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Population heterogeneity is frequently observed among patients' treatment
responses in clinical trials because of various factors such as clinical back-
ground, environmental, and genetic factors. Different subpopulations defined
by those baseline factors can lead to differences in the benefit or safety profile
of a therapeutic intervention. Ignoring heterogeneity between subpopulations
can substantially impact on medical practice. One approach to address hetero-
geneity necessitates designs and analysis of clinical trials with subpopulation
selection. Several types of designs have been proposed for different circum-
stances. In this work, we discuss a class of designs that allow selection of a
predefined subgroup. Using the selection based on the maximum test statistics
as the worst-case scenario, we then investigate the precision and accuracy of
the maximum likelihood estimator at the end of the study via simulations. We
find that the required sample size is chiefly determined by the subgroup preva-
lence and show in simulations that the maximum likelihood estimator for these
designs can be substantially biased.
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1 INTRODUCTION

Heterogeneity is frequently observed among patients' treatment response in clinical trials. This is due to various factors
such as age, race, disease severity, or genetic differences. The topic of heterogeneity in treatment effects has received some
attention in the literature (eg, see related works1-3) and graphical methods such as forest plots are routinely used for the
purpose of examining heterogeneity in effects (eg, the work of Cuzick4). Ignoring heterogeneity can substantially impact
on medical practice. For example, a treatment might work well in some patients but not in others. Naively estimating the
treatment effect across all patients will result in a diluted effect for the group that truly benefits from the treatment. At the
same time, an ethical issue arises due to delivering a treatment to all patients, whereas some might not expect an effect
and will potentially be exposed to harmful side effects. To address these issues, trials that consider (potential) subgroups
defined by one or more biomarkers are becoming more popular. In general, a biomarker is some measurable variable that
might help to identify distinct groups of patients and some examples include cholesterol levels, genetic variations, or age.
A biomarker is considered prognostic if it provides information about the value of some other variable of interest (eg, the
primary endpoint of a study), whereas it is called predictive if its value yields information about the treatment effect. In
this paper, we will only consider the latter type of biomarkers.
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A number of different designs concerning treatment selection and subgroups within the study populations have been
proposed. These designs can be categorized by factors such as design setting (confirmatory or exploratory) or methodology
(frequestist, Bayesian, or utility/decision function) (see related works5-7). Additionally, the designs can be categorized into
single-stage (fixed sample) designs and multistage (adaptive) designs. Both conventionally utilize multiple testing proce-
dures to test for effects in each of the populations of interest. An overview of different multiple testing approaches for this
purpose is given in the work of Alosh et al6 and the references therein. A single-stage design with one biomarker tests, for
example, the null hypotheses, ie, the treatment effect of the full population is zero, ie, H0F and the treatment effect in the
subgroup of interest is zero, ie, H0S.5,8-12 These designs are usually employed for exploratory subgroup analysis in phase II
(ie, to identify an interesting subgroup) or for confirmatory subgroup analysis in phase III, examining the treatment ben-
efit of prespecified subgroups. Corresponding multistage designs are constructed either as extensions of group sequential
approaches13 or using combination tests.14 They can refine the population to either the whole or one or more subgroups
at the interim analysis and can allow for early stopping for benefit and lack of benefit (see, eg, other works5,15-18).

The accuracy and precision of the treatment effect estimators in subgroup analysis are also crucial to the development of
novel treatments and decisions about treatment implementation. Especially, bias is ubiquitous in designs that select (see
the work of Bauer et al19) and, in the designs considered here, the bias can come from selecting which (sub)population
should be studied further or from selective reporting promising results even in a simple fixed sample design. A variety
of papers on treatment effect estimation in the related problem of trials with treatment selection have been published.
Approximate bias-correction estimators for single-stage designs for normal endpoints are discussed in the works of Shen20

and Stallard et al,21 uniformly minimum variance conditional unbiased estimators for two stage designs have been pro-
posed by Cohen and Sackrowitz,22 and further extensions are published in the works of Bowden and Glimm23 Sill and
Sampson.24 Shrinkage estimators have been discussed in the work of Carreras and Brannath,25 whereas approaches to
construct confidence intervals are described in related works.26-28 Time-to-event endpoints are considered in the work of
Brückner et al.29

In contrast, rather limited literature addresses estimation issues in clinical trials with subpopulation selection. For
single-stage designs, Rosenkranz30 proposed a bias-adjustment method employing bootstrap techniques to calibrate the
estimates upon general distributional assumption on outcomes. For multistage designs, Kimani et al31 proposed two esti-
mators, ie, one is a naive estimator using a weighted average of per-stage means and prevalences for each subgroup and
the other is a uniformly minimum variance conditional unbiased estimator derived by the Rao-Blackwell theorem. They
assessed the performance under several situations, such as different values of prevalence and treatment effect of one sub-
population, and also suggested which estimator should be used according to what population is selected at Stage 1. In
addition, Magnusson and Turnbull16 focused on the designs rather than estimation, though they outlined an extended
bias-reduction algorithm proposed by Wang and Leung32 in which uses double bootstrap methods33 to adjust ML-estimates
and build bootstrap confidence interval.

Despite some contributions on estimation, the aforementioned papers do not provide a complete overview of the
maximum likelihood estimator (MLE) under various designs and lack exploring the estimator performance in further con-
ditions. Rosenkranz's30 simulation work on single-stage designs implicitly regarded the MLE only in circumstances with
few different treatment effects for subgroups and thresholds used in the selection rule. Kimani et al31 considered two-stage
adaptive seamless designs, selecting subpopulation based on the Stage 1 data but not allowing early stopping, and they
only assessed estimators with selection but without reporting promising results. The multistage designs of Magusson
and Turnbull allow to select multiple subpopulations if the estimates of treatment effects are above certain thresholds at
Stage 1.

In this paper, we discuss a framework to design single and multistage design that select subgroups. We illustrate the
design properties when selection is based on the maximum statistic and comprehensively evaluate the properties of the
MLE for these designs. Note that selecting on the basis of the maximum statistic is the worst case for both type I error
(provided that the number of hypothesis remains the same) and bias and hence of particular interest. In Section 2, we
derive a subgroup selection design that selects groups based on the maximum test statistic. Section 3 describes a simulation
study in which different general design scenarios are evaluated and the bias and MSE of the corresponding MLEs are
derived. In Section 4, we remark on the designs with different selection rules, then summarize the results of the simulation
study and discuss its implications for future work.

2 DESIGNS
In this section, we first define the basic setting and notation and then provide general ideas for designs with subpopulation
selection based on the maximum test statistic.
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2.1 Basic setting and notation
Assume J mutually disjoint subpopulations are in the full study population (F ) and denote the prevalence of the jth
subpopulation (Sj) by 𝜆j, where j = 1, … , J and

∑
𝜆𝑗 = 1. The sample size of each subgroup is fixed as a proportion of

the total sample size depending on the respective prevalence. We use nj to denote the sample size in subgroup Sj and more
generally use subscripts to denote groups and treatments and superscripts for stages. We consider a normally distributed
endpoint with mean 𝜇j,l with j = 1, … J and l = T,C, where subscript T corresponds to the treatment group and C to
the control group. Additionally, we assume a common variance, ie, 𝜎2, across subpopulations.

