
ARTICLE

Capture Hi-C identifies putative target genes at 33
breast cancer risk loci
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Genome-wide association studies (GWAS) have identified approximately 100 breast cancer

risk loci. Translating these findings into a greater understanding of the mechanisms that

influence disease risk requires identification of the genes or non-coding RNAs that mediate

these associations. Here, we use Capture Hi-C (CHi-C) to annotate 63 loci; we identify 110

putative target genes at 33 loci. To assess the support for these target genes in other data

sources we test for associations between levels of expression and SNP genotype (eQTLs),

disease-specific survival (DSS), and compare them with somatically mutated cancer genes.

22 putative target genes are eQTLs, 32 are associated with DSS and 14 are somatically

mutated in breast, or other, cancers. Identifying the target genes at GWAS risk loci will lead

to a greater understanding of the mechanisms that influence breast cancer risk and

prognosis.
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Genome-wide association studies (GWAS) coupled with
large-scale replication and fine-mapping studies have led
to the identification of approximately 100 breast cancer

risk loci. Breast cancer is a heterogeneous disease with two main
subtypes defined by the presence (ER+) or absence (ER−) of the
oestrogen receptor1. Approximately 80% of newly diagnosed breast
cancers are ER+ although this proportion varies with age at diag-
nosis and ethnicity1. The majority of breast cancer GWAS risk loci
have been identified on the basis of their association with overall
breast cancer risk, or risk of ER+ disease2. Most of the risk single
nucleotide polymorphisms (SNPs) map to non-protein-coding
regions and are thought to influence transcriptional regulation3,4;
many map to gene deserts with the nearest known protein-coding
genes mapping several hundred kilobases (kb) away. Translating
these findings into a greater understanding of the mechanisms that
influence an individual woman’s risk requires the identification of
causal variants and the targets of these causal variants (i.e. genes or
non-coding RNAs that mediate the associations observed in
GWAS. Systematic approaches to the functional characterisation of
cancer risk loci have been proposed4,5. These include fine mapping
of potentially large genomic regions (defined as regions that include
all SNPs correlated with the published SNP with an r2 ≤ 0.2), the
analysis of SNP genotypes in relation to expression of nearby genes
(eQTL) and the use of chromatin association methods (chromo-
some conformation capture (3 C) and Chromatin Interaction
Analysis by Paired-End Tag Sequencing (ChIA-PET)) of regulatory
regions to determine the identities of target genes. To facilitate a
high-throughput approach to the identification of target genes at
GWAS risk loci we developed Capture Hi-C (CHi-C)6. This novel
Hi-C protocol7 allows high-throughput, high-resolution analysis of
physical interactions between regulatory elements and their target
genes. We have used CHi-C previously, to characterise three breast
cancer risk loci mapping to gene deserts at 2q35, 8q24.21 and
9q31.26. Here we selected 63 established breast cancer risk loci
(Supplementary Data 1); we identify CHi-C interaction peaks
involving 110 putative target genes mapping to 33 loci and
demonstrate long-range interaction peaks some of which span
megabase (Mb) distances and involve adjacent risk loci. All CHi-C
interaction peaks can be viewed at bit.ly/CHiC-BC. We carry out
eQTL analyses, analyses of disease-specific survival (DSS) and
compare our putative target genes with somatically mutated cancer
genes to assess the orthogonal support for these putative target
genes. High-throughput CHi-C analysis can contribute to on-going
efforts to functionally annotate GWAS risk loci.

Results
Generating CHi-C libraries for 63 breast cancer risk loci. We
generated CHi-C libraries in two ER+ breast cancer cell lines (T-

47D, ZR-75-1), two ER− breast cancer cell lines (BT-20, MDA-
MB-231), one “normal” breast epithelial cell line (Bre80-Q-TERT
(Bre80)) and a control, non-breast lymphoblastoid cell line
(GM06990) (Supplementary Fig. 1). We defined an interaction
peak as any pair of HindIII fragments for which the number of
di-tags was significantly (FDR adjusted outlier test P < 0.01)
greater than expected under a negative binomial model, taking
into account both the distance between the HindIII fragments
and the propensity of the bait fragment to form interactions
(“interactability”; Methods). The number of di-tags that con-
stituted an interaction peak depended on the distance between
the interacting fragments and ranged from 5 to 14,151. We
defined a locus as a single continuous capture region, annotated
by at least one risk SNP (Methods).

