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Abstract: The improvement of the macro-level accident situation in the Chinese construction industry
is currently an urgent task for the government due to the high accident rate. This study intends
to use improved principal component analysis to explore the accident situations in the Chinese
construction industry from a multi-dimensional perspective, aiming at providing targeted direction
on the improvement of the accident situation for the government. Six composite indicators that
can quantify the accident situation are firstly selected based on a wide review of the literature and
interviews with safety experts, with the original data collected from China institutions. The classical
principal component analysis is then improved to examine the correlations between indicators,
and further to evaluate accident situations in China provinces. Finally, the features of accident
situations are explored and analyzed from a multi-dimensional perspective. The findings show
that the improved principal component analysis can retain more dispersion degree information of
the original data. Meanwhile, three principal components including the accident frequency, trend,
and severity were extracted to quantify the accident situation, and a hierarchical indicator system
for the comprehensive evaluation of the accident situation was constructed to deeper understand
multi-dimensional characteristics of China’s accident situations. Furthermore, there exist great
regional differences of accident situations in Chinese provinces. From the overall perspective, the
accident situation shows a declining trend from the western backward region to the highly developed
eastern coastal region. This study provides a multi-dimensional perspective for the government to
formulate safety regulations and improve the accident situation.

Keywords: construction industry; accident situation; principal component analysis;
multi-dimensional perspective

1. Introduction

The construction industry is globally notorious for poor accident records, especially in developing
countries [1–3]. In China, the construction accident rate is closely related to safety management level of
construction enterprises and safety regulatory system of the government [4,5]. Specifically, macro-safety
regulations affect safety actions of the enterprises, and further affect the level of the accident occurrence
in construction activities [3,6]. In recent years, a series of construction safety regulations have been
launched and implemented from the national and provincial level [7–11]. Continuous efforts from the
government have improved the accident situation (AS) in China’s construction industry [12]. However,
the improvement effects vary slightly from region to region due to their different conditions such as
construction safety regulation and the economic volume. Most notably, the entire industry experienced
daily over 2.3 fatalities in 2018 [13]. Unbalanced and/or poor AS has brought great pressure to safety
supervision of the government.
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Currently, academia tends to explore the occurrence and evolution of construction accidents
from the perspective of the accident itself [14–16]. This micro-level perspective can help to identify
contributing factors of accidents by means of accident causation theories such as Swiss Cheese
Model [17] and System-Theoretic Accident Model and Processes [18]. Although accident cause
analysis is of significance for accident prevention [19,20], the government focuses more on exploring
the AS of the entire industry, which can promote better understanding and improvement of the
macro-level AS [21]. Under the circumstances, learning from better-performing regions and then
applying successful experience into practice is an indispensable process of achieving maximum
improvement of the AS [22]. Therefore, it is worthy for the government to clarify the ASs in China
provinces from the macro-level perspective.

The AS is mostly employed to reflect the danger that accompanies the building industry during
a given period [23]. Traditionally, AS can be measured by a series of basic indicators such as the
number of accidents [24] and casualties [12]. However, these indicators cannot sufficiently reflect
relative danger level in different provinces when considering some non-accident indicators such as
construction practitioners [12]. To address this issue, some researchers are increasingly interested in
developing composite accident situation indicator (CASI) [23]. Generally, CASI is a mathematical
aggregation of two or more basic indicators from different perspectives. Currently, the commonly used
CASIs involve the fatality rate per 100,000 full-time equivalent workers [25,26], the fatality rate per
100,000,000 yuan of GDP [12,27], and the fatality rate per 100,000 construction practitioners [23,24,28].
Notably, these CASIs can be individually used to evaluate ASs in different provinces, but the results
could vary. The different results cannot provide coincident decision-making information for the
government, maybe a comprehensive result will do, which is rarely focused by current researchers.
Therefore, implementation of a comprehensive evaluation of the AS by means of combining different
CASIs can be considered.

The first step towards a comprehensive evaluation is to find out whether the selected indicators
are interrelated to each other. If so, this could make evaluation results biased due to information
overlap [29,30]. To solve the problem, this study attempts to introduce principal component analysis
(PCA) to examine the interrelations between indicators and further enable more accurate evaluation.
This idea is mainly based on the fact that PCA is not only used to eliminate information overlap
between indicators [30,31], but also is applied in the comprehensive evaluation through ranking PCA
scores in multi-dimensional analysis [30,32].

Nowadays, PCA has been commonly applied in the field of dimensional reduction of original
dataset [29,33–35]. In general, the original dataset mainly contains key information in the two
aspects [36]: on the one hand, it contains the information of dispersion degree among all indicators,
which is reflected by the variance; on the other hand, it contains the information of the correlations
between all indicators, which is reflected by correlation coefficient matrix [36]. When standardizing the
original dataset with large differences in the measured scales, it is essential for PCA to avoid the loss of
these key information. However, the standardization process in classical PCA eliminates dispersion
degree information contained in the original dataset, because it makes the variances of all indicators
equal (all are equal to 1) [36,37]. Currently, few studies focused on the retention problem of key
information of the original dataset in classical PCA [36,38]. Although Shang and Wang [36] improved
the classical method, they limited the application of their method to positive values. Therefore, this
study intends to improve the classical PCA to expand the value of application.