2.1.1 Single-stage design
For a single-stage design, the test statistics used for selection and decision are distributed as

Z(1)
𝑗

= I(1)
𝑗

(
Ȳ (1)
𝑗,T − Ȳ (1)

𝑗,C

)
∼  (

I(1)
𝑗
𝜃𝑗 , 1

)
.

Note that we use the (unnecessary) superscript (1) for consistency with the multistage notation used later. Ȳ (1)
𝑗,T and Ȳ (1)

𝑗,C are
the sample means of the treatment group and of the control group within Sj, respectively. The true treatment difference

in Sj is denoted as 𝜃j = 𝜇j,T − 𝜇j,C and I(1)
𝑗

= 1∕(𝜎
√

1∕n(1)
𝑗,T + 1∕n(1)

𝑗,C) is the information level for Sj. This further simplifies

to 1∕(2𝜎
√

1∕n(1)
𝑗
) when the assumed treatment allocation ratio is 1:1, where n(1)

𝑗
is the total sample size of Sj until the end

of Stage 1.
Considering a composite population S+ , combining two subpopulations S and S (where  , ⊆ {1, 2, … , J},

 ∩  = ∅ ), the test statistics are distributed as

Z(1)
+ =

√√√√ n(1)


n(1)
+

Z(1)
 +

√√√√ n(1)


n(1)
+

Z(1)
 = I(1)+

(
Ȳ (1)

+ ,T − Ȳ (1)
+ ,C

)
∼  (

I(1)+
(
𝜇+ ,T − 𝜇+ ,C

)
, 1
)
,

where Ȳ (1)
+ ,T and Ȳ (1)

+ ,C are defined as before but the observations are from the combined treatment group and the com-
bined control group of the united subpopulation S+ . The true treatment effect size and the information level of S+ are

𝜃+ = 𝜇+ ,T −𝜇+ ,C and I(1)+ = 1∕(𝜎
√

1∕n(1)
+ ,T + 1∕n(1)

+ ,C), respectively. I(1)+ is also equal to 1∕(2𝜎
√

1∕(n(1)
 + n(1)

 )) for
equal allocation. Additionally, 𝜃+ = (𝜆 𝜃 +𝜆𝜃 )∕(𝜆 +𝜆 ). Note that, if  and  are complementary, their composite
population S+ is the full population F and then the subscript of the aforementioned notations are replaced with f. If 
and  have an individual element for each, such as {1} and {2}, we simplify the notation of  + as 1 + 2. This notation
simply denotes the union of S and S , and it does not necessarily imply that one is nested in the other.

2.1.2 Multistage design
For multistage designs, the test statistic based on the accumulated data at the end of stage k (k ≤ K, the total stage
number) for S is denoted by

Z1∶k
 =

k∑
i=1

√
I(i)
I1∶k


Z(i)
 = I1∶k


(

Ȳ 1∶k
 ,T − Ȳ 1∶k

 ,C

)
∼  (

I1∶k
 𝜃 , 1

)
,

where the superscript 1:k refers to a quantity calculated based on the accumulated data at the end of stage k; therefore,
I1∶k
 is the accumulated information level defined accordingly as 1∕(𝜎

√
1∕n1∶k

 ,T + 1∕n1∶k
 ,C).

2.2 Designs considered
We consider designs that control the family-wise error rate (FWER) at level 𝛼 in the strong sense34 and the set of hypotheses
to be tested

H0s ∶ 𝜃s ≤ 0 versus Has ∶ 𝜃s > 0, s ∈  ,
where  is the index set corresponding to the subpopulations considered and can index nested groups. For instance, if we
consider subgroup 1, subgroup 1 and 2, or the full population being of interest,  = {1, 1 + 2, 𝑓}.
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2.2.1 Single-stage designs
To select, we use the maximum of the test statistics among Z(1)

s , s ∈  for population selection. Its implication and
other selection rules will be discussed later. In the evaluation of the operating characteristics, we consider the case where
population selection is undertaken first and only subsequently the corresponding hypothesis being tested. The testing
procedure is making a decision about rejecting H0w if Z(1)

w ≥ C𝛼 , where w is a realized value of the random variable W and
refers to the event that subpopulation Sw is chosen. Z(1)

w is the selected test statistic for Sw, and C𝛼 is the corresponding
critical value found to ensure the FWER in the strong sense.

The crucial element to find the appropriate critical value and sample size is the density of the joint distribution of the
selected test statistic Z(1)

W and the selected population index W. While the subsequent results are derived on the basis
of selecting based on the maximum statistic, other selection rules can equally be implemented. Using a different rule
results in a different density and, for illustration purposes, we also provide the resulting distribution for selecting any
populations whose estimated effect exceeds a prespecified value, ie, 𝛿, in the Supplementary Materials S.6. The joint
densities pZ(1)

W ,W (z(1)w ,w;𝚯), w ∈  govern the probability whether to select Sw and to reject the null hypothesis H0w (where
𝚯 is a configuration of all mutually disjoint subgroup treatment effects 𝜃1, 𝜃2, … , 𝜃J). It can further be decomposed as
pZ(1)

w
(z(1)w ;𝚯) · Pr(W = w|Z(1)

w = z(1)w ;𝚯). Consequently, the joint densities of Z(1)
W and W can be represented as

pZ(1)
W ,W

(
z(1)w ,w;𝚯

)
= 𝜙

(
z(1)w − 𝜃wI(1)w

)
Ψ⧵w

(
z(1)w , … , z(1)w ;𝚯

)
, (1)

where 𝜙 denotes the standard normal density; and Ψ⧵w(·, … , ·;𝚯) is the cumulative distribution function of the||−1-dimensional normal distribution conditional on Z(1)
w under a specified configuration of treatment effects 𝚯, where|| is the cardinality of  . The covariance matrix depends on whether subgroups are nested or not (see examples in Sup-

plementary Materials S.2 and S.3). The cumulative distribution function specifies Pr(W = w|Z(1)
w = zw;𝚯). It is noted that

(1) is similar to the integrand of equation (4) in the work of Spiessens and Debois,9 where two coprimary analyses are
performed on the full population and a subgroup, and the significance level for F is prespecified.