Distribution of CHi-C interaction peaks at the 63 risk loci. The
number of interaction peaks at each locus, in each cell line ranged
from zero to 1,744 (Supplementary Data 2, Supplementary Fig. 2),
with two outliers (1,744 at 8q21.11-rs2943559 in ZR-75-1 and
1,007 at 8q24.21-rs13281615 in T-47D). There were 12 loci
(19.0%) at which there were no interaction peaks in any of the cell
lines we examined (Supplementary Data 2); these loci were
excluded from further analyses. 46 (90.2%) of the 51 loci that we
were able to analyse were identified on the basis of their asso-
ciation with overall breast cancer risk or risk of ER+ disease; the
exceptions were 2p24.1-rs12710696, 5p15.33-rs10069690, 6q25.1-
rs12662670, rs2046210, 16q12.2-rs11075995 and 19p13.11-rs8170
which were associated with ER− and/or triple negative breast
cancer (TNBC)8–20.

We first tested for differences in the median number of
interaction peaks across the six different cell lines according to ER
status and cell type (breast/non-breast). The median number of
interaction peaks per locus varied significantly between cell lines
(Kruskal–Wallis test P= 0.0006; Table 1, Fig. 1a). There were, on
average, more statistically significant interaction peaks per locus
in the ER+ breast cancer cell lines (T-47D, ZR-75-1) compared to
the ER− breast cancer cell lines (BT-20, MDA-MB-231,
Mann–Whitney test P= 0.0008) or the control lymphoblastoid
cell line (GM06990, Mann–Whitney test P= 0.002). There was,
however, no difference between the number of interaction peaks
per locus in the ER+ breast cancer cell lines and the normal
mammary epithelial cell line (Bre80, Mann–Whitney test
P= 0.85; Table 1), consistent with Bre80 representing a
progenitor cell population that gives rise to ER+ breast cancer
cells. Similarly, the median distance between interacting frag-
ments varied across cell lines (Kruskal–Wallis test P < 1 × 10−6;
Table 1, Fig. 1b) with a greater proportion of longest range
interaction peaks (>2Mb) in the ER+ breast cancer cell lines

Table 1 Characteristics of 51 informative risk loci in six cell lines

Cell line T-47D ZR-75-1 Bre80a BT-20 MDA-MB-231 GM06990b

Origin Breast Breast Breast Breast Breast Lymphoblastoid
Cancer/normal Cancer Cancer Normal Cancer Cancer Normal
Receptor status ER+ ER+ ER− ER− ER− ER−
Breast cancer subtype Luminal Luminal Normal Basal A Basal B N/A
Informative loci (%) 34 (66.7) 38 (74.5) 41 (80.4) 21 (41.2) 27 (52.9) 23 (45.1)
Median peaks per locus (range) 7 (0–1,107) 9 (0–1,744) 10 (0–181) 0 (0–246) 1 (0–466) 0 (0–155)
Median distance between interacting fragmentsc

(kb)
1392 1647 349 338 388 534

Number (%) of peaks >2000 kb 1453 (35.4) 1417 (36.4) 94 (7.3) 128 (9.7) 108 (8.0) 102 (12.5)

a Bre80-Q-TERT (Bre80) are normal Bre80 TERT-immortalised mammary epithelial cells, kindly provided by Prof Georgia Chenevix-Trench (Queensland Institute of Medical Research, Brisbane,
Queensland, Australia)
b GM06990 are Epstein-Barr virus transformed B-lymphocytes from the Coriell Cell Repositories (Coriell Institute for Medical Research, New Jersey, USA)
c Range is not given as it was pre-defined to be 10 kb to 5Mb
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compared to all other cell lines. In an analysis of 51 breast cancer
cell lines, there was no evidence that luminal (ER+) cell lines
carried more genome aberrations than basal (ER−) cell lines21. We
cannot, however, exclude the possibility that rearrangements, gains
and losses occur preferentially at ER+ risk loci in ER+ cell lines
and this contributes to the higher proportion of long-range
interaction peaks we observe in the T-47D and ZR-75-1 breast
cancer cell lines.