This study attempts to use improved PCA to explore the ASs in China construction industry and
aims to provide targeted insights of safety regulation formulation for the government. The novelty of
this study lies in three aspects: (1) Proposing improved PCA that can make the standardized dataset
retain more key information; (2) exploring the underlying structure for evaluation indicators that can
reveal the connotation of the ASs from different perspectives; and (3) proposing a multi-dimensional
perspective that can contribute to better understanding of the AS in China construction industry.
The rest of this paper is organized as follows. In the next section, CASIs are selected and the
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corresponding data are collected from authoritative institutions, followed by developing improved
PCA. The findings of this research are presented in Section 3 and then they are discussed in Section 4.
Finally, the conclusions are given in Section 5.

2. Materials and Methods

According to the website of the Ministry of Housing and Urban–Rural Development (MHURD) of
China, fatal accidents have a dramatic increase in the recent years [13]. This poor record has posed great
safety regulatory challenge to the government. In this study, the AS in China construction industry
was chosen as the research case.

2.1. Selection of CASIs

Following a wide review of the literature and interviews with safety experts, many CASIs can
measure the AS. Generally, the fatality rate per one accident (FOA) can reflect the average severity of
fatal accidents with regards to a given period/region/accident type [12]. Meanwhile, the fatality rate
per 100,000 construction practitioners (FCP) is widely applied in many countries, with an average
of 4.2 in developed countries [23,28,39–41]. Moreover, Hola [24] held that building construction
activities are always characterized by the variable values of obtained economic indicators in one region.
Considering the rapidly growing development of China real estate industry in recent years, the floor
area is an important economic indicator in the building industry. Increasingly, the fatality rate per
1,000,000 m2 of floor area (FFA) is regarded as a representative CASI [42]. Similarly, the fatality rate per
100,000,000 yuan of GDP (FGDP) is commonly used to evaluate the AS [43], and its value mainly ranges
from 0.02 to 0.06 in developed countries [27]. Additionally, the AS has the temporal characteristic [44],
which can reflect the changes in the number of fatal accidents and/or fatalities during given periods [24].
Accordingly, the trend of fatal accidents (TFA) and the trend of fatalities (TF) can help to describe
ASs [25,45].

Based on China national conditions, there exist some limitations for some CASIs in the availability
and acceptable quality of original data. For instance, the fatality rate per 100,000 full-time equivalent
workers (FFEW) is widely accepted in many countries [25,26], but it is not a practical indicator in
China due to the lack of statistical data. Moreover, some CASIs may contain similar information of ASs.
For example, the connotation of the major fatal accident rate (MFA) is the similar to that of FOA [12].
The CASIs like FFEW and MFA were not considered in this study due to the two aspects of reasons.
Based on essential principles of the indicator selection including measurability, representative and
comparability [46], six CASIs were ultimately selected, as shown in Table 1.

2.2. Data Collection

According to the computing formulas in Table 1, each CASI is a mathematical combination of
two basic indicators in the building industry. Therefore, original data of these basic indicators can
be collected to indirectly obtain CASIs. Accordingly, accident information including the number of
fatalities and fatal accidents came from the MHURD [13]. Moreover, other data including the number
of construction practitioners, the floor area and GDP of the building industry were obtained from the
National Bureau of Statistics (NBS) of China [47].

Considering the availability and acceptable quality of original data, the data in 2015 were chosen
to evaluate ASs in China building industry. Because TFA and TF involved the number of fatal accidents
and fatalities in 2014 respectively, seven sets of original data were ultimately collected to calculate the
CASIs in this study. Eventually, the original data covered 30 provinces in China except Tibet, Hong
Kong, Macao, and Taiwan, whose data were missing.



Int. J. Environ. Res. Public Health 2019, 16, 3476 4 of 18

Table 1. Descriptions and computing formulas of selected composite accident situation indicators
(CASIs).

CASI Abbr. Description Computing Formula

Fatality rate per 100,000
construction
practitioners

FCP
Reflecting the average fatality

rate of construction
practitioners.

numberoffatalities
totalnumberofconstructionpractitioners

× 100,000 (a)

Fatality rate per
1,000,000 m2 of floor area FFA

Reflecting the average fatality
rate of accomplishing a certain

floor area.

numberoffatalities
grossfloorarea

× 1,000,000 (b)

Fatality rate per
100,000,000 yuan of GDP FGDP

Reflecting the harmonious level
between construction industry
and economic development in

one region.

numberoffatalities
grossGDPofbuildingindustry

× 100,000,000 (c)

Fatality rate per one
accident FOA Reflecting the average lethality

of fatal accidents.
numberoffatalities

numberoffatalaccidents
(d)

Trend of the number of
fatal accidents TFA

Reflecting changes in the
number of fatal accidents during

given periods.

numberoffatalaccidents(thisyear− lastyear)
numberoffatalaccidents(lastyear)

(e)

Trend of the number of
fatalities TF

Reflecting changes in the
number of fatalities during

given periods.

numberoffatalities(thisyear− lastyear)
numberoffatalities(lastyear)

(f)

Notes: (1) The computing formula (a) comes from the references such as Tupe [44] and Coates [23]. (2) For FFA,
its connotation is similar to FGDP’s. Therefore, the computing formula (b) is proposed based on the same form.
(3) The computing formulas (c) and (d) reference the literatures such as Shao, Hu, Liu, Chen, and He [12]. (4) The
computing formulas (e) and (f) reference the literatures such as Dong, Fujimoto, Ringen, Stafford, Platner, Gittleman,
and Wang [45]. (5) The measurement units of FCP, FFA, and FGDP are p/100,000 p (p = ‘person’), p/1,000,000 m2

and p/100,000,000 yuan, respectively. (6) For TFA and TF, the positive value represents an increase percentage; the
negative value represents a decrease percentage; ‘0′ represents no changes. (7) For each CASI, the larger the value is,
the relatively worse the AS is.