Using an iterative search, C𝛼 can then be found using the following inequality:

𝛼 ≥ ∑
w∈ ∫

∞

C𝛼

pZ(1)
W ,W

(
z(1)w ,w;𝚯0

)
dz(1)w , (2)

where 𝚯 = 𝚯0 denotes the global null hypothesis H0, 𝜃1 = 𝜃2 = … = 𝜃J = 0. Note that finding the critical value under
this setting implies weak control of the FWER. Following the work of Magirr et al,35 it can be shown, however, that weak
control implies strong control since 𝜃1 = 𝜃2 = … = 𝜃J = 0 maximizes the type I error when selection is based on the
maximum. Similarly, assume an alternative hypothesis that exactly one subgroup (say Sw, w in ) has nonzero positive
effect size, ie, 𝛿, but others have none is true, the required total sample size for the full population n(1)

𝑓
can be found using

the aforementioned critical values, a desired effect, and a specified power level, ie, 1 − 𝛽. The related equation is

1 − 𝛽 ≤ ∫
∞

C𝛼

pZ(1)
W ,W

(
z(1)w ,w;𝚯a

)
dz(1)w , (3)

where 𝚯a denotes the alternative hypothesis, a vector of size J whose elements are all 0 except for the wth element, which
is 𝛿. The desired n(1)

𝑓
is obtained by iteratively increasing the sample size until Equation (3) holds.

Note that only rejection of the hypothesis with the truly largest effect is considered in this power requirement. Similar
considerations can be used to find the power to reject any false null hypothesis (see Figure 1 for an example).

We have derived the aforementioned formula here for consistency, as for the multistage designs considered in the
following, only the selected subgroup continues to subsequent stages.

The derivations of (2) and (3) are provided in the Supplementary Materials S.1 and more specific example solutions for
the single-stage design with two and three subgroups are given in Supplementary Materials S.2 and S.3 when the index
set of selection population is  = {1, 𝑓} and  = {1, 1 + 2, 𝑓}.

2.2.2 Multistage designs
The multistage designs we consider follow similar procedures as the aforementioned single-stage designs. Population
selection is performed at the first interim analysis, but any population in  can be selected. We consider the case where
data after Stage 1 are enriched so that the total sample size in the trial remains fixed but the sample size of subgroups that
have not been selected is reallocated to the remaining populations. Suppose the selected population is Sw, the difference
is that, at stage k, the testing procedure stops by rejecting H0w if Z1∶k

w ≥ Cuk ,𝛼 , or stops with retaining H0w if Z1∶k
w ≤ Clk , or
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FIGURE 1 The total sample sizes of the full population F (n(1)
𝑓

) across prevalence rates of S1 (𝜆1) for two different definitions of power. The
design is a single-stage design with two subpopulations where the treatment effects 𝜃1 and 𝜃2 for S1 and S2 are 0.5 and 0, respectively. The
type-I error and power are specified at 0.025 and 80% [Colour figure can be viewed at wileyonlinelibrary.com]

the procedure continues to stage k + 1 if Clk ≤ Z1∶k
w ≤ Cuk ,𝛼 , where Cuk ,𝛼 and Clk are the corresponding upper and lower

stopping boundaries at stage k.
Two elements are required for appropriate stopping boundaries and stage-wise sample sizes. The first is the joint density

of (Z(1)
W ,W), as shown in (1). The second element is the density of the conditional distribution of the test statistics Z1∶k

w

(with accumulated data until stage k) given its precursor Z1∶(k−1)
w at stage k − 1. We denote this conditional density by

pw,k|k−1(z1∶k
w |z1∶(k−1)

w ;𝚯) and its general mathematical form is given in Supplementary materials S.4.
The stage-wise density comprising of the two elements can then be used to determine the probability of stopping for

efficacy or for futility at stage k. For example, the stage-wise densities at Stage 2 with different values of W are specified as

pZ(1)
W ,W

(
z(1)w ,w;𝚯

)
· pw,2|1 (z1∶2

w |z1
w;𝚯

)
, w ∈  . (4)

Then, given 𝚯 = Θ0 (ie, under the global null hypothesis), the probability of early stopping at Stage 2 (either for lack of
effect or early rejection) for the subgroup Sw can be calculated as

∫
Cu1 ,𝛼

Cl1
∫

∞

Cu2 ,𝛼

pZ(1)
W ,W

(
z(1)w ,w;𝚯0

)
· pw,2|1 (z1∶2

w |z(1)w ;𝚯0

)
dz1∶2

w dz(1)w , w ∈  ,
where the integral bounds signify that the design continues after Stage 1 but stops at Stage 2 for efficacy. The conditional
function pw,2|1(z1∶2

w |z(1)w ;𝚯) is used to calculate stopping probability at Stage 2, given that the design does not stop at the
preceding stage. Similarly, the stage-wise densities at stage k are the product of the expression in (1), multiplying the factor∏1

m=k pw,m|m−1(z1∶m
w |z1∶(m−1)

w ;𝚯). The value of the k-fold multiple integral within the integrand region defined by stopping
boundaries before stage k+ 1 is the early stopping probability at stage k. Each conditional density pw,m|m−1(z1∶m

w |z1∶(m−1)
w ;𝚯)

with its respective integral bound controls the probability of whether the design stops or continues, given that the design
has proceeded at the previous stage.

To find boundaries that ensure FWER control, an iterative search over the stopping boundaries is conducted based on
the following inequality:

𝛼 ≥ ∑
w∈

{ K∑
k=1

[
∫ …∫Ak

pZ(1)
W ,W

(
z(1)w ,w;𝚯0

)
·

( 1∏
m=k

pw,m|m−1

(
z1∶m

w |z1∶(m−1)
w ;𝚯0

))
dz1∶k

w … dz(1)w

]}
, (5)

where the integration region Ak

Ak = [Cl1 ,Cu1,𝛼] × [Cl2 ,Cu2,𝛼] × · · · × [Cuk ,𝛼,,∞) in z(1)w × z1∶2
w · · · × z1∶k

w ,

where 𝚯0 denotes the globe null hypothesis. We define z1∶0
w = z1∶1

w and therefore pw,1|1(z1∶1
w |z1∶1

w ;𝚯) = 1. Note that
this yields only one inequality, whereas Cl1 , … ,Clk and Cu1,𝛼 , … ,CuK ,𝛼 are all unknown. To overcome this, we set
them to follow a specific functional form, where Clk = CuK ,𝛼 for the K stage design. For example, when using the

http://wileyonlinelibrary.com
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O'Brien Fleming (OBF)13,36 type stopping boundaries, Cuk ,𝛼 = COBF(K, 𝛼)
√

K∕k and Clk is a certain function of k. In addi-
tion, the calculations in (5) assumes that the futility bounds are binding. For nonbinding bounds, one can simply set the
lower bounds to −∞.

As before, (5) implies weak control of the FWER but also guarantees strong control following the arguments in the
work of Magirr et al.35

Suppose an alternative hypothesis of the form 𝜃w = 𝛿 > 0 for exactly one element (say w) in  and 𝜃w∗ = 0 ∀w∗ ≠ w ∈
 , is true. Then, under this alternative hypothesis, the aforementioned critical values, and specified power, the stage-wise
total sample size for the full population n(k)

𝑓
can be found to satisfy the following inequality:

1 − 𝛽 ≤
K∑

k=1

[
∫ …∫Ak

pZ(1)
W ,W

(
z(1)w ,w;𝚯a

)
·

( 1∏
m=k

pw,m|m−1

(
z1∶m

w |z1∶(m−1)
w ;𝚯a

))
dz1∶k

w … dz(1)w

]
, (6)

where the configuration 𝚯a has an nonzero positive effect 𝛿 on the wth element but the other J − 1 elements are zero.
Detailed derivations of (5) and (6) are provided in Supplementary Materials S.1 and the design details of two-stage designs
with two subgroups (considering selection of S1 or F) in Supplementary Materials S.5.