To gain further insight into the relationship between interac-
tion peaks and cell-type-specificity, we looked at the number of
interaction peaks that were identical between two or more cell
types. Of the 12,736 interaction peaks, we identified 7,681 (60.3%)
were present in a single cell line and 5,055 (39.7%) were present
in multiple cell lines (FDR adjusted outlier test P < 0.01
Supplementary Table 1). The subset of interaction peaks that
were present in at least two cell lines are provided as
supplementary data (Supplementary Data 3). Excluding two loci
with large outliers (i.e. 8q21.11-rs2943559 and 8q24.21-
rs13281615 at which there were 1,744 and 1,007 interaction
peaks in T-47D and ZR-75-1, respectively; Supplementary Fig. 2)
the numbers were 4,924 (50.6%) and 4,805 (49.4%; Supplemen-
tary Table 1). We found a statistically significant excess of
interaction peaks that were common to all four breast cancer cell
lines (N= 62, permutation test P= 0.0003, Fig. 1c) and all five
breast cell lines (N= 53, permutation test P < 0.0001 Fig. 1d). We
also found an excess of interaction peaks that were exclusive to
the lymphoblastoid cell line (N= 304, permutation test P <
0.0001) suggesting that at least a subset of interaction peaks show
cell-type-specificity. Comparing the cell lines according to
receptor type, the interaction peaks were marginally more similar
within the two ER+ cell lines (Jaccard similarity coefficient=
0.18) and the two ER− cell lines (Jaccard similarity coefficient=
0.13) than between them (Fig. 1e).

Representative examples of loci that demonstrated cell-type-
specific activity are shown in Fig. 2. At several of the ER+ risk
loci, including the 10q26.13-rs2981579 (FGFR2) and 14q13.3-

rs2236007 (PAX9) risk loci, we observed interaction peaks that
were restricted to the two ER+ breast cancer cell lines and the
normal breast epithelial cell line (Fig. 2a and c). In both these
examples, the transcription start site (TSS) of the target gene maps
within the capture region and forms interaction peaks with specific
HindIII fragments that map several hundred kb from the capture
region. These distal fragments co-localise with DNase I hypersensi-
tive sites, CTCF, FOXA1, GATA3 and/or ERα binding sites in T-
47D cells and in both of these examples the orientation of the CTCF
binding sites is towards the captured locus (Fig. 2b, d, e)22.

There were, however, many exceptions to the pattern of ER+
risk loci forming interaction peaks in the ER+ breast cancer cell
lines and Bre80s. The 11p15.5-rs3817198 risk locus, which is
associated with ER+ breast cancer forms multiple interaction
peaks in the ER− breast cancer cell lines, but not in the ER+
breast cancer cell lines or in Bre80 (Fig. 3a, Supplementary
Data 2) and the 6q25.1-rs2046210 (ESR1) locus, which has been
shown to be preferentially associated with ER− breast cancer20,23

forms interaction peaks in the ER+, but not the ER− breast
cancer cell lines (Fig. 3b, Supplementary Data 2).

Defining putative target genes. We defined putative target genes
as genes that mapped within, or in cis (≤5Mb) to, a captured
region and for which the TSS mapped to an interacting fragment
in at least two cell lines (Methods). On this basis, we were able to
assign 110 putative target genes to 33 (64.7%) of the 51 loci
(Table 2, Supplementary Data 4); 94 were protein-coding and 16
were non-coding RNAs. The number of genes per locus, for these
33 loci ranged from one (13 loci) to 19 (11q13.1-rs3903072 locus)
with a median of two. The distance between the published risk
SNP and the TSS of the CHi-C target gene ranged from 1 kb
(KCNN4) to more than 4Mb (3p26.1-rs6762644 with CAV3,
RAD18 and SETD5; 11q13.1-rs3903072 with FADD) with a
median of 135 kb (individual distances between risk SNPs and
CHi-C target genes are given in Supplementary Data 5). Amongst

T-4
7D

ZR-7
5-

1

Bre
80

BT-2
0

M
DA-M

B-2
31

GM
06

99
0

0

10

20

30

40

N
um

be
r 

of
in

te
ra

ct
io

ns
 p

ea
ks

0

1–9

10–19

20–49

50–99

100–249

≥ 250

T-4
7D

ZR-7
5-

1

Bre
80

BT-2
0

M
DA-M

B-2
31

GM
06

99
0

0

500

1000

1500

D
is

ta
nc

e 
be

tw
ee

n
in

te
ra

ct
in

g 
fr

ag
m

en
ts

 (
kb

)

