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Oral squamous cell carcinoma (OSCC) is the most invasive oral malignancy in adults and is
associated with a poor prognosis. Accurate prognostic models are urgently needed,
however, knowledge of the probable mechanisms behind OSCC tumorigenesis and
prognosis remain limited. The clinical importance of the interplay between the immune
system and tumor microenvironment has become increasingly evident. This study
explored immune-related alterations at the multi-omics level to extract accurate
prognostic markers linked to the immune response and presents a more accurate
landscape of the immune genomic map during OSCC. The Cancer Genome Atlas
(TCGA) OSCC cohort (n = 329) was used to detect the immune infiltration pattern of
OSCC and categorize patients into two immunity groups using single-sample gene set
enrichment analysis (ssGSEA) and hierarchical clustering analysis. Multiple strategies,
including lasso regression (LASSO), Cox proportional hazards regression, and principal
component analysis (PCA) were used to screen clinically significant signatures and identify
an incorporated prognosis model with robust discriminative power on the survival status
of both the training and testing set. We identified two OSCC subtypes based on
immunological characteristics: Immunity-high and immunity low, and verified that the
categorization was accurate and repeatable. Immunity_ high cluster with a higher
immunological and stromal score. 1047 differential genes (DEGs) integrate with immune
genes to obtain 319 immue-related DEGs. A robust model with five signatures for OSCC
patient prognosis was established. The GEO cohort (n = 97) were used to validate the risk
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model’s predictive value. The low-risk group had a better overall survival (OS) than the
high-risk group. Significant prognostic potential for OSCC patients was found using ROC
analysis and immune checkpoint gene expression was lower in the low-risk group. We
also investigated at the therapeutic sensitivity of a number of frequently used
chemotherapeutic drugs in patients with various risk factors. The underlying biological
behavior of the OSCC cell line was preliminarily validated. This study characterizes a
reliable marker of OSCC disease progression and provides a new potential target for
immunotherapy against this disease.
Keywords: oral squamous cell carcinoma, immune-related gene, immune infiltration, prognostic biomarker, single-
sample gene set enrichment analysis
INTRODUCTION

Oral squamous cell carcinoma (OSCC) is the most common
malignant tumor found in the oral cavity, occurring on the lips,
tongue, palate, cheek mucosa, gum, the floor and vestibule of the
mouth, and retromolar area (1). The number of new OSCC cases
worldwide reached 377,713 in 2020, most of whom were
concentrated in South Asia, and resulted in 177,757 deaths (2).
OSCC risk factors include smoking, alcohol intake, chewing betel
nut, and human papillomavirus (HPV) infection (3, 4). The
prognosis of patients with OSCC is usually evaluated based on
patient age, tumor histological grade, TNM stage, and both
smoking and drinking status (5). While OSCC diagnosis and
treatment have made great progress in recent years, OSCC
prognosis has not improved significantly (6). Recent clinical
data has shown that the morbidity and mortality of OSCC are
still high, the 5-year patient survival rate is approximately 50%
(7), and even after standard treatment, the recurrence rate is as
high as 18–76% (8). Thus, it is critical that an effective OSCC
prognostic model is identified that will effectively predict OSCC
outcomes and guide patient treatment.

The immune system’s impact on cancer progression has been
a research hotspot for more than a century. Immune checkpoint
gene inhibitors are an extensive and effective immunotherapy
that block the inhibitory immune checkpoint pathway and
reactivate the anti-cancer immune response. The anti-PD-1
immune ch e c kpo i n t i nh i b i t o r s , n i v o l umab and
pembrolizumab, are effective treatments for recurrent head and
neck squamous cell carcinoma (HNSCC) which is nonresponsive
to platinum chemotherapy (9). However, the effectiveness of
immunotherapy is dependent on the reactivation of the host
immune response in the tumor microenvironment (TME) (10,
11). Recent studies show that the TME, which consists of
immune cells, cytokines secreted by immune cells, and
immune-related pathways, plays an important role in
predicting disease outcomes and evaluating the impact of
therapy (12). OSCC is a highly immunogenic tumor and its
TME is characterized by changes in the immune cell population,
immune checkpoints, and tumor or microenvironmental factors
that alter the TME balance and promote immunosuppression,
allowing tumors to escape from immune surveillance (13, 14).
The microenvironment of solid tumors is more complex than
org 2
malignant hematological tumors and may directly regulate host
immune responses (15). Accumulating studies indicate that
immune cell infiltration plays a key role in the prognosis of
many tumors, including OSCC (13, 16, 17). The ratio of helper T
cells (Th17) to regulatory T cells (Treg) is an important factor
affecting OSCC prognosis. Immune-related genes are also closely
associated with tumor occurrence and development (18, 19). At
present, there are few robust prognostic models based on
immune-related genes that can be used to prognose patients
with OSCC. Thus, it is urgent that new and reliable immune-
related prognostic markers are developed to analyze the
relationship between immune-related genes and prognosis and
to provide clues for characterizing immune infiltration
during OSCC.