2.2.3 An illustrative example
The Dose Ranging Efficacy And safety with Mepolizumab in severe asthma (DREAM) trial37 investigates, among other
endpoints, the effect of mepolizumab on exacerbations and forced expiratory volume in 1 second (FEV1). Subsequent
secondary analyses of the trial data38,39 find that the treatment effect of mepolizumab depends on the baseline levels of
eosinophil and suggests that only patients with blood eosinophil levels of more than 150 cells per 𝜇L receive benefit from
the treatment.

Suppose that, on the basis of these exploratory findings, we wish to embark on a prospective evaluation of the claim that
mepolizumab results in meaningful improvements only for patients with baseline levels of eosinophil of 150 or more cells
per𝜇L in the blood. We will use a change in FEV1 from baseline to 90 days, modeled as normally distributed as the primary
endpoints although the same arguments hold for other endpoints such as exacerbations. Additionally, we suppose that
the prevalence of each group (below and above 150 cells per 𝜇L blood) is 50%. Following the work of Santanello et al,40 we
assume that the standard deviation is 0.72L and consider a reduction of FEV1 of 0.23L as the minimum clinically relevant
treatment difference, and consequently seek to power our evaluations for this effect.

Three different evaluation strategies are considered, ie, (i) running two separate studies in each of the two subgroups,
(ii) a single-stage study with one subgroup versus the full population (see Section 2.2.1), and (iii) a two-stage enrichment
design where the best performing group is selected at the halfway point and early stopping using O'Brien and Flemming
bounds36 are used (see Section 2.2.2). For each of the three designs, we consider a type I error per study of 2.5% and require
a power of 80% to reject any false null hypothesis. Furthermore. we assume that 25 patients are recruited per month and
that it takes two months to conduct the interim analysis for strategy 3.

A summary of the characteristics of the different strategies is given in Table 1. The strategy using two separate studies
requires just over 600 patients to be recruited, whereas the single-stage design with two groups does need almost 70
patients more. The reason for this is that no attempt has been made in the first approach to control the FWER. If we were
to correct for multiplicity for the separate studies using a Bonferroni correction, the required sample size would increase
to 748 patients. Using a two-stage selection design allows us to reduce the required sample size even further to around 550
patients, a reduction of 10% and 30% as compared to the uncorrected and multiplicity corrected separate study strategy,
respectively. Additionally, the two-stage design does investigate more patients in the group that is truly benefitting from
treatment, which is one of the reasons for the reduction in required sample size. Besides the reduction in sample size,
running a single study rather than two separate ones does also yields organizational advantages. The main drawback
of this approach is that the duration of the study is increased by almost nine months should the subgroup be selected
(although a small reduction in the duration is expected if the full population is selected at interim).

Note that, in addition to the advantages illustrated earlier, the FWER in the two-stage enrichment design is controlled
for the worst-case situation in terms of selection and hence other selection rules can be used without error rate inflation.

2.2.4 Alternative designs
We have illustrated how to obtain critical bounds and sample size for general enrichment designs earlier. Here, we discuss
alternative designs considering different type-I error and power configurations.
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TABLE 1 Comparison of different evaluation strategies. max family-wise error
rate (FWER) is the maximum family-wise error of the strategy, N is the total
sample size, % superior is the percentage of patient studied in the better
performing subgroup, and duration is the time from recruiting the first patient
until the primary endpoint is available for all patients

Strategy max FWER N % superior Duration (Months)

Separate studies 0.0494 616 50% 27.64
Single-stage study 0.0250 684 50% 30.36
Two-stage design 0.0250 552 75% 25.08 or 36.12

Significance levels and stopping boundaries.
An alternative to specifying the design and corresponding stage-wise 𝛼 levels via the boundaries is to specify marginal

significance level 𝛼k to each stage k (where
∑

k𝛼k = 𝛼) and use an error spending approach as used in classic group
sequential designs.13 Such considerations affect the way we find stopping boundaries where the same boundaries are
shared by all the populations considered. More specifically, based on the following inequality (7), it is required to search
the critical value used in Ak− 1 first under the upper limit of 𝛼k− 1 (where the subscript of the upper bounds is changed
accordingly). Then, substitute those critical values for the associated bounds used in Ak under the upper limit of 𝛼k for
finding the remaining critical values and so on

k∑
i=1

𝛼i ≥ ∑
w∈

{[
∫ …∫Ak

pZ(1)
W ,W

(
z(1)w ,w;𝚯0

)
·

( 1∏
m=k

pw,m|m−1

(
z1∶m

w |z1∶(m−1)
w ;𝚯0

))
dz1∶k

w · · ·dz(1)w

]}
. (7)

Note that there are several ways to determine the lower stopping boundaries; for example, one could set symmetric values
with respect to the upper critical values, or simply set 0.

One can further prespecify the marginal significance levels for ||− 1 specific populations at each stage. One example
of taking this consideration can be found in the work of Spiessens and Debois,9 although they only consider single-stage
designs. Such design features may lead to different stopping boundaries for all the populations included in  .

Incidentally, for two-stage designs, if early stopping is not considered at stage 1 (that is, the stage-1 data is only used
for population selection), then the first bound of integration in Equations (5) and (6), ie, Ak, is ( −∞,∞), where k > 1.
Meanwhile, the upper bound Cu1,𝛼1 of A1 is defined as ∞ and therefore the integral ∫A1

pZ(1)
W ,W (z(1)w ,w;𝚯0)dz(1)w is 0. Such

designs are the same as the two-stage adaptive seamless designs used in the work of Kimani et al.31

Power.
The power of the designs in Section 2.2 is defined as the probability to detect the treatment effect of the population of

interest under Ha. Alternatively, we can define power to detect any treatment effects wherever they are from a set of spe-
cific subpopulations. Such change leads the total sample size for F to be different because of its influence on Equation (6),
which is the basis of searching n(k)

𝑓
. Moreover, the equation becomes

1 − 𝛽 ≤ ∑
w∈∗

{ K∑
k=1

[
∫ …∫Ak

pZ(1)
W ,W

(
z(1)w ,w;𝚯a

)
·

( 1∏
m=k

pw,m|m−1

(
z1∶m

w |z1∶(m−1)
w ;𝚯a

))
dz1∶k

w · · ·dz(1)w

]}
, (8)

where ∗ is the subset of  and contains the specified subpopulations of interest. Take an example that, if  = {1, 𝑓}
and ∗ =  , Figure 1 shows the resulting total sample sizes n(1)