2.3. Improved PCA

PCA can employ the rotation of the coordinate system to convert a large dataset of possibly
interrelated indicators into a smaller set of linearly uncorrelated indicators [29,31]. To clarify whether
selected CASIs were interrelated to each other, PCA was introduced to examine the correlations
between indicators. Moreover, the standardization process in classical PCA contributes to the loss of
dispersion degree information of the original dataset, thus this study intends to improve the classical
PCA to address the issue. The detailed steps of classical PCA are as follows:

Step 1. Standardize the original dataset. PCA is commonly applied to a dataset consisting of n
samples with m indicators, thus the original dataset can be expressed as a matrix Xn×m. Due to the
different measured scales of the selected indicators, the dataset need be standardized to assure good
comparability between indicators. Using Equation (1), Xn×m can be transformed into a standardized
matrix Yn×m with zero mean and unit variance.

yi j =
(
xi j − x j

)
/Sx j (1)

where i = 1, 2, · · · , n, j = 1, 2, · · · , m, xi j is the jth indicator value of the ith sample in the original matrix
Xn×m, x j is the jth indicators of Xn×m, x j and Sx j are the mean and standard deviation of x j, respectively,
yi j is the standardized value of xi j.

Step 2 Calculate correlation coefficient matrix. Correlation coefficient matrix Φ can be used to
reflect the correlation information between indicators, and it can be calculated by Equation (2).

Φ = (ρy j,yk
)

m×m
=

1
n− 1

YTY (2)

where y j and yk are the jth and kth column vector of Yn×m, respectively, ρy j,yk
is the correlation

coefficient between y j and yk, namely, correlation coefficient between the jth and kth indicator.
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Step 3 Calculate eigenvalues and eigenvectors. The eigenvalues and eigenvectors of Φ can be
obtained by using |Φ − λE| = 0. All eigenvalues arranged in descending order are λ1,λ2, · · · ,λ j, · · · ,λm.
Each eigenvalue has its corresponding eigenvector. According to Φb j = λ jb j, b j (the unit eigenvector

corresponding to λ j) is calculated and
m∑

i=1
bi j

2 = 1. Therefore, B = (b1, b2, · · · , bm) is a unit orthogonal

matrix consisting of all the unit eigenvectors.
Step 4 Determine principal components. The number of principal components is generally

determined according to the criterion of ‘eigenvalue greater than one’ or ‘cumulative percentage
variance greater than 80%’. The former is along with the Scree plot, and the latter is constructed by using

α j = λ j/
m∑

j=1
λ j and βp =

p∑
k=1

λk/
m∑

j=1
λ j, where α j is percentage variance of ith principal component,

βp is cumulative percentage variance of p principal components and p ≤ m. When βp ≥ 80% firstly
appears, herein p principal components are selected.

Step 5 Identify indicators belonging to determined principal components. The factor loading of
each indicator on each determined principal component, namely, correlation coefficient θ jk between
the jth indicator and kth principal component is calculated by θ jk = b jk

√
λk, where λk is the eigenvalue

corresponding to kth principal component, b jk is jth value of bk. Only the indicator with
∣∣∣θ jk

∣∣∣ ≥ 0.5 is
considered and it indicates that the jth indicator belongs to kth principal component.

Step 6 Calculate component scores. Every principal component is weighted linear combination
of all indicators, and principal component scores (f1, f2, · · · , fp) can be obtained by F = YB. Besides,
the percentages of variation explained by each principal component are used as weights, which is

calculated by wk = λk/
p∑

k=1
λk. The comprehensive component score CF is thus obtained according to

Equation (3).

CF =

p∑
k=1

wkfk (3)

Equation (1) in classical PCA makes the variance of each indicator equal to 1, which reduces the
influence of dispersion degree differences on principal components [36,37]. Thus, principal components
extracted from the standardized dataset could not fully reflect original information [38,48]. Based on
this fact, an improved standardization method is proposed, as shown in Equation (4).

zi j =
(
xi j − x j

)
/εx j (4)

where εx j = max(x j) −min(x j) and εx j > 0, zi j is the standardized value of xi j.
The mean and standard deviation of jth indicator (z j) in Zn×m can be obtained using Equations (5)

and (6), respectively. According to Equation (7), Zn×m and Xn×m have the same correlation coefficient
matrix, which indicates that the improved standardization method keeps correlation information of all
indicators. Importantly, dispersion degree differences of all indicators are partly retained according to
Equation (6), and the classical PCA is to some extent improved.

z j =
n∑

i=1

xi j − x j

εx j

/n =

n∑
i=1

(xi j − x j)

nεx j

= 0 (5)