This study describes the potential use of immune-related gene
profiling of OSCC patients from the TCGA database for disease
prognosis and diagnosis. The single-sample gene set enrichment
analysis (ssGSEA) method was used to classify OSCC patients
into two distinct clusters, immunity-high and immunity-low.
The molecular and immune patterns of these clusters were
validated using the ESTIMATE and CIBERSORT algorithm.
Least absolute shrinkage and selection operator (LASSO)
regression and Cox regression analysis were used to establish
an immune-related gene prognostic model, which was further
validated in the GSE41613 dataset. In addition, a nomogram was
used to predict the 1-, 3-y, and 5-year overall survival rates of
OSCC patients. The immune checkpoint gene profile was
compared between the high- and low-risk groups. Finally,
mRNA and protein expression of these genes was assessed in
four OSCC cell lines and their biological functions was measured
using invasion and migration experiments.
MATERIALS AND METHODS

Patients and Datasets
Transcriptome expression data [fragments per kilobase million
(FPKM) value] and clinical OSCC information were downloaded
from the TCGA database (https://tcga-data.nci.nih.gov/tcga/),
and transcriptome expression data and survival information
were obtained from the GEO database (https://www.ncbi.nlm.
July 2022 | Volume 13 | Article 922195
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nih.gov/geo/). The data of 331 OSCC samples and 32 normal
samples was obtained from TCGA-HNSC cohort. The following
were used as inclusion criteria: (1) histologically verified primary
OSCC; (2) patients have mRNA expression profiles and
corresponding clinical data. Samples with no data on survival
status or survival time were excluded from this study. Finally, 329
individuals with OSCC were enlisted for further study, along
with clinicopathological data such as age, gender, TNM stage,
and grade. We chose GEO datasets that met the following
criteria: (1) histologically verified primary OSCC; (2) sample
size in the dataset was more than 80; (3) gene expression
profiling data; (4) prognostic data from patients. Finally, OSCC
samples from GSE41613 with 97 OSCC samples (GPL10558
platform, Illumina HumanHT-12V4.0 expression beadchip)
were used as the validation group for this study. The clinical
information of the TCGA sets and GEO validation sets was
detailed in Table 1.The gene expression matrix was then
retrieved from the TCGA-OSCC and GSE41613 datasets and
created using Strawberry Perl (version 5.32.02). ImmPort
(https://www.immport.org/shared/home) datasets were used to
compile a list of 1,793 immune-related genes.

Clustering of the OSCC Data
The ssGSEA method is a recently proposed algorithm for
counting immune cell subsets using RNA samples from
various tissue types (including solid tumors) (20). It has less
noise and unknown mixture content than other methods, and
the cell types are closely related. In this study the ssGSEAmethod
was used to calculate the absolute enrichment fraction of 29
immune cells and their immune-related functions and pathway
marker genes in OSCC patients. The R package “GSVA” was
used to classify the OSCC samples in the TCGA-OSCC into
immunity-high and immunity-low clusters. Principal
component analysis (PCA) were used to evaluate each sample
in the clusters.

Evaluating the Efficacy of
Immune Clustering
The ESTIMATE algorithm was used to verify the efficacy of
ssGSEA clustering. The ESTIMATE, Immune, and Stromal
Scores of each OSCC sample in two clusters was determined
using R package “ESTIMATE.” Twenty-two types of tumor-
infiltrating lymphocytes (TILs) in the two clusters were analyzed
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using the CIBERSORT algorithm. Expression of the human
leukocyte antigen (HLA) family in each cluster was assessed
using the R package “ggpubr”.

Differential Expression Gene Analysis
The R “edgeR” and “limma” packages were used to perform
differential expression gene (DEG) analysis, and DEGs (FDR <
0.05 and |log2FC| > 1) were considered significantly changed
between the immunity-high and immunity-low clusters. A Venn
diagram was used to identify the intersection genes between the
DEGs and 1,793 immune-related genes.

Genomic Alterations and Gene Set
Enrichment Analysis
Using the TCGA dataset, we performed copy number variation
(CNV) and somatic mutation analysis to determine the
correlation between riskscore levels certain genomic OSCC
characteristics. The oncoplot was visulized by using R package
“maftoos”. The enriched biological process was identified using
the Molecular Signatures Database (MSigDB) and the enriched
biological process of intersection genes was identified using the R
packages “clusterprofiler” and “enrichplot.” Gene enriched
biological processes with P <0.05 were considered
statistically significant.

Construction of a Clinical Prognostic
Signature Based on Immune-Related
Gene Expression
The R “Survival” package was used to analyze the clinical data of
OSCC samples from TCGA using univariate Cox regression
analysis, and immune-related genes that were significantly
related to OSCC patient survival were screened out. LASSO
regression analysis was used to screen survival-related genes, and
the R “glmnet” package was used to identify genes most related to
OS using univariate Cox regression analysis. To prevent over-
fitting to the maximum extent, 1,000 rounds of cross-validation
were used to select the penalty parameters. Based on prognosis-
related immune gene expression and coefficients obtained using
multivariate Cox regression analysis, an OSCC prognostic
marker was constructed using the following formula:

Riskscore  patientsð Þ =on
i=1ExpressionGenei �  CoefficientGenei

 where  “ n ” represents the number of prognostic genes 

and  “ i ”  represents the serial number of each gene

The PCA were used to evaluate each prognostic gene in the
clusters. The median riskscore was defined using the R “Survminer”
package, and OSCC patients were divided into high- and low-risk
groups. The clinical prognostic ability of the riskscore was evaluated
using the R “timeROC,” “Survival,” and “Survminer” packages to
create time-dependent receiver-operating characteristic (ROC) and
Kaplan-Meier (K-M) curves. Using the R “Survival” package,
univariate and multivariate Cox regression analyses were
performed to evaluate whether key clinical factors such as gender,
age andmetastatic status could be used as independent predictors of
overall OSCC patient survival.
TABLE 1 | The clnical information of the TCGA sets and GEO validation sets.