𝑓
in a single-stage design, corresponding to different

prevalence values of S1, under different definitions of power. The left panel is computed to have power 1 − 𝛽 for selecting
the subpopulation with the largest true effect and rejecting the corresponding null hypothesis, whereas the right panel
considers any correct rejection. Under the left power definition, the required sample size is large when the prevalence of
the subgroup with a positive treatment effect is small as the number of patients having said effect is (relatively) small.
As the prevalence 𝜆1 approaches 1, n(1)

𝑓
increases again as the effect of the subgroup dominates the effect in the full

population and differentiating between the two populations becomes more difficult. In contrast, n(1)
𝑓

always decreases
under the definition of power to detect 𝜃1 > 0 or 𝜃f > 0. Since the effect sizes for S1 and F are close, it is difficult to select
the correct subgroup and thus large sample sizes are needed. The reason that the behavior of n(1)

𝑓
is always decreasing for

larger prevalences in the right panel is that there is no restriction on selecting a prespecified population and reporting the
efficacy. The decreasing pattern can be similar to that using the closed testing procedure41 in a single-stage design, where
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the total sample is available for investigating any subpopulation without considering selection. Note that all the patterns
observed in Figure 1 emerge in a case of multistage designs as well (not shown in this paper).

3 ESTIMATION ASSESSMENT

In this section, we report a simulation study assessing the properties of MLEs. Note that, in the reported figures, different
scales for the y-axes are used to highlight patterns.

3.1 Simulation setup
In our evaluations, we specify the FWER, ie, 𝛼, as 0.025 and set the sample size for each scenario so that the power of the
design is 1 − 𝛽 = 80%. Our alternative hypothesis is that the treatment has an effect of 0.5 in S1, whereas the effect of
the treatment is zero for all other subgroups. Therefore, the power aims to detect the nonzero effect in S1 (that is to reject
H01) once the first subgroup is selected. The assumed common variance across subpopulations, ie, 𝜎2, is set to 1 and we
use 1 000 000 simulation runs.

The designs we consider are a single-stage design with two subpopulations (Design 1), a single-stage design with three
subpopulations (Design 2), and a two-stage design with two subpopulations and three subpopulations (Design 3 and
Design 4, respectively), with an OBF upper stopping boundary and a fixed lower boundary of zero is used. We calculate
the stopping boundaries and the total sample sizes for F based on (2) and (3) for single-stage designs (and (5) and (6) for
multistage designs). The sample sizes and critical values for each of the designs are given in Appendix A (Table A1-A2).
Based on these four designs, several scenarios are investigated, altering the design features such as prevalence.

Denote �̂� as the naive MLE (that is not accounting for selection) for the parameter 𝜃, then �̂�𝑓 and �̂�s represent the MLEs
for the treatment effect of F and Ss, respectively. The estimates can be calculated by Z(k)

s ∕I(k)s = Ȳ (k)
s,T −Ȳ (k)

s,C , where s ∈ {1, f }
in scenarios for Design 1 and s ∈ {1, 1 + 2, f } in scenarios for Design 2. In multistage scenarios, the MLE estimates of
�̂�𝑓 and �̂�1 are calculated by Z1∶M

s ∕I1∶M
s = Ȳ 1∶M

s,T − Ȳ 1∶M
s,C , where s ∈ {1, f } and M is the stage at which the study stops.

We define bias as bias(�̂�) = E(�̂�)− 𝜃 and the mean squared error (MSE), MSE(�̂�) = E((�̂�− 𝜃)2) as performance measures
for estimation assessment. As the sample size for the full population satisfies the aforementioned power requirement and
varies across different prevalence, a standardized scale is used in the assessments (readers are referred to Supplementary
Materials S.7 for details on the standardization). In our subsequent evaluations, we will consider three situations. Firstly,
we consider the treatment effect estimator regardless of the population being selected or the hypothesis test being sig-
nificant. Secondly, we consider only the estimators of the selected populations, which is expected to result in selection
bias. The third situation considers reporting bias and, for this, we only consider only the treatment effect estimates of the
selected population if the corresponding hypothesis test is significant. Implicitly, we are therefore considering that the
outcome of a study is only reported (published) if it was significant. Note that, in the evaluations to follow, we refer to the
selection bias as Select Sw and the reporting bias as Select Sw + Reject H0w, where w in  specifies the population chosen
through a selection rule. In addition to the bias and MSE depending on which subgroup has been selected, we also report
the family-wise (FW) bias and MSE, ie, the bias and MSE averaged over all possible selections.

3.2 Scenarios for Design 1
Scenarios here cover different prevalence values of S1, 𝜆1 varying from 0.05 to 0.95 in increments of 0.05. We illustrate the
assessments for the scenarios under three configurations of different values of 𝜃1 and 𝜃2 in Figure 3-4. Their horizontal
axes are for the prevalence of S1, 𝜆1, and the vertical axes of the row-wise panels are for standardized bias, standardized√

MSE, and simulation proportions (%).
Figure 2 presents the estimation assessment of �̂�𝑓 and �̂�1 under the assumption of 𝜃1 = 0 and 𝜃2 = 0. As expected, we

do not see any bias when no selection is undertaken as well as constant standardized MSE, ie, a pattern that is repeated
throughout all other simulations. Additionally, the selection probability is constant at 50% due to the equal effect in both
subgroups. The selection bias is largest when the prevalence in the subgroup is smallest with a matching pattern for the
standardized MSE. The reporting bias and MSE follow the same pattern although at a markedly increased level.

Figure 3 considers the case when 𝜃1 = 0.5 and 𝜃2 = 0. Considering the selection probabilities first, we find that, as
per design, there is an 80% chance to select population 1 correctly and reject the corresponding hypothesis. The selection
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FIGURE 2 (For Design 1, 𝜃1 = 0, and 𝜃2 = 0) the standardized bias and standardized
√

MSE of maximum likelihood estimators �̂�𝑓 , �̂�1

and the simulation proportions for different circumstances against the prevalence of subpopulation 1, ie, 𝜆1. FW, family-wise; MSE, mean
squared error [Colour figure can be viewed at wileyonlinelibrary.com]

probability of the full population increases as the prevalence increases as the effect in the full population gets larger as the
subpopulation contributes more toward it. At the same time, the chance to also reject the hypothesis also increases. The
selection and reporting bias in the full population estimate is largest when the prevalence in the subpopulation is smallest
and then steadily decreases toward zero. The size of the bias is well over 0.5 standard errors for almost all prevalences and
hence should be considered important although the incorrect selection in itself is not very common in this case. For the
full population, the bias dominates the MSE and hence the MSE follows the same pattern.

Focusing the attention on subpopulation 1, we find that bias is present, although it is of much smaller magnitude
(selection bias at most 0.1 and reporting bias at most 0.35 standard errors) than for the full population (up to over 2
standard errors). The selection bias is maximized at a prevalence of around 0.75, whereas it is largest for a small prevalence
for the reporting bias.