Sz j =

√√
1

n− 1

n∑
i=1

(
zi j − z j

)2
=

√√√
1

n− 1

n∑
i=1

xi j − x j

εx j

2

=
Sx j

εx j

(6)
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ρz j,zk =
Cz j,zk

Sz jSzk

=
1

n− 1

n∑
i=1

(
zi j − z j

)
(zik − zk)/

(
Sz jSzk

)
=

1
n− 1

n∑
i=1

(
xi j − x j

)
εx j

(xik − xk)

εxk

/

Sx j

εx j

Sxk

εxk


=

1
n− 1

n∑
i=1

(
xi j − x j

)
(xik − xk)/

(
Sx jSxk

)
= ρx j,xk

(7)

3. Results

3.1. Determination of Principal Components

The CASIs have different measurement scales, thus it is necessary to standardize their original
dataset for enough comparability. The standardized dataset was obtained by Equation (4), then the
correlation coefficient matrix was calculated by Equation (2), as shown in Table 2. According to
Equation (7), correlation information of all CASIs was retained. Table 2 presented that FCP, FFA, and
FGDP were significantly interrelated to each other, because correlation coefficients between them were
more than 0.75 [49]. Similarly, there was a significant correlation between TFA and TF. Therefore, the
correlations of some CASIs resulted in information overlap.

Table 2. Correlation coefficient matrix.

Pearson (Correlation)
CASI

FCP FFA FGDP FOA TFA TF

CASI FCP 1.000 0.788 ** 0.800 ** −0.077 0.168 0.025
FFA 0.788 ** 1.000 0.992 ** −0.200 0.058 −0.063

FGDP 0.800 ** 0.992 ** 1.000 −0.177 0.045 −0.064
FOA −0.077 −0.200 −0.177 1.000 −0.156 0.185
TFA 0.168 0.058 0.045 −0.156 1.000 0.841 **
TF 0.025 −0.063 −0.064 0.185 0.841 ** 1.000

** Significance (p < 0.01).

To ensure the reasonable evaluation of the AS, it was essential to determine the principal
components through eliminating insignificant information between CASIs. Based on Step 3 ~ Step 5 in
Section 2.3, the eigenvalue, variance contribution and cumulative variance contribution corresponding
to each component were obtained, respectively, as shown in Table 3. Herein, ‘Total’, ‘% of Variance’,
and ‘Cumulative %’ represented the eigenvalue, percentage variance, and cumulative percentage
variance, respectively. Table 3 showed that percentage variances of the first three principal components
were 46.348%, 30.794%, and 16.972%, respectively, with a cumulative percentage variance of 94.114%.
According to the criterion of ‘cumulative percentage variance greater than 80%’, three principal
components should be selected [37,49]. Besides, the Scree plot in Figure 1 had a sharp descent in the
eigenvalues from component 3 to component 4, and a level-off stage followed the component 3 after
which the eigenvalues were less than 1. Generally, the component sequence number of 3 was called an
inflection point, representing the total number of principal components [35,37]. Thus, selecting three
principal components was an optimal solution.

Table 3. Total variance explained.

Component
Initial Eigenvalue Extraction Sums of Squared Loadings

Total % of Variance Cumulative % Total % of Variance Cumulative%

1 2.781 46.348 46.348 2.781 46.348 46.348
2 1.848 30.794 77.142 1.848 30.794 77.142
3 1.018 16.972 94.114 1.018 16.972 94.114
4 0.263 4.377 98.491
5 0.083 1.386 99.878
6 0.007 0.122 100.000
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According to Step 5, factor loadings corresponding to the three principal components were
obtained, as shown in Table 4. Based on the criterion that the factor loading with greater than 0.5
should be considered [35,49], the first principle component mainly contained FCP, FFA, and FGDP,
along with the second principal component containing TFA and TF, and the third principal component
containing FOA. According to Step 6, the weights of the three principal components were calculated
to be 0.493, 0.327, and 0.180, respectively. The detailed information of principal components was
summarized in Table 5.

Table 4. Eigenvectors and factor loadings of principal components.

CASI
Eigenvector Factor Loading

P1 P2 P3 P1 P2 P3

FCP 0.536 0.035 0.167 0.893 0.048 0.168
FFA 0.583 −0.061 0.054 0.972 −0.083 0.055

FGDP 0.583 −0.066 0.081 0.973 −0.089 0.081
FOA −0.156 0.052 0.951 −0.260 0.071 0.960
TFA 0.096 0.695 −0.201 0.160 0.944 −0.203
TF −0.005 0.711 0.131 −0.008 0.966 0.132

Table 5. Detailed information of principal components.

Principal Component Including CASIs Connotation Weight

P1 FCP, FFA, FGDP Accident frequency 0.493
P2 TFA, TF Accident trend 0.327
P3 FOA Accident severity 0.180

3.2. Connotation of Principal Components

A principal component generally consists of one or more indicators that have relatively high
factor loadings, and its realistic connotation can be synthesized by the meanings of the included
indicators [49]. Through analyzing the meanings of all CASIs, as well as their computing formulas in
Table 1, FCP, FFA, and FGDP can reflect the frequency information of the AS in each province [23,39],
thus the first principle component was interpreted to represent the accident frequency. Similarly, TFA
and TF can reflect the trend information of the AS [24,25,45], then the second principal component
was labeled as the accident trend; the third principal component was labeled as the accident severity,
because FOA can reflect the severity information of the AS [12,50]. Therefore, the comprehensive
evaluation of the ASs in China provinces was combined with different perspectives including the
accident frequency, trend and severity.