Cohort TCGA, OSCC (n = 329) GSE41613, OSCC (n = 97)

Gender
Male

218 68

Female 111 31
Age (years)
<60 135 50
≥60 194 47
Stage
Stage I-II

72 41

Stage III-IV 257 56
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Construction and Verification of
the Nomogram
Nomograms are an effective method to predict OSCC patient
survival rates. According to the riskscore, age, sex, primary
tumor location and metastatic status, the R “root mean square”
and “survival” packages were used to establish a nomogram
based on immune-related gene prognostic markers. The
calibration curve was used to evaluate the predictive accuracy
of the nomogram to distinguish between different patient groups.

Protein-Protein Network Interactions (PPI)
PPI are recognized and predicted in the search tool for retrieval
of interacting genes/proteins (STRING) database (https://string-
db.org/). After building the PPI, Cytoscape was used to visualize
the PPI and the network’s key genes were identified.

Exploration of the Model in the
Chemotherapy Response
The R package “pRRophetic” was used to computed the the half-
maximal inhibitory concentration (IC50) of commonly used
chemotherapeutic drugs (21). The IC50 value represents a
substance’s ability to block particular biological or metabolic
activities. Wilcoxon signed-rank test was used to determine the
difference between groups.

Cell Culture and Transfection
The OSCC cell line, SCC15, and the normal Human Oral
Keratinocytes (HOK) cell line were purchased from the
Institute of Antibody Engineering, Southern Medical
University (Guangzhou, China). The use of all cell lines was
approved by the Nanfang Hospital ethics committee. HOK cells
were cultivated in DMEM (Gibco, Cat#11995500TB) and SCC15
cells were cultivated in DMEM/F12 (Gibco, Cat#C11330500BT)
with 10% fetal bovine serum (FBS) (Gibco, Cat#10099141C),
along with 100 U/mL penicillin and streptomycin (Gibco,
Carlsbad, CA, USA). The expression vectors for CTSG and
TNFRSF4 were designed and synthesized (RiboBio,
Guangzhou, China). Over expression and control vectors were
transfected into SCC15 cells using the lipofectamine 8000
protocol (beyotime, Cat# C0533). Total RNA and protein were
extracted after 24–48 hours.

RNA Extraction and Quantitative Real-
Time PCR (qRT-PCR)
Total RNA extractions were performed using the SteadyPure
Quick RNA Extraction kit according to the manufacturer’s
instructions (Accurate Biotechnology, Changsha, Hunan, China)
and the RNA was reverse transcribed using an Evo M-MLV Mix
Kit with gDNA Clean for qPCR (Accurate Biotechnology,
Changsha, Hunan, China, AG11728). Amplification and
detection were then carried out using the SYBR Green qPCR Kit
(Accurate Biotechnology, Changsha, Hunan, China, AG11701).
Gene expression wasmeasured and normalized relative to the level
of b-actin using the 2−DDCT method after normalization with a
reference control. The primer sequences were as follows:
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CTSG Forward primer (5′-3′): GAGTCAGACGGAAT
CGAAACG,

CTSG Reverse primer (5′-3′): CGGAGTGTATCTGTTC
CCCTC;

TNFRSF4 Forward primer (5′-3′): GACAGCTACAAGCCTGG
AGTTGAC,

TNFRSF4 Reverse primer (5′-3′): ACAGATTGCGTCCGAG
CTATTGC;

b-actin Forward primer (5′-3′): GAAGATCAAGATCATTGCT
CCT,

b-actin Forward primer (5′-3′): TACTCCTGCTTGCTGAT
CCA.
Western Blotting
Total protein was lysed in RIPA lysis buffer (Thermo Scientific,
Rockford, IL, USA) containing protease and phosphatase
inhibitors. Western blot was then performed as described
previously (22). Primary antibodies were used at the
manufacturer’s suggested concentrations: CTSG (1:500; 23840-
1-AP; Proteintech), TNFRSF4 (1:500; 20006-1-AP; Proteintech)
or b-actin (1:5000; Proteintech). Immunoreactive bands were
detected using an antirabbit peroxidase-conjugated secondary
antibody (1:5000; Proteintech) and visualized using enhanced
chemiluminescence (Amersham Imager 600; General Electric
Company). Protein band densitometry was performed using
Image J.

Clonogenic Assay
The control group and cells with high CTSG and TNFRSF4
expression were digested with trypsin, and complete medium
was used to suspend the cells, adjusting the density to 500 cells/
well. The cells were inoculated in a 6-well plate and the medium
was changed every 3–4 days. After 1–2 weeks of culture, the
cells were removed, washed three times with PBS, fixed in 4%
paraformaldehyde for 30 min, stained with 0.1% crystal violet
for 30 min, and counted with a microscope and Image
J software.

Transwell Assay
To explore the function of CTSG and TNFRSF4 in an OSCC cell
line, the pEXP-RB-Mam-EGFP system was used to overexpress
CTSG and TNFRSF4 in SCC15 cells, over expression and control
vectors were transfected into SCC15 cells using the lipofectamine
8000 protocol. 24 hours after transfection, the transformed cells
(5x104) were suspended in 200 mL DMEM/F12 and inoculated
into the upper chamber. For the cell invasion assay, cells were
seeded in the upper chambers that were pre-coated with Matrigel
(356234, Corning) at a 1:8 dilution and 600 mL complete medium
containing 10% was added to the lower chamber. The transwell
device was then incubated for 2 days, cells in the inferior
chamber were fixed with 4% formaldehyde for 30 min, and
dyed with 0.1% crystal violet for 30 min. Cells in the upper
chamber were removed with a cotton swab. Cell migration was
observed using an inverted microscope (Zeiss, Germany).
July 2022 | Volume 13 | Article 922195
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Wound Healing Assay
A horizontal line was drawn behind the 6-well plate and cells
were inoculated into the hole. The cells were covered with the
hole plate overnight and the following day, the black line behind
the vertical orifice plate was scratched with a 100uL tip head so
that the scratch intersected with the mark line. After marking,
the cells were washed 2–3 times with PBS, the scratched cells
were removed, and fresh serum-free medium was added. The
cells were incubated for 24 hours, observed under a microscope
and photographed. The proportion of migrated cells was
calculated using Image J software.