When both treatment groups have the same effect, 𝜃1 = 𝜃2 = 0.5 (Figure 4), we observe that, almost always, the full
population is selected and only for large prevalences of the subpopulation (> 50%) we obtain notable selection probability
for the subpopulation (up to 20%). As a consequence of this, we obtain no estimate of the bias and MSE for the subpop-
ulation for low prevalences. The bias in the estimate in this population is potentially very large (> 3 standard errors) but
drops quickly toward zero as the prevalence increases. In this setting, it is also notable that the selection bias is virtually
identical to the reporting bias as very large observed effects are necessary to select the subpopulation in the first place.

The patterns for the full population are somewhat more distinct as no bias is observed for small prevalences because it
is always the full population that is selected. The bias in this case is, however, very small even in the worst-case situation
(prevalence of around 0.75), where the reporting bias is less than 0.1 standard errors and the selection bias is even smaller.

http://wileyonlinelibrary.com
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FIGURE 3 (For Design 1, 𝜃1 = 0.5 and 𝜃2 = 0) the standardized bias and standardized
√

MSE of maximum likelihood estimators �̂�𝑓 , �̂�1

and the simulation proportions for different circumstances against the prevalence of subpopulation 1, 𝜆1. FW, family-wise; MSE, mean
squared error [Colour figure can be viewed at wileyonlinelibrary.com]

3.3 Scenarios for Design 2
Scenarios for Design 2 regard to select a population among S1, S1 + 2, and F under different configurations of 𝜃1, 𝜃2, and
𝜃3. Our focus here is to assess the MLEs �̂�1, �̂�1, and �̂�𝑓 under 𝜃1 = 0.5, 𝜃2 = 0, 𝜃3 = 0 under the population selection
rule given by ⎧⎪⎪⎨⎪⎪⎩

select S1, if Z(k)
1 > max

(
Z(k)
𝑓
,Z(k)

1+2

)
select S1+2, if Z(k)

1 ≯ max
(

Z(k)
𝑓
,Z(k)

1+2

)
, and Z(k)

1+2 > Z(k)
𝑓

select F, if Z(k)
1 ≯ max

(
Z(k)
𝑓
,Z(k)

1+2

)
, and Z(k)

1+2 < Z(k)
𝑓
.

(9)

This rule is one variant of the maximum statistic rule and sequentially decides which population to be selected. The
results for other configurations of 𝜃1, 𝜃2, and 𝜃3 are provided in Tables S.1-S.3 in Supplementary Materials S.8. Note that,
for all the scenarios, simulations are run under the same stopping boundaries and sample sizes (n(1)

𝑓
= 576) found based

on Design 2 with the maximum statistics selection rule, 𝜃1 = 0.5, 𝜃2 = 0, 𝜃3 = 0, and equal subgroup prevalence.
The results in Table 2 shows that, in this case, the correct population is selected most of the time (> 80%) due to the

design constraint to obtain 80% power. The selection bias when selecting the correct population is small at < 0.1 standard
errors and even the reporting bias is only modest at 0.27 standard errors. The selection and reporting bias when selecting
the incorrect population are notably larger in this instance resulting in biases up to 1.3 standard errors. The bias is largest
for the full population as the true underlying effect in this group is at 0.167 smallest among all populations and hence a
rather unusual sample is required for its MLE to be the largest.

http://wileyonlinelibrary.com


CHIU ET AL. 4345

0.2 0.4 0.6 0.8

0.
00

0.
04

0.
08

For ^f

1

B
ia

s 
/ S

E

0.2 0.4 0.6 0.8

0.
0

1.
0

2.
0

3.
0

For ^1

1

0.2 0.4 0.6 0.8

0.
00

0.
10

0.
20

FW

1

0.2 0.4 0.6 0.8

0.
95

1.
00

1.
05

1.
10

1

M
S

E
S

E

0.2 0.4 0.6 0.8

1.
0

2.
0

3.
0

1

0.2 0.4 0.6 0.8

0.
80

0.
90

1.
00

1.
10

1

0.2 0.4 0.6 0.8

0.
80

0.
90

1.
00

1

P
ro

po
rti

on

0.2 0.4 0.6 0.8

0.
00

0.
10

0.
20

0.
30

1

Selection bias:
Reporting bias:

Select None (^ )
Select F
Select F + Reject H

Select None (^ )
Select S
Select S  + Reject H

Select (FW)
Select + Reject (FW)
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3.4 Scenarios for Design 3
The investigation presented here concerns Design 3, a two-stage design and we focus on 𝜃1 = 0.5 and 𝜃2 = 0 here,
whereas the results for other configurations are given in Figures S.1-S.6 of Supplementary Materials S.8.

Figure 5 shows the results of the estimator for the full population. The top row corresponds to standardized bias, middle
row to standardized

√
MSE, and the bottom row to the probability of selecting the full population. The first column is

associated with the estimators that stop at Stage 1, the second considers only trials that reach Stage 2, whereas the final
column corresponds to the estimator irrespective of when the trial was stopped. In addition to the selection bias and the
reporting bias, we also consider the estimator irrespective of the reason for stopping (green triangle) in the figure.

The reporting bias is potentially very large (up to three standard errors for Stage 1 only and up to two standard errors for
Stage 2) and is the largest when the prevalence of the subgroup is small and subsequently decreases. When only consid-
ering studies that select the full population and stop at Stage 1, it approaches zero, whereas the bias does in fact become
negative for trials that stop at the second stage. The overall estimator is, however, always positively biased, showing a very
similar pattern as the Stage 1 cases only. The selection bias overall and, for Stage 2, only follows the same pattern as the
reporting bias, whereas it does show an inverted U-shape for Stage 1 only, which is maximized at a prevalence of around
0.5. The bias in the estimator that only considers stopping at Stage 1 for any reason follows the same pattern as the selec-
tion bias, although the bias is smaller. It is noteworthy that, although substantial bias is exhibited under some situation,
the probability of reaching these (eg, selecting the full population and stopping at Stage 1) are very rare. The standard-
ized

√
MSE appears like that in standardized bias except for the second stage. In those exceptional cases, the MSE (for

http://wileyonlinelibrary.com
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TABLE 2 (For Design 2, 𝜃1 = 0.5, 𝜃2 = 0, and 𝜃3 = 0) Standardized
bias and standardized

√
MSE of the maximum likelihood estimators

where the prevalence rates of three subgroups are 1/3. In addition,
Proportion (Prop.) stands for how often the corresponding circumstance
occurs

Bias/SE
√

MSE∕SE Prop.(%)
�̂�𝑓 (Select none) -0.00186 0.99849

�̂�𝑓 (Select F) 0.96546 1.32104 3.74
�̂�𝑓 (Select F + reject H0F) 1.31217 1.47472 2.91
�̂�1 (Select none) -0.00151 1.00004
�̂�1 (Select S1) 0.09094 0.97526 88.58
�̂�1 (Select S1 + reject H01) 0.27068 0.87036 80.20
�̂�1+2 (Select none) -0.00118 0.99884
�̂�1+2 (Select S1+2) 0.76128 1.19617 7.68
�̂�1+2 (Select S1+2 + reject H0,1+2) 1.02579 1.26021 6.47
Family-wise select 0.17516 1.00518
Family-wise select + reject 0.35902 0.91814

Abbreviations: MSE, mean squared error.