Previous studies demonstrated that the accident risk is prone to the combination of the accident
frequency [51,52], the accident severity [12,50] and the accident trend [1,25]. As a result, the accident
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risk can be regarded as the comprehensive expression of the accident frequency, severity, and trend.
Based on this idea, the evaluation of the ASs in China provinces can be deemed to estimate their
accident risk levels in the construction industry. Correspondingly, the six CASIs can be considered as a
set of accident risk indicators.

Based on the core idea of PCA, the underlying structure of all CASIs is proposed for the first
time. This structure for the AS evaluation involved the indicator layer, rule layer, and target layer [53],
as shown in Figure 2. The factors on the indicator layer are called secondary indicators, and they
can provide a basic perspective for the AS evaluation; the factors on the rule layer are called primary
indicators, and they can provide a risk perspective; the factor on the target layer is called evaluation
object, and it can provide an overall perspective.
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From the basic perspective, the CASIs are commonly used separately for the evaluation of the
AS, while their relative importance is rarely discussed. According to Table 3, the accident frequency
accounted for 46.348% of the total variances, and it was relatively more important than the accident
trend and severity. Similarly, the accident trend (30.794%) was relatively more important than the
accident severity (16.972%). As presented in Table 5, the accident frequency, trend, and severity were
weighted by 0.493, 0.327, and 0.180, respectively. Thus, the relative importance between CASIs was
quantified from the risk perspective in this study, and the accident frequency has a greater impact on
the evaluation of the AS.

3.3. AS in China Provinces

The component scores are standardized values on a linear scale [30,31,35], and they can provide a
measurement of the position of a province in relation to other provinces for the ASs [35,54]. The greater
the score is, the worse the AS is. According to the formula derivation in Section 2.3, the average score for
each principal component is equal to 0, which represents the average level of the ASs in the provinces.
Therefore, the provinces with positive scores have relatively worse AS compared to the average level;
the provinces with negative scores have relatively better AS compared to the average level.

In this study, the component scores of principal components were obtained by using Step 6, as
listed in the second to the fourth column of Table 6. Furthermore, the comprehensive scores can
be calculated by Equation (8), depending on the weights of three principal components in Table 5.
The comprehensive scores of all provinces were listed in the fifth column of Table 6.

On the whole, one-third of all provinces experienced relatively poor AS in the construction
industry, as shown in Table 6. To deeper explore the ASs at a provincial level, the quantile classification
method was selected to group the provinces into different grades based on comprehensive scores. This
method usually places equal numbers of enumeration units into each grade [35,55]. Considering that
0 represented the average level, the provinces with positive scores and the provinces with negative
scores were divided into two quantile categories respectively, as listed in the sixth column of Table 6.

In the four grades, Grade 1 represents the worst level of the AS and Grade 4 represents the best
level in relative terms. From an overall perspective, five provinces including Qinghai, Ningxia, Hainan,
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Xinjiang, and Gansu had the worst ASs. Especially for Qinghai, its comprehensive score was 72.4%
more than that in Ningxia, which ranked the second in all provinces. Conversely, the lower ranking
provinces like Zhejiang and Beijing showed relatively good AS. The further results of the ASs in China
provinces were obtained in the following subsection.

CF = 0.493f1 + 0.327f2 + 0.180f3 (8)

where f1, f2, f3 were component scores of the three principal components, respectively.

Table 6. Principal component score for each province.

Province P1
Score

P2
Score

P3
Score

Comprehensive
Score

Classification
Ranking

Improved
PCA

Classical
PCA

Qinghai 1.454 −0.206 −0.029 0.643 1 1
Ningxia 0.468 0.221 0.390 0.373 2 2
Hainan 0.581 0.002 0.435 0.365 Grade 1 3 3
Xinjiang 0.420 0.297 −0.092 0.287 4 4
Gansu 0.111 0.687 −0.179 0.247 5 5

Shaanxi −0.193 0.964 0.041 0.227 6 6
Hebei −0.175 0.758 0.286 0.214 7 7

Heilongjiang 0.394 −0.238 −0.137 0.091 Grade 2 8 8
Chongqing 0.125 0.246 −0.287 0.090 9 9
Shanghai 0.032 0.136 −0.204 0.023 10 10

Guangdong −0.126 0.163 0.002 −0.009 11 11
Yunnan 0.007 −0.205 0.258 −0.017 12 12
Guangxi 0.068 −0.069 −0.178 −0.021 13 13

Neimenggu 0.120 −0.206 −0.115 −0.029 14 14
Tianjin −0.098 −0.054 0.024 −0.061

Grade 3
15 15

Hubei −0.204 −0.002 0.066 −0.089 16 17
Jilin −0.081 0.013 −0.295 −0.089 17 16

Guizhou −0.150 −0.291 0.374 −0.102 18 18
Anhui −0.072 −0.108 −0.200 −0.107 19 19
Henan −0.249 −0.016 0.054 −0.118 20 20