Statistical Analysis
All statistical analyses were conducted using R software (version
4.0.4). Kaplan-Meier analysis and the log-rank testing were used
to assess survival and compare the difference in survival between
the clusters and risk groups. Two-tailed P <0.05 was considered
statistically significant.
RESULTS

Construction and Validation of
OSCC Clustering
Samples from 329 OSCC patients were obtained from TCGA
database. SsGSEA was used to quantify the OSCC sample RNA-
seq data and the infiltration level of 29 immune cell types was
obtained. A heatmap was created to depict the differential
correlation patterns among the immune cell landscape in the
TME (Figure 1A). The ssGSEA score of each OSCC sample was
calculated and used to divide the samples into immunity-high
(n=126) and immunity-low (n=203) clusters with different
immune infiltration patterns based on the unsupervised
hierarchical clustering algorithm (cutoff=1.0) (Figures 1B, C).
To verify the feasibility of the clustering results, the ESTIMATE
algorithm was used to calculate tumor purity and Stroma,
Immune, and ESTIMATE Scores based on the expression of
each OSCC sample. The Stroma, Immune, and ESTIMATE
Scores of the immunity-high cluster group were higher than
those of the immunity-low group, while the tumor purity was
lower (Figure 1D). The violin plot also showed that the Stroma,
Immune, and ESTIMATE Scores were higher in the immunity-
high cluster group than in the immunity-low group (P < 0.001,
Figure 1E). Boxplot showed that the expression of most HLA
markers was also higher in the immunity-high cluster group than
in the immunity-low group (Figure 1F), and the CIBERSORT
algorithm showed that the proportion of immune cells was
higher in the immunity-high cluster group than in the
immunity-low group (all P <0.001, Figure 1G).

GSEA Enrichment Analysis
KEGG analysis showed that genes expressed in the immunity-
high and immunity-low cluster groups correlated with a number
of chemokine, Toll-like receptor, T cell receptor, JAK-STAT, B
cell receptor, Fc epsilon RI, NOD-like receptor, and cytosolic
DNA sensing signaling pathways (Figure 2).
Frontiers in Immunology | www.frontiersin.org 5
Identification of Differentially Expressed
Immune-Related Genes Between the
Immunity-High and Immunity-Low Clusters
To explore differences in DEG expression between the
immunity-high and immunity-low clusters in TCGA database,
a threshold of FDR < 0.05 and |log2FC| > 1 was used and 1,047
DEGs, including 761 up-regulated and 286 down-regulated
genes, were obtained (Figure 3A). DEG expression in the
immunity-high and immunity-low clusters is shown in
Figure 3B. In addition, 1,793 immune-related genes were
obtained from the ImmPort database. Immune-related gene
expression in the immunity-high and immunity-low clusters is
shown in Figure 3C. A two-way Venn analysis was also
conducted using the immune-related genes from the ImmPort
database and the DEGs from the immunity-high and immunity-
low clusters. This yielded 319 overlapping genes that were
defined as true DEGs (Figure 3D, Supplementary Table 1).

Screening Immune-Related Gene
Prognostic Signature of OSCC
After integrating clinicopathological information into the gene
expression profiles, 329 OSCC patients with complete clinical
data were selected for further analysis. Univariate Cox regression
analysis was used to detect the roles of 350 overlapping genes to
identify immune-related genes that could predict OSCC
outcomes. The results indicated that 18 genes were
significantly associated with OS (P <0.001, Figure 4A). An
alluvial diagram was then used to show the relationship
between the 18 immune-related genes and transcription factors
(Figure 4B). The interaction network of these genes was
established using the STRING database and displayed using
Cytoscape (Figure 4C). Cross-validation (1,000 rounds) was
used to determine the optimal values of LASSO regression
algorithms and parameters of the 18 immune-related genes in
order to reduce the prognostic signature (Figures 4D, E). LASSO
regression analysis was then performed and when the five
immune-related genes, CTSG, TNFRSF4, IGLV1-44, STC2,
and CCL22 were identified, the prognostic model achieved the
best performance. The CIBERSORT method was used to assess
the correlation between the five prognostic markers and immune
cell infiltration. CTSG was associated with resting mast cells and
naïve B cells, CCL22 was associated with eosinophils, resting
mast cells, activated dendritic cells, resting NK cells, regulatory T
cells (Tregs) and naïve B cells, IGLV1-44 was associated with M0
macrophages, follicular helper T cells, plasma cells, and naïve
and memory B cells, TNFRSF4 was associated with eosinophils,
activated mast cells, M0 and M2 macrophages, Tregs, follicular
helper T cells, CD8 T cells, and naive B cells, and STC2 was
associated with eosinophils, activated and resting mast cells,
resting dendritic cells, follicular helper T cells and CD8 T cells
(P <0.001, Figure 4F). PCA plot was used to validate the
distribution of our prognostic genes screened from DEGs in
different immunity clusters. This indicates that prognostic genes
in the immunity-high and immunity-low group were in two
directions in the training cohort (Figure 4G). Using the
expression of these five genes and their coefficients, the
July 2022 | Volume 13 | Article 922195
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riskscore was calculated for each sample according to the
following formula:

Riskscore = expression of CTSG *  − 0:235852555481698ð Þ  +  

expression of TNFRSF4 *  − 0:127188255049261ð Þ  +
  expression of IGLV1 − 44 *  − 0:0157820710202927ð Þ  +
  expression of STC2 * 0:0909125160196324ð Þ  + 
expression of CCL22 *  − 0:0661762958246814ð Þ

This PCA plot indicates that the distribution of our
prognostic genes screened from DEGs also have two directions
between the low-risk and high-risk group (Figure 4H). These
findings identified five immune-related genes that are highly
sensitive and specific prognostic indicators for OSCC patients.
Frontiers in Immunology | www.frontiersin.org 6
Construction and Validation of Prognostic
Markers of OSCC Immune-Related Genes
The effectiveness and robustness of immune-related genes to
predict OS was verified in patients with OSCC. The training set
(TCGA cohort) was used to verify the characteristics of immune-
related genes and to construct a prognostic model, while the
testing set (GSE41613 cohort) was used to independently verify
the performance of the prognostic risk model. Using the
immune-related prognosis model, the riskscore of each patient
in the training set was calculated and the median riskscore was
used to divide the patients into a high- and a low-risk group. A
higher proportion of patients died in the high- than in the low-
risk group (Figures 5A, B). The Kaplan-Meier survival curve
A B

D

E

F G

C

FIGURE 1 | Construction and verification of oral squamous cell carcinoma clustering. (A) All 22 invading immune cells are represented by a correlation matrix. Immune
cells were shown to be favorably associated and are represented in red, while others were found to be negatively related and are represented in blue. The threshold was
set at P < 0.05. (B) Using ssGSEA analysis, gene expression data from OSCC patients were divided into two clusters. (C) The PCA plot of the distribution status of the
two OSCC clusters. (D) The heatmap showed that the 29 immune-related cell types had high expression in the high-immune cell infiltration group (Immunity-high), and
low expression in the low immune cell infiltration group (Immunity-low). The tumor purity and ESTIMATE, Immune, and Stromal Scores of each patient are shown with
clustering information using the ESTIMATE algorithm. (E) The violin plot shows the difference in the ESTIMATE, Immune, and Stromal Scores between the two clusters.
(F) The box plot shows a statistically significant difference in HLA family expression. (G) The box plot shows a statistical difference in immune cell infiltration between the
two clusters. *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 2 | Gene functional enrichment analysis of the immunity-high and immunity-low clusters.
A B

DC

FIGURE 3 | Analysis of differentially expressed immune-related genes in oral squamous cell carcinoma patients. (A) The volcano plot shows 761up-regulated genes
and 286 down-regulated genes in the immunity-high and immunity-low clusters. Up-regulated and down-regulated genes are represented by red and green bars,
respectively. The gene names of genes with |log2FC| > 6 are displayed. (B) The heatmap shows the degree of DEG expression in the immune-high and immune-low
clusters. (C) The heatmap shows immune-related gene expression in the immunity-high and immunity-low clusters. (D) The Venn diagram shows 319 genes from
both gene sets. DEGs, differentially expressed genes.
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showed that patients in the high-risk group had markedly poorer
OS than those in the low-risk group (P <0.001, Figures 5C, D).
The time-dependent ROC curve was then used to evaluate the
accuracy of OS estimates derived from the prognostic model. In
the training cohort, the ROC curve showed that the AUC values
of riskscore for 1-, 3-, and 5-year survival rates were 0.654, 0.670,
and 0.589, respectively (Figure 5E). In the testing cohort, the
ROC curve showed that AUC values of riskscore for 1-, 3-, and 5-
Frontiers in Immunology | www.frontiersin.org 8
year survival rates were 0.691, 0.748, and 0.747, respectively
(Figure 5F). The riskscore and survival status of prognostic
markers is shown in Figures 5G–J, and the correlation between
the five-genes prognostic model is shown in Figures 5K, L. The
riskscore was shown to be a reliable predictor of OS in patients
with OSCC.

We investigated the association between riskscore and clinical
response to chemotherapeutic drugs as well as some
A B

D

E F

G H

C

FIGURE 4 | Development of a prognostic signature for oral squamous cell carcinoma based on immune-related genes. (A) Using univariable Cox regression analysis, the HR
and p-value for the chosen genes in the immune terms. (B) The interaction between the 14 immune-related genes and transcription factors is depicted as an alluvial diagram.
(C) The interaction network of the immune-related prognostic genes. (D) The 14 immune-related gene LASSO coefficient profiles. (E) 1,000-round cross-validation was used
to find the best values for the penalty parameter. (F) The heatmap shows the correlation between immune-related prognostic genes and immune cell infiltration. (G) PCA
results for prognostic genes in two clusters of immunity level in training set. (H) PCA results for prognostic genes in high- and low-risk groups in training set.
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immunotherapeutic drugs using the R package “pRRophetic”. By
calculating the half-maximal inhibitory concentration (IC50) of
anti-tumor drugs, the high-risk and low-risk groups showed a
significant difference in sensitivity to 20 chemical or targeted
drugs (Figure 6A). Most immunological checkpoints were more
Frontiers in Immunology | www.frontiersin.org 9
activated in the low-risk group both in training and testing
cohorts. Besides, we also found that the expression of some
immune checkpoint gene of immunotherapy, including the rise
in CD44, CD276, CD40 and TNFSF9 gene expression in the
high-risk group, demonstrated that they had variable effects in
A B