0.2 0.4 0.6 0.8

0.
0

1.
0

2.
0

3.
0

Stage 1

1

B
ia

s 
/ S

E

0.2 0.4 0.6 0.8

−3
−1

1
2

Stage 2

1

0.2 0.4 0.6 0.8

0.
0

1.
0

2.
0

Overall

1

0.2 0.4 0.6 0.8

1.
0

2.
0

3.
0

1

M
S

E
S

E

0.2 0.4 0.6 0.8

0.
5

1.
5

2.
5

1

0.2 0.4 0.6 0.8

1.
0

1.
5

2.
0

2.
5

1

0.2 0.4 0.6 0.8

0.
00

0.
10

0.
20

0.
30

1

P
ro

po
rti

on

0.2 0.4 0.6 0.8

0.
00

0.
10

0.
20

0.
30

1

0.2 0.4 0.6 0.8

0.
00

0.
10

0.
20

0.
30

1

Selection bias:
Reporting bias:

Select None (^ )
Select F
Select F + Reject H
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wileyonlinelibrary.com]
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selection, reporting, and regardless of selection) decreases at a different rate before inflating substantially at a prevalence
of 0.8.

Considering the findings for the estimator of the first subpopulation, ie, �̂�1 (Figure 6), the results exhibit similar pat-
terns in many circumstances in Figure 5. When stopping the trial at the first stage, the estimator is largely biased for
prevalences up to 0.6. The reporting bias subsequently decreases from two standard errors, whereas the selection bias is
more moderate at around 1 SE. All the MSE (regardless of any circumstances) decreases to 0.9 SE from 2 and is close one
for larger prevalances larger 0.7. As most of the time, the subpopulation is selected correctly, the selection bias and the
bias considering all studies that stopped at Stage 1 are very similar and the MSE, meanwhile, is near one standard error.
The estimators considering only trials that stop at Stage 2 are almost unbiased for small and moderate prevalence but can
exhibit a large negative bias when the prevalence is large. The MSE is close to 1 SE for most of prevalences but becomes
very large beyond a prevalence of 0.7. The overall estimator is, however, positively biased (for both selection and report-
ing) for all prevalences and shows an inverted U-shape with a maximum bias of about 0.3 SEs for a prevalence of 0.6. Its
MSE conditional on selection or no-selection appears different from that considering reporting before a prevalence of 0.7.
The estimator thereafter performs similarly in MSE with a small U-shape under 1 SE.

The FW bias and MSE for this design with 𝜃1 = 0.5 and 𝜃2 = 0 are given in Figure 7.

3.5 Scenarios for Design 4
Scenarios for Design 4 is the two-stage counterpart of Design 2 for selecting a population among S1, S1+2, and F under
different configurations of 𝜃1, 𝜃2, and 𝜃3. The investigation here focus on assessing the maximum likelihood estimators �̂�1,
�̂�1+2, and �̂�𝑓 under 𝜃1 = 0.5, 𝜃2 = 0, 𝜃3 = 0 under the population selection rule given in Equation 9. The results for other
configurations of 𝜃1, 𝜃2, and 𝜃3 are provided in Tables S.4-S.6 in Supplementary Materials S.8. All the simulations are run
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FIGURE 7 (For Design 3, 𝜃1 = 0.5 and 𝜃2 = 0) FW bias and mean squared error and simulation proportions for different circumstances
at stopping stage 1, 2, and overall, against the prevalence of subpopulation 1, ie, 𝜆1 [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3 For Design 4, 𝜃1 = 0.5, 𝜃2 = 0, and 𝜃3 = 0) standardized bias and standardized
√

MSE of the MLEs where the prevalence rates
of three subgroups are 1/3. In addition, Proportion (Prop.) stands for how often the corresponding circumstance occurs

Stop at Stage 1 Stop at Stage 2 Overall
Bias/SE

√
MSE∕SE Prop.(%) Bias/SE

√
MSE∕SE Prop.(%) Bias/SE

√
MSE∕SE Prop.(%)

�̂�𝑓 (Select none) 0.67715 1.13140 -0.26340 0.96585 0.05614 1.02209

�̂�𝑓 (Select F ) 2.02110 2.14318 1.54 0.36337 0.92461 5.98 0.70283 1.17414 7.52
�̂�𝑓 (Select F + reject H0F) 2.10568 2.14995 1.51 0.85268 1.01727 3.89 1.20283 1.33379 5.39
�̂�1 (Select none) 1.03255 1.22555 -0.29968 0.97840 0.15293 1.06237
�̂�1 (Select S1 ) 1.12932 1.27694 29.13 -0.20496 0.94416 51.17 0.27906 1.06487 80.29
�̂�1 (Select S1 + reject H01) 1.14828 1.26420 28.99 -0.20175 0.93853 51.11 0.28684 1.05639 80.11
�̂�1+2 (Select none) 0.81892 1.16958 -0.26809 0.96219 0.10120 1.03265
�̂�1+2 (Select S1+2) 1.78983 1.88884 3.31 0.17732 0.89687 8.88 0.61488 1.16604 12.18
�̂�1+2 (Select S1+2 + reject H0,1+2) 1.82834 1.88619 3.27 0.41744 0.81323 7.57 0.84338 1.13715 10.85
Family-wise select 1.23403 1.37576 33.97 -0.10207 0.93603 66.03 0.35185 1.08542
Family-wise select + reject 1.25693 1.36402 33.77 -0.06135 0.92826 62.57 0.40076 1.08101

Abbreviations: MSE, mean squared error.

under the same stopping boundaries and sample sizes (n(1)
𝑓

= 335) found based on Design 4 with the maximum statistics
selection rule, the configuration of treatment effects (𝜃1 = 0.5, 𝜃2 = 0, 𝜃3 = 0) and subgroup prevalences being 1/3.

Table 3 shows the results of the estimators for the first subgroup, the combined subgroup, and the full population. The
standardized bias, standardized

√
MSE, and simulation proportions are presented in the trials that stop at Stage 1, reach

Stage 2, and are irrespective of which stopping stage.

http://wileyonlinelibrary.com
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Considering the trials irrespective of stopping, we observed the correct population is selected in the 80% of simulations
due to the design requirement of 80% power. The bias is found positive for all the overall estimators and varies widely
(smallest at 0.05 and maximum up to 1.2 standard errors). The selection and reporting bias when selecting the correct
population are the smallest (less than 0.3 standard errors), but larger when selecting the incorrect population (particularly
for the full population). All the standardized MSE are larger than one standard error but only up to a moderate size of
around 1.3. While selecting the correct population or rejecting the null hypothesis, the estimator for the first subgroup
has a smaller standardized MSE (around 1.06 standard errors) than its counterparts.