Ja
cc

ar
d 

in
de

x

T
-4

7D

Z
R

-7
5-

1

B
T

-2
0

M
D

A
-M

B
-2

31

<100

100–199

200–499

500–999

1000–1999

2000–3999

≥ 4000

a b

c d e
0.94

0.92

0.90

0.82

0.84

0.86

0.88

ZR-75-1

ZR-75-1

MDA-MB-231

MDA-MB-231

BT-20

BT-20

T-47D

T-47D

Bre80

180

109

755
22

42

13
6

49
20

21
5

45

9

11

53

86

208
36

16

180

1

40

5

6

30 21
32

86

464
742

795

69
55

294

52
11

1

104

795

28

154

35

473

43

42

Fig. 1 Cell-type-specificity of interaction peaks at 51 informative breast cancer risk loci. Bar charts showing (a) the number of loci at which there were 0,
1–9, 10–19, 20–49, 50–99, 100–249 or >250 interaction peaks and (b) the number of interaction peaks at which the distance between interacting
fragments are <100, 100–199, 200–499, 500–999, 1,000–1,999, 2,000–3,999, ≥4,000 kb for each cell line analysed. c, d Venn diagrams illustrating the
overlap between interacting fragments in (c) the four breast cancer cell lines and (d) the five breast cell lines. e Dendogram showing Jaccard dissimilarity
scores (i.e. 1—similarity coefficient) for the four breast cancer libraries
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our 51 informative risk loci there were 24 (at 12 chromosomal
regions) that mapped within five Mb of another locus (Supple-
mentary Data 1). We observed interaction peaks between adja-
cent loci at eight of these chromosomal regions and were able to

potentially assign target genes to three additional loci on the basis
of interaction peaks with the adjacent locus (Table 2). These loci
were 8q21.11-rs6472903 (HNF4G and PEX2), 9q31.2-rs10759243
(KLF4) and 14q24.1-rs999737 (ZFP36L1); a representative
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example, showing interaction peaks within and between adjacent
loci at 11q13, is shown in Fig. 4. For the interaction peaks with
the longest range gene targets (3p26.1-rs6762644: CAV3,
LINC00312, LMCD1, c3orf32, RAD18, SETD5, 4q24-rs9790517:
CENPE, 8q24.21-rs13281615: CCDC26, 11q13.1-rs3903072:
CCND1, FADD), we aligned our data with topologically asso-
ciated domains (TADs) generated in Human Mammary Epithe-
lial Cells (HMEC)24. At each of these loci we observed interaction
peaks between captured fragments and target gene(s) mapping
within the same TAD, but also, less frequently, with target gene(s)
mapping to a different TAD (Supplementary Fig. 3).

To determine whether the target genes selected using a CHi-C
approach differ from those selected simply on the basis of
proximity to the GWAS risk SNP (“nearest gene approach”), we
compared the two approaches directly. At 15 of the 51 loci
included in our analysis, we were unable to assign target genes
(i.e. there were no TSS directly or indirectly involved in
statistically significant interaction peaks). Of the 36 loci at which
we were able to assign at least one target gene directly (N= 33) or
indirectly (N= 3) there were 24 at which the nearest gene was
either the only CHi-C target gene (N= 9; Table 2) or one of
several CHi-C target genes (N= 15; Table 2). There were,
however, 12 loci at which our data implicated genes other than
the nearest gene; these loci included 13q13.1-rs11571833 (CHi-C
gene: PDSB5, nearest gene: BRCA2), 14q24.1-rs2588809 and
rs999737 (CHi-C gene: ZFP36L1, nearest gene: RAD51B) and
16q12.2-rs17817449 and rs11075995 (CHi-C genes: CRNDE,
IRX5, IRX3, LOC100996, nearest gene: FTO).

