medicine”. This results in 
targeting specific molecular pathways and cancer types with 
these compounds. As regards, the employment of HC and 
spermidine in the fight against lung metastases through the 
use of aerosolization, an innovative, efficient and non-inva-
sive way to deliver CRMs to the lungs. This method possess-
es several advantages: first of all, it guarantees a higher local 
concentration of CRM in a particular tissue and, secondly, 
it limits the arise of systemic adverse effects [121]. Hence, 
many researchers have pointed out the existence of specific-
ity of certain CRMs for a precise cancer type. For example, 
RV is commonly used in breast cancer therapy in conjunction 
with chemotherapy [122].
 Altogether, new clinical trials need to be undertaken to de-
fine how these compounds could become a real “personalized 
target therapy”. By doing that, these mimetics could turn into 
an effective and adjunctive weapon to fight the battle against 
cancer.

CONCLUDING REMARKS AND 
PERSPECTIVES

Cancer cells are greed of glucose and of amino acids (glu-
tamine, methionine, leucine, arginine, and others) and need 
growth factors for cell proliferation and cell motility. Thus, 
starving cancer cells is an appealing strategy to halt cancer 
growth and metastasization. On this base, it has been hy-
pothesized that a low energetic diet could influence tumor 
progression and prognosis. Indeed, preclinical and prelimi-
nary clinical studies have confirmed that fasting has potential 
benefits by improving the effectiveness of chemotherapy 
while attenuating the toxic side effects, by protecting normal 
tissues from DNA damages, by reducing the inflammation in 
the TME, by restoring anti-tumor autophagy and apoptosis, 
and by favoring the immune response [50]. All in all, available 
data suggest that a regimen with very-low-carbohydrate and 
low-protein intake, substituted by a relatively high-fat intake, 
may benefit cancer patients in terms of overall survival and/
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or progression free survival [123,124]. However, patients may 
not tolerate such a CR diet for prolonged time. Therefore, as 
alternative, it has been proposed an intermittent fasting regi-
men, whose beneficial effects also appear promising though 
somehow controversial in preclinical settings. This will require 
further elucidation in controlled clinical trials [125]. An interest-
ing alternative is represented by compounds known as CRMs 
that can mimic the caloric/energic restriction condition while 
allowing an adequate supplementation of nutrients. These 
CRMs elicit their action by triggering anti-cancer biochemical 
pathways through direct interaction with targeted signaling 
molecules and/or via epigenetic regulation of the expression 
of relevant regulators. It is likely that CRMs’ activity is influ-
enced by the genetic background and the TME context of the 
tumor. Therefore, understanding the molecular mechanisms 
underpinning the effects of such CRMs is mandatory for har-
nessing their adjuvant benefits in the frame of personalized 
cancer therapy.
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