The results at different stages show a contrary picture. More trials stop at Stage 2 than at Stage 1 and each stage has a
higher proportion of selecting the correct population (around 30% and 50% at Stage 1 and Stage 2, respectively). The bias
is large at Stage 1. The selection and reporting bias are smaller when selecting S1 (around 1.1 standard errors) than those
when selecting S1+2 or F (around 1.8 and 2, respectively). A moderate bias is observed at Stage 2 (up to 0.85 standard
errors). In particular, the selection and reporting bias are found negative in the estimator for the first subgroup. The
standardized MSE of all the estimators at Stage 1 are much larger than one SE but those at Stage 2 show the opposite
pattern, being less than 1 (between 0.8 and 1).

4 DISCUSSIONS AND CONCLUDING REMARKS

In this paper, we have discussed general design considerations for clinical trials with subpopulation selection and illustrate
how such studies can be designed. The design framework described can be viewed as an extension of group-sequential
methods42 and therefore requires the same types of assumptions and specifically we do assume an independent increment
structure of the data. In our evaluations, we have assumed that the primary endpoint is available immediately or at least
before the next patient is recruited to the trial. While the general results in the paper will remain to hold if the endpoint
is available only after some time, patients may still be recruited from a subpopulation that is subsequently not selected.
Different approaches to deal with delayed responses have been proposed (eg, the work of Hampson and Jennison43) in the
context of group-sequential trials have been proposed. As a general rule, however, it is clear that the efficiency of selection
is reduced if the time to observe the endpoint is long in comparison with the recruitment speed. Other assumptions made
within this framework are common to most adaptive designs. Most notably, we are assuming that there are differences in
the population before and after interim analysis and, in particular, that no time trends are present.

In this work, we only consider designs with normally distributed endpoints, although they can easily be extended to
other types of endpoints via the efficient scores framework.42,44 Note, however, that particular care is required when using
time to event endpoints (see the work of Magirr et al}45 for a more detailed challenges of adaptive trials with time to
event endpoints). Moreover, we assume that the subgroup prevalence is known although clearly specifying this parameter
correctly in the design will be crucial for the designs operating characteristics. A consequence of the assumed known
prevalence is that we only present the estimation assessment of the MLE, where subgroup sample sizes are fixed according
to the respective prevalence in designs. Further simulations (not shown), however, suggest that random sample sizes of
populations only alter the findings marginally.

Selection based on the maximum test statistics is the main focus throughout the paper and an R package implementing
this design is currently under development. While this selection rule is simple and intuitive, it may not be optimal in
certain circumstances. It makes sense to adopt the rule when some subgroup treatment effects have been identified as
being positive and difference between test statistics across subgroups are reasonably large. However, when the test statistic
for Ss and F are close but the former is larger, applying this rule leads to ethical issues that selecting only part of the
population rather than the whole population although they could benefit from the treatment. Therefore, other options
for selection rules should be considered for similar situations and investigation.

One alternative, which is also considered for designs with treatment selection (eg, see the work of Bretz et al46), can be
to introduce a threshold in the selection rule. This allows all the subgroups whose effect sizes are similar to the best one
(their absolute difference is within a threshold) to be united so that the pooled population can continue to the next stage.
Meanwhile, it also permits to select a population whose effect size is above a threshold plus the effect size from the others.

Another option that has been used in the context of treatment selection (eg, see the works of Magnusson and Turnbull16

and Magirr and Jaki35) is simply to select a population whose efficacy exceeds a certain value at stage 1. This selection rule
was used in the work of Magnusson and Turnbull16 and integrates population selection and hypothesis testing at the first
stage. Their designs considering a prior ordering on underlying effect sizes of all individual subgroups somehow connect
to ours where the target subpopulations for selection has a nested structure. It is noted that the mathematical expression
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of pZ(1)
W ,W (·, ·) in (1) will be different if the aforementioned selection rules are used. We provide the required modifications

to the design framework in the supplementary materials for illustrative purposes.
In term of estimation, we have assessed the bias of the MLE under various scenarios. We find that, almost always, bias

is positive leading to an overenthusiastic estimate of the true treatment effect. While for some settings, the size of the bias
can be viewed as negligible, it can become large under other situations. The challenge clearly being that one will usually
not know if one is in one of these extreme situations. Another observation we make is that, although bias is introduced
by selecting the population, the bias gets markedly increased (often more than doubled) when only significant results
are reported highlighting the effect of reporting bias, which may be even more problematic than the bias introduced by
selection.

Our results suggest that the MSE of the overall MLEs performs quite well (around 1 standard error) in many cir-
cumstances and scenarios. We find whether selecting the correct population or not impacts the size of MSE for the
corresponding estimator. The extent can be more substantial when further reporting significant results. The same finding
is even observed in the extreme scenario, where no correct population is defined because the underlying effect of each
subgroup is assumed none.

Future work will consider estimators that are unbiased (or have smaller bias) while maintaining comparable MSE. The
conditional bias-adjusted estimator following the ideas in the work of Stallard and Todd28 appears as the most promising.
One extension to the case of multiple-stage designs given the process continues to the final stage can be naturally achieved.
However, whether the derived estimators have less MSE should be verified in further investigations.
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APPENDIX A

DESIGN SPECIFICATIONS

A.1 Design 1

TABLE A1 Design specifications for different values of 𝜆 for Design 1. c is the
critical value and N is the total sample size

𝜆 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
c 2.232 2.228 2.223 2.217 2.212 2.206 2.200 2.193 2.186 2.178
N 3070 1546 1040 788 638 539 469 418 380 351
𝜆 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
c 2.170 2.160 2.150 2.139 2.126 2.111 2.094 2.072 2.042
N 329 313 303 298 302 318 363 493 943

A.2 Design 2

TABLE A2 Design specifications for different values of 𝜆 for Design 2 and an
interim analysis after half the patients have been observed. c1 is the upper stopping
boundary at stage 1, c2 the final stage critial value, and N the total sample size. The
lower bound at stage 1 is fixed at zero for all 𝜆

𝜆 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
c1 3.018 3.031 3.037 3.039 3.039 3.037 3.034 3.029 3.023 3.016
c2 2.134 2.143 2.147 2.149 2.149 2.148 2.145 2.142 2.138 2.133
N 719 401 298 251 224 207 196 188 183 181
𝜆 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
c1 3.008 2.999 2.989 2.977 2.964 2.948 2.930 2.907 2.875
c2 2.127 2.121 2.114 2.105 2.096 2.085 2.072 2.055 2.033
N 181 184 192 205 229 269 342 491 943

A.3 Design 3
For this single-stage design with three subgroups, the prevalance of each subgroup is equal to one third, resulting in a
critical value of c = 2.289 and a total sample size of N = 575.

A.4 Design 4
The two stage design with three subgroups uses equal prevalance of each subgroup and an interim analysis after half the
patients have been observed. The critical value at the first stage is c1 = 3.119, whereas the final critical value is c2 = 2.205.
A fixed futility bound of zero is used and the total sample size is N = 335.
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