CHi-C target genes and eQTL analyses. To assess the likelihood
of our putative target genes having a causal role in breast cancer
aetiology, we first carried out eQTL analyses using the published
risk SNPs (or a close proxy, r2 > 0.8) and RNA-Seq data from the
Cancer Genome Atlas25 (TCGA) adjusted for matched DNA
methylation and somatic copy-number alterations. Many of risk
loci we included have been shown to be associated with breast
cancer risk overall, albeit with evidence that the association may
differ in magnitude between ER+ and ER− cancers for some26.
Accordingly, we carried out eQTL analyses for all cancers com-
bined (N= 547) and then stratified by ER status (ER+ N= 415,
ER− N= 95, ER unknown N= 37). There were 9 loci (26
protein-coding genes) at which there were no suitable proxies,
and levels of expression of 18 of our putative target genes
(KRTPA5-5, KRTAP5-6 and 16 non-coding RNAs) were too low
for analysis. eQTL analysis of the remaining 26 loci (69 protein-
coding genes) identified 22 SNP-gene combinations that were
nominally significant (t-test P < 0.05) in all, ER+ or ER− breast
cancers (Supplementary Data 6), nine of which remained sig-
nificant after taking account of multiple testing (FDR adjusted t-
test P < 0.1,Table 3). Comparing these eQTLs with “nearest
genes”, three were nearest genes and six were not. Including all
nearest genes (regardless of whether they were also a CHi-C

target gene) in our eQTL analysis we found two additional SNP-
gene combinations that were not captured by our CHi-C analysis;
rs4808801 was associated with levels of expression of ELL in all
cancers and ER+ cancers and rs8170 was associated with levels of
expression of ANKLE in all cancers (FDR adjusted t-test P < 0.1).

Several of the CHi-C target gene eQTLs were consistent with
previous reports including IGFBP5 at 2q35-rs133870426,27,
COX11 at 17q22-rs650495028 and LRRC25 at 19p13.11-
rs480880129. Novel eQTLs included genes that mapped within
the capture region, proximal to the reported risk SNP such as
CDCA7 at 2q31.1-rs1550623, SSBP4 at 19p13.11-rs4808801 and
MRPL34 at 19p13.11-rs8170, as well as genes that mapped several
hundred kb from the reported SNP including IRX3 at 16q12.2-
rs17817449 and ZFP36L1 at 14q24.1-rs2588809. At 11q13.1-
rs3903072, eQTL analyses support multiple putative target genes
of which SNX32, CTSW and CFL1 map within the capture region
but, intriguingly, FADD and CCND1 map at a distance of
approximately 4Mb from rs39030702 (Fig. 4). Both FADD and
CCND1 map to a region of chromosome 11 that is frequently
subject to amplifications and copy-number gains in breast cancer
(FADD and CCND1 map to regions of copy-number gain in
20–30% of Metabric30 and TCGA samples), raising the concern
that this long-range eQTL association might be influenced by
these samples. Excluding samples with genomic copy-number
gains from the analysis, however, strengthened the association
between 11q13.1-rs3903072 and FADD (t-tests: all samples PER+
= 0.01, excluding 119 samples with copy-number gains PER+=
0.004; Fig. 5a, c), but not CCND1 (t-tests: all samples PER+= 0.04,
excluding 130 samples PER+= 0.05: Supplementary Fig. 4).

CHi-C target genes and disease-specific survival (DSS). To our
knowledge, only one of the risk SNPs we included has been
associated with disease prognosis (16q12.1-rs3803662 and
TOX331); this may reflect a fundamental difference between the
genetics of predisposition and prognosis or a relative lack of
power for observational studies of outcome in which detailed
information on treatment is generally lacking. As any individual
regulatory variant may only explain a small proportion of the
total variance in gene expression, however, we looked directly for
an association between levels of expression of our putative target
genes and patient outcome in the Metabric breast cancer
cohort30. Given the profound effect of ER status on outcome, we
performed survival analyses on ER+ and ER− subpopulations
separately. Of the 97 putative target genes (94 protein-coding, 3
non-coding RNAs) for which levels of expression were available,
32 (33%) were associated with DSS in individuals with ER+
disease; none was associated with DSS in ER− disease (FDR
adjusted trend test P < 0.1; Supplementary Data 7). Comparing
these 32 genes with those for which we found eQTL associations
in ER+ cancers (nominal P < 0.05) there were six that were
common to both groups (CFL1, FADD, MRPL34, IGFBP5, IRX3,
ZFP36L1). In addition, there was a highly significant association