Jiangxi −0.172 −0.001 −0.249 −0.130 21 21
Fujian −0.224 −0.111 −0.112 −0.167 22 22

Jiangsu −0.193 −0.144 −0.179 −0.174 23 23
Shandong −0.337 −0.251 0.387 −0.178 24 24
Sichuan −0.408 −0.320 0.692 −0.181

Grade 4
25 25

Shanxi −0.278 −0.205 0.081 −0.189 26 26
Hunan −0.233 −0.222 −0.123 −0.210 27 27

Zhejiang −0.239 −0.163 −0.243 −0.215 28 28
Liaoning −0.190 −0.275 −0.202 −0.220 29 29
Beijing −0.158 −0.401 −0.265 −0.256 30 30

3.3.1. AS from the Risk Perspective

From the risk perspective, the average scores were not evenly distributed in the four grades,
as shown in Figure 3. It is clearly seen that Grade 1 provinces were generally accompanied by relatively
high accident frequency and accident severity. Specifically, Qinghai belonged to Grade 1 due to the
highest accident frequency, although its accident severity and trend were lower than the average level;
Ningxia was classified into Grade 1, because it had higher scores for the three primary indicators in
relative terms; Hainan, a Grade 1 province, had the second highest accident frequency and severity in
all provinces; Xinjiang and Gansu squeeze into the tier of Grade 1 province, respectively depending on
relatively high accident frequency and increasing trend.
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Overall, Grade 2 provinces experienced relatively high accident trend. Especially for Shaanxi
and Hebei, their percentage increase ranked the top two. Like Qinghai, Heilongjiang had relatively
low accident severity and trend, but it suffered the fifth highest accident frequency. No matter from
which one of the three risk perspectives, most of Grade 4 provinces had relatively good AS. Notably,
Shandong and Sichuan saw the highest accident severity, although they belonged to Grade 4.
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3.3.2. AS from the Basic Perspective

To further explore the impact of CASIs on ASs in the provinces, the basic perspective was selected
to analyze accident grade features, as shown in Figure 4. Considering different measurement scales of
indicators, the left vertical axis represents the percentage of average values of indicators in the original
dataset, involving FCP, FFA, FGDP, and FOA; the right vertical axis represents actual change trend in
the number of fatal accidents and fatalities, involving TFA and TF.
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Figure 4 shows that FCP, FFA, and FGDP have the similar change trend at the grade level. This
indicates that the three indicators are largely related to each other, which is coincident with that
presented in Table 2. From the view of FCP, an average value of 5.220 existed in Grade 1 provinces,
and it was 2.8 times the average value of all provinces (1.885), as well as 8.8 times that in Grade 4
provinces (0.595). Specifically, FCPs in Grade 1 provinces including Hainan (6.729), Qinghai (6.434),
Ningxia (5.556) and Xinjiang (5.255) ranked the top four, and they were far greater than those in the
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better-performing provinces such as Zhejiang (0.358), Shandong (0.433), Fujian (0.509) and Jiangsu
(0.731). As for FGDP, the average values in Grade 2, Grade 3 and Grade 4 provinces were 0.008, 0.007,
and 0.002 respectively, and all of them were less than that in all provinces (0.009). Notably, Grade 1
provinces performed badly due to an average FGDP of 0.025. Especially for Qinghai, its FGDP (0.064)
was about 7 times the overall average value. With respect to FFA, Grade 1 provinces experienced
the worst average value, which was approximately 2 times, 3 times, and 14 times more than that in
Grade 2, Grade 3, and Grade 4 provinces respectively. Especially, the value in Qinghai (0.77) was more
than the sum of that in Heilongjiang (0.29), Hainan (0.23), and Ningxia (0.21), which ranked the second,
third, and fourth, respectively.

Besides, Figure 4 depicts that the changes of TFA and TF are approximately synchronous at the
grade level, which is reflected as a significant correlation in Table 2. On the whole, the number of
both fatal accidents and fatalities had a decreasing change of about 16%, thus the AS in 2015 was
improved to some extent. However, the number of fatal accidents and fatalities in Grade 1 provinces
increased by 32.3% and 18.6% respectively, with 17.9% and 15.7% for Grade 2 provinces respectively.
Specifically, the percentage increases in Shaanxi (100%), Gansu (100%), Hebei (60%), and Xinjiang (55%)
were more than 50% in the number of fatal accidents, and the percentage increases in Shaanxi (200%),
Hebei (180%), and Gansu (100%) were no less than 100% in the number of fatalities. Noteworthy is the
fact that Chongqing (a Grade 2 province) had the second highest number in both fatal accidents and
fatalities, while it ranked the fifth in both TFA and TF (namely 38.7% and 30.3%), which were more
than the average value in Grade 1 provinces.

With regards to FOA, it ranges from 1.12 to 1.31 in all grades. According to the classification
of serious accidents [56], the range falls within the scope of Class 4 accident that involves no more
than two fatalities, and Class 4 accidents are the predominant type of fatal accidents in all provinces.
Relatively speaking, the provinces like Sichuan (2.25), Shandong (1.86), Guizhou (1.80), Ningxia (1.75),
Hebei (1.75), Hainan (1.67), and Yunnan (1.62) had worse accident severity, with the FOA of more than
1.5. Especially for Sichuan, its FOA were between Class 4 accident and Class 3 accident.