D

E F

G

I

H

J

C

K L

FIGURE 5 | Construction and validation of the immune-related gene prognostic signature in the training and testing sets. The survival status of patients in the
high-risk and low-risk groups in the training (A) and testing sets (B). Kaplan-Meier survival curves for OSCC patients in the training (C) and testing sets (D). The
prognostic signature’s time-independent ROC curve at 1-, 3-, and 5-years in the training (E) and testing sets (F). Each OSCC sample’s risk curve is reordered
by the riskscore in the training (G) and testing sets (H). A scatter plot depicts the survival of OSCC samples in the training (I) and testing sets (J). Interaction
analysis of the immune-related prognostic genes in the training (K) and testing sets (L).
July 2022 | Volume 13 | Article 922195

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Immune-Related Prognostic Biomarker in OSCC
each group (Figures 6B, C). It meant we could select the most
appropriate checkpoint inhibitors for OSCC patients based on
their riskscore. According to the CIBERSOFT algorithms,
riskscore positively correlated with the infiltration levels of
multiple types of immune cell, including the CD4 T cell, B cell,
NK cell, dendritic cell, and Macrophage (Figure 6D). We also
Frontiers in Immunology | www.frontiersin.org 10
investigated at the links between riskscore and immunotherapy-
predicted pathways such oncogenic pathways, targeted therapy-
associated gene signatures, and radiation response gene
signatures (Supplementary Table 2) (23). Riskscore positively
correlated with the enrichment scores for almost all anticancer-
immunotherapy-related signatures (Figure 6E).
A

B

D

E

C

FIGURE 6 | Clinical response to anti-tumor therapy as well as immune checkpoint-related gene expression in the high-risk and low-risk groups. (A) The chemotherapy
and molecular drugs prediction of risk groups. (B) The difference of immune checkpoints expression in risk groups of traing set. (C) The difference of immune checkpoints
expression in risk groups of testing set. (D) Correlations between riskscore and immune infiltration cells. (E) Correlations between riskscore and the enrichment scores of
immunotherapy-predicted pathways. *P < 0.05, **P < 0.01, ***P < 0.001.
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Evaluation of Immune-Related Gene
Prognostic Markers as Independent
Prognostic Factors for Patients
With OSCC
Univariate and multivariate Cox regression analysis were used to
test whether the five immune-related gene signatures were
independent prognostic factors of other features, such as age,
gender, and grade. The results indicated that the N stage was an
independent prognostic factor (P <0.001, Figures 7A, B).
Frontiers in Immunology | www.frontiersin.org 11
Establishment and Validation of a
Nomogram to Predict Overall Survival
To predict the survival of OSCC patients from a clinical
perspective, TCGA data was used to construct a nonogram
that could estimate the probability of OS lasting 1, 3, and 5
years. Age, gender, stage, TMN status, and riskscore were
included as variables to predict prognosis (Figure 7C). The 45°
line represents the best prediction model, and the resulting
calibration plot indicates that the nomogram performed well
A B

D E

F

C

FIGURE 7 | Construction of a nomogram and verification that the immune-related gene prognostic signature is an independent prognostic factor. Univariate (A)
and multivariate (B) Cox regression analysis of the immune-related gene prognostic signature in OSCC patients to determine independent risk variables. (C) The
development of a nomogram based on the immune-related gene prognostic signature in the TCGA training cohort. (D) The calibration curve of the nomogram. (E)
The combined ROC for riskscore, nomogram, gender, stage, age, and TMN at 1-, 3-, and 5-years. (F) Time-independent ROC curves of overall survival for immune-
related gene prognostic model, Lv geneSig, Ribeiro geneSig, Zhao geneSig, and Zhang geneSig at 1-, 3-, and 5-years.
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(Figure 7D). We plotted combined ROC for riskscore,
nomogram, gender, stage, age, and TMN, and the AUC values
of nomogram for predicting the 1-, 3- and 5-year OS rates were
0.772, 0.868 and 0.803, respectively (Figure 7E).

The performance of our prognostic model was then
compared to four representative prognostic signatures
previously generated using the same TCGA-OSCC cohort.
Signatures were developed by Lv et al. (24), Ribeiro et al. (25),
Zhao et al. (26), and Zhang et al. (27) using eight, seven, four, and
five genes, respectively. The AUC of 1-year and 3-year survival of
our immune-related gene prognostic model was 0.654 and 0.670,
which was significantly higher than the AUC values of the other
four prognostic models. The AUC of 5-year survival of our
immune-related gene prognostic model was 0.589, which was
second only to Zhang geneSig (Figure 7F). These findings
revealed that our immune-related gene prognostic model is
reliable and effective at predicting the prognosis of
OSCC patients.