Fig. 2 Interaction peaks at 10q26.13 and 14q13.3 in T-47D, Bre80 and MDA-MB-231 cell lines. Interaction peaks are shown in a looping format; interaction
peaks in ZR-75–1, BT-20 and GM06990 are not shown but are available online (Methods). Interaction peaks between two captured fragments are red,
interaction peaks between one captured fragment and one non-captured fragment are blue. Intensity of individual interactions are proportional to
-log2(PFDR). Capture regions are shown as black bars; data are aligned with genomic coordinates (hg19) and RefSeq genes. Target genes (i.e. the subset at
which an interaction peak co-localises with the TSS) are shown in red. The location of the published risk SNP is also shown. a 10q26.13-rs2981579 (FGFR2)
locus. Interaction peaks originating from the capture region and co-localising with the FGFR2 TSS, interact with a region ~650 kb centromeric to the locus
(highlighted in yellow) in T-47D and Bre80, but not MDA-MB-231. b Interaction peaks (shown in blue) at this region co-localise with DNase I
hypersensitive sites, CTCF, p300, FOXA1, GATA3 and ERα ChIP-Seq peaks in T-47D cells. The orientation of CTCF peaks is indicated by the direction of
the arrow. c 14q13.3-rs2236007 (PAX9) locus. Interaction peaks originating from the capture region and co-localising with the PAX9 TSS, interact with two
regions ~300 and 500 kb telomeric to the locus (highlighted in yellow) in T-47D and Bre80, but not MDA-MB-231. Scale bar, 80 kb (d) and e Interaction
peaks at these regions co-localise with DNase I hypersensitive sites, CTCF, FOXA1 and GATA3 ChIP-Seq peaks in T-47D cells. The orientation of CTCF
peaks is indicated by the direction of the arrow
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between levels of expression of CDCA7 and DSS (trend test P=
1.22 × 10−8), which maps just 7 kb from the reported 2q31.1 risk
SNP (rs1550623), but while there was a robust eQTL association
between rs1550623 and CDCA7 in all cancers (trend tests:
nominal P= 0.007, FDR adjusted P= 0.09) there was no asso-
ciation in ER+ cancers alone (both P > 0.1). We also observed
highly significant associations (FDR adjusted trend test P < 0.005)
for five genes that were excluded from eQTL analysis due to a lack
of suitable tag SNP (CENPE at 4q24, TPCN2 and ORAOV1 at
11q13.3, PDS5B at 13q13.1 and SLC4A7 at 3p24.1: Supplementary
Fig. 5)

CHi-C target genes and somatic mutations in cancer genes.
Finally, we compared our CHi-C putative target genes with the list
of 727 cancer genes compiled by Nik-Zainal and colleagues in
their analysis of whole-genome sequences of 560 breast cancers32.
The 94 protein-coding CHi-C target genes are highly enriched for
these cancer genes (14 observed, Hypergeometric P= 2.02 × 10−6)
and include well-documented cancer genes (CCND1, CDKN2A,
CDKN2B, MYC, MAP3K1, ESR1 and FGFR2), as well as relatively
uncharacterised examples (TET2, KLF4, MLLT10, FADD, TBX3,
PAX9 and ZFP36L1).

Combining the somatic mutation data with the eQTL and DSS
analyses, there were 48 CHi-C target genes mapping to 32 loci for
which there was orthogonal support from at least one additional
source and six genes mapping to six loci for which there was
support from at least two additional sources (Table 4). For four of

these, CDCA7, FADD, ZFP36L1 andMRPL34, levels of expression
were associated with both SNP genotype and DSS (Table 4) and
we were able to assess whether high (or low) levels of expression
were similarly associated with risk and poor outcome. For FADD
the associations are inconsistent; the rare allele of 11q13.1-
rs3903072 is associated with higher levels of expression (Fig. 5a)
and lower risk26, but higher levels of expression are associated
with poor outcome (Fig. 5b). In addition, the strong influence of
copy-number gains on levels of expression of FADD confounds
both eQTL and DSS analyses with opposite effects; excluding 119
ER+ cancers with copy-number gains strengthens the eQTL
association in TCGA (Fig. 5c), excluding 345 such samples from
the analysis of outcome in Metabric abrogates the association
with DSS (Fig. 5d), suggesting that samples with copy-number
gains at this region may have a poor outcome that is not directly
related to levels of expression of FADD. Similarly, for CDCA7 the
associations are inconsistent. The risk allele of rs1550623 is the
common allele26; the common allele is associated with lower
levels of CDCA7 expression (Fig. 5e), but lower levels of
expression of CDCA7 are associated with a better prognosis
(Fig. 5f). However, for both 14q24.1-rs2588809 (ZFP36L1) and
19p13.1-rs8170 (MRPL34) the rare alleles are associated with
lower levels of expression (Fig. 5g, i) and higher risk26; lower
levels of expression are also associated with a poor outcome
(Fig. 5h, j) consistent with these genes acting as tumour
supressors influencing both predisposition and outcome similarly.
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Fig. 3 Interaction peaks at 11p15.5 and 6q25.1 in T-47D, Bre80 and MDA-MB-231 cell lines. Interaction peaks and genomic features are as described in
Fig. 2. a 11p15.5-rs3817198 (LSP1) locus. At this locus, which is associated with ER+ disease there are multiple interaction peaks targeting KRTAP5-5 (~300
kb centromeric), LSP1 (within the capture region) and IGF2 (~ 250 kb telomeric) in the ER− cell line MDA-MB-231 but just a single IP targeting KRTAP5-5 in
the ER+ cell line T-47D and none in Bre80. b 6q25.1-rs2046210 (ESR1) locus. At this locus, which is associated with predominantly ER− disease, there are
multiple interaction peaks originating from the capture region, overlapping the ESR1 promoter in the ER+ breast cancer cell line T-47D, but not in the ER−
cells breast cancer cell line MDA-MB-231
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Table 2 Risk loci which formed interaction peaks directly (N= 33) or via an adjacent risk locus (N= 3) with 110 target genes