3.3.3. AS from the Regional Perspective

Considering the differences of regional conditions in 30 provinces, the AS distribution are further
considered to explore from a regional perspective. Based on the quantile classification method, the ASs
from the risk perspective (the accident frequency, trend and severity) were classified into four grades
respectively, as depicted in Figure 5.

From the overall perspective, Figure 5a shows that Grade 1 provinces including Qinghai, Ningxia,
Xinjiang, and Gansu are largely concentrated in the northwestern region. Conversely, Grade 4 provinces
such as Shandong, Jiangsu, Zhejiang, and Fujian are generally distributed in the eastern coastal area.
From the view of the accident frequency, Figure 5b shows that the better-performing provinces are
mainly concentrated in the central and eastern region, as well as the worse-performing provinces in
the northern and southern region. From the view of the accident trend, Figure 5c shows that most
of the southwest and northeast provinces had a relatively large decreasing trend in the number of
fatal accidents and/or fatalities, while the relatively large increasing trend mainly existed in in the
northwestern region. From the view of the accident severity, Figure 5d shows that the worse-performing
provinces are mainly distributed in the southwestern region (e.g., Yunnan, Guizhou, and Sichuan) and
Bohai Bay area (e.g., Shandong and Hebei). In addition, the municipalities including Beijing, Shanghai
and Chongqing commonly performed better.
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4. Discussion

4.1. Analysis of Improved PCA

This study selects six CASIs that are commonly applied in China’s current conditions, and further
uses improved PCA to evaluate the AS in China building industry. Considering the information
overlaps that may exist in evaluation indicators, the improved PCA is used to examine the correlation
between indicators in this study. The proposed method has two main advantages. On the one hand,
it can make the standardized data retain more dispersion degree information of the original dataset
compared to the classical PCA. Figure 6 shows the distribution of standard deviations of CASIs in three
situations, namely the original dataset, classical PCA and improved PCA. The standard deviations of
standard deviations of all the CASIs in three situations are 0.659, 0, and 0.039, respectively. Meanwhile,
the correlation coefficient between standard deviations in the two situations of the original dataset
and improved PCA is 0.785 (p = 0.032 < 0.05), with 95% confidence intervals. These indicate that
the dispersion degree information of the original dataset was retained relatively much by using the
improved PCA. In other words, the improved PCA can make evaluation results sounder.
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On the other hand, the improved PCA has a wider range of applicability. It is well known that the
standardization process in classical PCA eliminates dispersion degree differences of the original dataset
due to its making the variance of each indicator equal to 1. To retain original information as much as
possible, some studies are carried out to improve the standardization method in classical PCA [36,38].
For instance, Shang and Wang [36] used the formula zi j = xi j/x j to standardize the original dataset.
However, this method cannot retain the correlation information when the original dataset has both
negative and positive values. With regards to the improved PCA in this study, it is well applicable for
the standardization of TFA and TF that have both negative and positive values.

In addition, the improved PCA is well applied in the comprehensive evaluation of the AS through
ranking the component scores. The rankings of ASs in the provinces in the classical PCA are slightly
adjusted to be more reasonable, as listed in the seventh and eighth columns of Table 6. These findings
reveal that the improved PCA is a feasible and sound method in multi-dimensional analysis.

4.2. AS Analysis from the Multi-Dimensional Perspective

Based on the improved PCA, this study mines a hierarchical indicator system for the comprehensive
evaluation of the AS. This system provides a multi-dimensional perspective on the AS, involving an
overall perspective, three risk perspectives and six basic perspectives. Compared to previous studies
that focused more on a single aspect of the AS, this study can provide new insights for the government
and those who care about the AS to better understand the AS.
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From the overall perspective, the AS at a provincial level reveals a declining trend from the
western region to the eastern coastal region, as shown in Figure 5a. The fact could be highly related to
the socio-economic development level such as safety supervision input, medical services, educations,
because the level in the western region generally has lagged far behind that in the eastern region [53].
The underdeveloped provinces could encounter relatively poor AS in China construction industry,
while the developed provinces could be mostly better-performing regions. The findings are supported
by the previous research [12]. Therefore, the western backward provinces should be paid more
attention from the central and provincial government. Especially for the Grade 1 provinces including
Qinghai, Ningxia, Xinjiang, and Gansu, they should learn from eastern coastal provinces and then
apply successful experience into practice for achieving maximum improvement of the AS.

Notably, three risk indicators including the accident frequency, trend and severity provide a
risk framework for better understanding of the AS. The indicators are weighted by 0.493, 0.327,
and 0.180, respectively, and the relative importance between the indicators is quantified for the first
time in this study. This finding indicates that the accident frequency plays a dominant role in the
overall evaluation of the AS, and one province that has relatively high accident frequency could
be prone to encounter poor AS on the whole. For instance, Qinghai and Heilongjiang belonged to
worse-performing provinces due to their high accident frequency, although their accident trend and
severity were below the overall average. Therefore, the government should pay more attention on the
impact of the volume of construction industry (e.g., construction practitioners, GDP and the floor area)
on the fatality rate in a province.