Prognostic Signature of Immune-Related
Genes in Relation to Tumor
Mutational Load
TMB levels in the high- and low-risk groups were measured to
determine if there was a correlation between the immune-related
gene prognostic signature and the tumor mutational burden
(TMB). TMB levels were higher in the high- than in the low-risk
group (P <0.001, Figure 8A). Kaplan-Meier survival analysis also
showed that the OS probability was worse in the high- than the
low-risk group (P <0.001, Figure 8B). The predictive profile of
immune-related genes were also evaluated in connection with
TMB. To investigate the role of TMB status, survival analysis was
performed on low-risk group/low-TMB, low-risk group/high-
TMB, high-risk group/low-TMB, and high-risk group/low-TMB
groups. There was a substantial difference between the four
groups (P <0.001) (Figure 8C). Overall, these findings reveal a
link between riskscore and somatic mutation trends. Then, we
performed copy number variation (CNV) analysis to determine
whether riskscore levels were linked to certain genomic
characteristics. Oncogenic driver genes including TP53, TTN,
FAT1, PIK3CA, CSMD3, SYNE1, and LRP1B were commonly
amplified in high-score samples, whereas CDKN2A, NOTCH1,
and USH2A were ampl ified in low-score samples
(Figures 8D,E).
Experimental Validation
We further performed experimental analysis of genes in
prognostic signatures to validate their function in OSCC cell
growth and migration. Since CTSG and TNFRSF4 have relatively
high coefficient levels and were robust in the previously
constructed models, the oncogenic role of these two genes was
assessed in further experiments. CTSG and TNFRSF4 protein
expression were significantly down-regulated in SCC15 as
compared with control HOK cells (Figures 9A, B). Similarly,
CTSG and TNFRSF4 mRNA expression were significantly lower
in SCC15 than HOK cells (Figures 9C, D).
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To explore the function of CTSG and TNFRSF4 in an OSCC
cell line, the pEXP-RB-Mam-EGFP system was used to
overexpress CTSG and TNFRSF4 in SCC15 cells. Both CTSG
and TNFRSF4 protein and mRNA expression was significantly
upregulated by specific pEXP-RB-Mam-EGFP (Figures 9E, F).
In addition, CTSG and TNFRSF4 pEXP-RB-Mam-EGFP
transfection reduced the clonogenicity of SCC15 cells
(Figures 9G). Furthermore, transwell migration and invasion
assays showed that CTSG and TNFRSF4 overexpression
significantly reduced SCC15 cell migration and invasion
(Figures 9H, I). Wound healing assays indicated that SCC15
cell migration steadily decreased following CTSG and TNFRSF4
pEXP-RB-Mam-EGFP transfection in vitro (Figures 9J). These
findings indicated that immune activation correlated with the
progression of OSCC malignancy. Anti-CTSG and/or anti-
TNFRSF4 medication has been suggested as a potential OSCC
treatment strategy.
DISCUSSION

As one of the most common malignant tumors of the head and
neck, OSCC has the characteristics of high heterogeneity and
elevated recurrence and metastasis rates (28). While OSCC
patient quality of life has improved with significant
advancements in surgery, radiotherapy, chemotherapy and
multidisciplinary comprehensive sequence therapy, the 5-year
survival rate remains low, and this disease is still a serious threat
to human health. Smoking and betel nut chewing are the main
risk factors for OSCC, however genetic susceptibility, the tumor
microenvironment (TME), abnormal gene expression and
immune infiltration also correlate with tumorigenesis (29). In
recent years, immunotherapy and immune factor-specific
targeted therapy are being increasingly used to treat OSCC (30,
31), and existing studies indicate that the immune landscape,
such as tumor-infiltrating immune cells (TI), can affect disease
progression and are correlated with prognosis and treatment
response (32). Therefore, understanding the relationship
between OSCC immune cell infiltration and tumor occurrence
and development is critical to the design of new methods of
diagnosis and treatment. Currently, findings from whole-
genome transcriptomics research on cancer imply that
immune-related genes can predict cancer patient survival
outcomes or responsiveness to certain immunotherapies (33).

The current study used an unsupervised hierarchical
clustering approach to create a gene signature that could
predict the immune response to OSCC. Using ssGSEA, OSCC
patients were categorized into immunity-high and -low groups
based on the degree of infiltration of 29 different immune cell
types. These results were verified using ESTIMATE and
CIBERSORT algorithms, which revealed that there were
substantial differences in Stromal, Immune, and ESTIMATE
Scores between the high- and low-immune groups. Eighteen
immune-related OSCC DEGs that were strongly linked with OS
among patients with OSCC were identified in the immunity
clusters and ImmPort databases. Among the immune-related
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genes, hub genes with substantial prognostic significance,
including CTSG, CCL22, IGLV1-44, TNFRSF4, and STC2,
were identified.

The riskscore of each patient in the TCGA cohort was also
determined using the prognostic model, and OSCC patients were
divided into high- and low-risk subgroups according to their
median riskscore. The five immune-related genes demonstrated
reliable and effective predictive abilities in the training set, with
patients in the high-risk group having considerably lower OS
Frontiers in Immunology | www.frontiersin.org 13
than those in the low-risk group. Kaplan-Meier survival analysis
and the ROC curve were used to verify the five gene prognostic
signature in two independent cohorts, the TCGA cohort, and the
GSE41613 cohort, after creating the prognostic model. A
nomogram was then created to predict OSCC patient
outcomes based on the riskscore, age, gender, initial tumor
location, and metastatic status of five immune-related gene
markers. OSCC survival rates were forecasted for 1-, 3-, and 5-
years using the nomogram. The calibration curve demonstrated
A
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C

FIGURE 8 | The correlation between the immune-related gene prognostic signature and TMB. (A) The box plot for TMB levels among patients in the high- and low-risk
groups. (B) Kaplan–Meier curves for the high- and low-TMB of OSCC patients. (C) Kaplan–Meier curves for OSCC patients by TMB status in the high-risk and low-risk
groups. (D) The oncoPrint was constructed based on CNV profile in the high-risk scores of OSCC patients. (E) The oncoPrint was constructed based on CNV profile in the
low-risk scores of OSCC patients. Individual patients are represented in each column. TMB, tumor mutational burden; CNV, copy number variation.
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that this marker could reliably assess the survival rate of
OSCC patients.