Specifically, FCP in China (1.9) is a relatively small value compared to 21 in Sub-Saharan Africa, 19.2
in South Africa, 9.7 in the US, 8.7 in Canada and 6 in the EU countries, respectively [28,39,40]. This reveals
that FCP is at a relatively low level in China building industry. However, FCP in worse-performing
provinces, especially Hainan, Qinghai, Ningxia and Xinjiang, is more than that in developed countries
(4.2) [40]. This suggests that these provinces should learn more from better-performing regions to
improve the poor situation, such as strengthening the education and training for practitioners.

FGDP varies greatly from province to province, and it ranges from 0.002 to 0.064. This implies
that some provinces could pursue the growth of GDP at the expense of casualties. Poor accident
record has hindered the sustainable development of the construction industry. Therefore, the provinces
such as Qinghai, Hainan, and Heilongjiang should treat GDP rationally and formulate some reward
and punishment policies based on the level of FGDP, as well as increasing safety input of the
construction industry.

Currently, real estate companies frantically develop a great amount of building construction
projects to meet the increasing needs of the rapid urbanization. However, they blindly pursue profits
and attach few importance to construction safety management [57]. Considering that these companies
have business in many provinces, they should be jointly supervised by multiple provinces and/or the
central government, aiming to reduce FFA.

Although the overall accident trend has declined, some provinces like Gansu, Hebei, and Shaanxi
may have out-of control in the increasing number of fatalities and fatal accidents. The government
should firstly figure out the root reasons. As one and only municipality in Southwest China, Chongqing
should attach great importance to the worse TFA and TF despite obvious advantages in economic
development. With regards to the accident severity, provinces like Sichuan and Shandong pay
more attention high-risk construction activities due to their high FOA, such as strengthening expert
demonstration of the construction scheme and improving emergency rescue level.

This study shows the multi-dimensional feature of the ASs in China provinces. Sometimes,
the worse-performing province from a certain perspective may perform better from other perspectives.
Therefore, the multi-dimensional perspective provides a deeper understanding of the ASs for the
government, as well as more reliable decision-making information for formulating macro-safety
regulation in China construction industry. Moreover, Liu and Wu [27] concluded that the fatality rate
is influenced by many factors such as GDP, the education level, the completeness of safety regulation
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and medical and health level, especially pointing out that the essential cause of high fatality rate is the
disharmony of socio-technical system. Therefore, the worse-performing provinces should combine
social systems and technical systems and further explore their interactions and relations under the
condition of safety supervision [58].

4.3. Theoretical and Practical Implications

Several theoretical and practical contributions exist in this study. First, it contributes to
the enrichment of the existing knowledge by proposing a hierarchical indicator system for the
comprehensive evaluation of the AS in the construction industry. Second, it improves the applicability
of the classical PCA by retaining key information of the original dataset, and can give a more accurate
representation of evaluation results. Third, compared to traditional single perspective, it provides a
multi-dimensional perspective for academic and practitioners to deeper understand the ASs in China
construction industry. Fourth, it discusses the differences and features of the ASs in China provinces
and provides some targeted insights of safety regulation formulation for the government. Fifth, the
fatality rate is highly related to the socio-technical system in a region, and it suggests that exploring
the interactions and relations between social systems and technical systems is an indispensable process
of improving the macro-level AS. Sixth, it quantifies the relative importance between indicators
measuring the AS for the first time and discovers the accident frequency as a dominant indicator.
Finally, although this study was conducted in China, the proposed methods can be replicated in other
regions or countries based on their actual conditions.

4.4. Limitations and Future Research

In this study, two main limitations need to be emphasized. One limitation is pertinent to the
CASI. Although six CASIs contribute to sufficiently evaluate ASs, some other CASIs such as FFEW and
MFA could be used to improve/extend the constructed hierarchical structure as long as they meet the
requirements of essential principles of indicator selection, as well as the availability and acceptability
of original data. The other involves research data. The original dataset in this study mainly comes
from accident information issued in 2015. Using the one-year data to evaluate ASs only reflects the
static characteristics of regional distribution, but cannot fully reflect the AS as a dynamic phenomenon.
Thus, future works can be performed to collect the original data of two or more years for exploring
dynamic properties of ASs during the particular period.

5. Conclusions

The high accident rate will probably continue to be one of the most significant safety challenges in
the construction industry in the future. Governmental safety regulations play an important role in
improving the macro-level ASs in China building industry. The study used improved PCA to evaluate
the ASs in China provinces from a multi-dimensional perspective, aiming to assist the government
to better understand the AS and further formulate safety regulations. As a tool for eliminating
information overlaps, the improved PCA in this study cannot only retain more dispersion degree
information in the original dataset, but also has a wider range of applicability. Meanwhile, the AS can
be characterized by the accident risk that contributes to the construction of the hierarchical structure
for the AS evaluation. The structure is treated as an extension of traditional AS evaluation framework,
and captures a large number of accident information in a comprehensive way from multi-dimensional
perspective including three risk perspectives and six basic perspectives. Based on China national
conditions, the multi-dimensional perspective gives a deeper insight for comparative analyses of the
ASs in China provinces. According to the evaluation results, the government can formulate pertinent
macro-safety regulations to improve the macro-level AS. Noteworthy, the AS in one province could
vary with different perspectives when using the multi-dimensional perspective, thus the government
should treat the AS dialectically before learning from better-performing regions and then applying
successful experience into practice.
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