The immune infiltration state of OSCC was characterized by
analyzing differences between the OSCC samples and
constructing a prognostic model. Five immune-related genes,
CTSG, TNFRSF4, IGLV1-44, STC2, and CCL22, were selected
from the immune infiltration cluster as important immune-
related prognostic markers. The CTSG gene is located on
chromosome 14q11.2 with a span of 2.7kb and consists of five
exons and four introns. CTSG is an effective platelet activator
Frontiers in Immunology | www.frontiersin.org 14
and endoprotease that promotes neutrophil effector function by
releasing formyl peptide receptor agonists during inflammation
(34), induces cell migration, eliminates intracellular pathogens,
and causes tissue decomposition in inflammatory areas (35).
CTSG is also closely associated with various types of cancer. In
human breast cancer MCF-7 cells, CTSG stimulates cell
migration and multicellular aggregation using E-cadherin (36).
CTSG can also activate pro-MMP-9 to cut and release active
transforming growth factor b (TGF-b), MMP-13, and RANKL at
the tumor-bone interface of osteolytic lesions induced by breast
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FIGURE 9 | CTSG and TNFRSF4 overexpression using pEXP-RB-Mam-EGFP transfection inhibits OSCC cell line viability and clonogenicity. CTSG (A) and TNFRSF4 (B)
protein expression in OSCC cell lines and normal human oral cavity epithelial cells. CTSG (C) and TNFRSF4 (D) mRNA expression in OSCC cell lines and normal human
oral cavity epithelial cells. CTSG (E) and TNFRSF4 (F) protein and mRNA expression in OSCC cell lines transfected with pEXP-RB-Mam-EGFP. Colony formation assay of
OSCC cell lines treated with specific pEXP-RB-Mam-EGFP and the negative control of CTSG and TNFRSF4 (G). Transwell migration (H) and invasion (I) assay of OSCC
cell lines treated with specific pEXP-RB-Mam-EGFP and the negative control of CTSG and TNFRSF4. Wound healing assays of OSCC cell lines treated with specific
pEXP-RB-Mam-EGFP and the negative control of CTSG and TNFRSF4 (J). *P < 0.05
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tumors (37). In addition, CTSG is associated with tumor
angiogenesis and metastasis, participating in host defense and
neutrophil-related immune responses, and serving as a target of
immunotherapy for acute myeloid leukemia (AML) (38). CTSG
is also closely related to the survival of several cancer types,
including soft tissue sarcoma, muscular invasive bladder cancer,
and lymph node-negative breast cancer (39), and is a potential
immune-related biomarker for OSCC (40). The current study
showed that CTSG could inhibit the proliferation, migration,
invasion, and colony formation of SCC15 cells in vitro,
confirming that CTSG plays a key role in tumorigenesis and
progression. TNFRSF4, also known as OX40, is used as a target
of immunotherapy for various cancers, including HNSCC, and is
associated with a good prognosis (41). Qi et al. found that
TNFRSF4 expression differed significantly between Treg
subgroups, indicating that it plays an important role in
regulating Treg during HNSCC development (42). The current
study found that upregulated TNFRSF4 expression correlated
with lower SCC15 cell proliferation, migration, invasion, and
colony formation. IGLV1-44, a member of the IGLV-subfamily,
binds to the non-receptor protein tyrosine kinase TEC family,
participates in B cell differentiation, development, proliferation,
and apoptosis, and plays an important role in the immune signal
transduction process (43). STC2 is a glycoprotein hormone that
promotes tumor development and invasion in several human
malignancies. Mao et al. showed that STC2 is a potential
biomarker for tumor behavior among colorectal cancer
patients (44) and a GSEA analysis study reported that STC2 is
linked to HNSCC cell growth (45). STC2 is also associated with
lymph node metastasis in esophageal cancer patients (46).
CCL22 is a chemokine that modulates immunity by increasing
Treg contact with dendritic cells in lymph nodes through CCR4
receptor signaling (47, 48). In melanoma, CCL22 boosts Treg
recruitment into the TME while inhibiting anticancer immunity
(49) and in colorectal adenocarcinomas, CCL22 mRNA
expression is considerably higher in tumor tissue than in
corresponding normal tissue (50). CCL22 is also associated
with Treg and Th1 cells in CRC patients who were exposed to
gut microbiota. Wang et al. found that overexpression of CCL22
attracts Th17 cells to induce colon tumorigenesis (51).

The current manuscript describes an immune-related gene
model for predicting OSCC outcomes, however, there were some
limitations to this study. First, this bioinformatic study was
dependent on data from multiple historic datasets. To develop
more reliable clinical applications, prospective data from a
clinical cohort will be needed to verify the results. While some
external experimental validation was conducted, functional
research investigations and animal experiments will be
necessary to validate the predictive accuracy of the risk model
and identify possible immune-related processes.

In summary, hub genes were screened using ssGSEA, and
DEGs were discovered using TCGA-OSCC data. Overlapping
hub genes identified by ssGSEA and abnormally expressed
immune-related genes were used to screen out five immune-
related gene prognostic signatures. All five signatures were
associated with the prognostic outcomes of OSCC. Biological
Frontiers in Immunology | www.frontiersin.org 15
experiments verified the behavior of these genes in OSCC cell
lines. The findings suggest that five identified immune-related
gene prognostic signatures may serve as potential immune-
related predictive biomarkers for OSCC. An immune-related
prognostic signature was developed and confirmed as an
independent biomarker with an outstanding ability to predict
OSCC outcomes.
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