Where TSS for two or more target genes map to a single HindIII fragment, the genes are separated by a comma. Non-coding RNAs (long non-coding RNAs, microRNAs and small nucleolar RNAs) are
indicated in green. There were three loci at which the target gene is assigned indirectly on the basis of interaction peaks with an adjacent locus; these are indicated by (adj). Defining nearest gene; for
SNPs that map within a gene (UTR, exons or introns) this gene is considered to be the nearest gene, for SNPs that do not map within a gene, nearest gene is assigned based on the location of the nearest
TSS according to RefSeq genes (GRCh37/hg19). Where the nearest gene is a non-coding RNA, the nearest protein-coding gene is also given. CHi-C target genes that are also the nearest gene are
indicated in bold. CHi-C targets and the nearest gene are compared in the “Agrees” column; √ CHi-C data were consistent with the nearest gene being the sole target gene, √+ CHi-C data were
consistent with the nearest gene being one of several target genes, X CHi-C data support a gene other than the nearest gene as a target
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Discussion
The purpose of this analysis was to identify target genes at 63
breast cancer GWAS risk loci using an unbiased, high-resolution
chromosome association method, CHi-C and evaluate this
method in comparison to a simple “nearest gene” approach. We
were able to assign 110 putative target genes to 33 loci; 94 were
protein-coding and 16 were non-coding RNAs. We used three
publicly available data sources to assess support for our CHi-C
target genes as having a causal role in breast cancer aetiology. In
eQTL analyses, we identified 22 SNP-gene combinations that
were nominally significant (t-test P < 0.05) in all, ER+ or ER−
breast cancers in TCGA. DSS analyses of ER+ breast cancers in
the Metabric cohort supported 32 CHi-C target genes (FDR
adjusted trend test P < 0.1) and 14 were listed in 727 cancer genes
compiled by Nik-Zainal and colleagues. In all data sources
combined there were support for 48 CHi-C target genes mapping
to 32 loci from at least one additional source and there was
support for six genes mapping to six loci from at least two
additional sources. These data suggest that a substantial propor-
tion of the CHi-C putative target genes are likely to influence
breast cancer risk and warrant further investigation.

However, amongst the 63 risk loci that we investigated there
were 12 at which we detected no interaction peaks at all. This
may, in part, be a consequence of our methodology as 3C-based
techniques are not considered reliable for detecting interactions
over distances of less than 10 kb33; at three of these 12 loci
(4q34.1-rs6828523 (ADAM29), 10q21.2-rs10995190 (ZNF365)
and 16q12.1-rs3803662 (TOX3) the TSS of a nominated target
gene mapped within 10 kb of the reported SNP. Similarly, for the
15 loci at which the interaction peaks, we detected did not include

direct, or indirect, interactions with the promoter of a RefSeq
gene, there were four at which the TSS of the proposed target
gene mapped within 10 kb (6p25.3-rs11242675 (FOXQ1),
22q12.1-rs17879961 (CHEK2)) or 20 kb (5p15.33-rs10069690
(TERT), 22q12.1-rs132390 (EMID1)) of the reported SNP (Sup-
plementary Data 2). In any analysis, there is a trade-off between
type I and type II errors. By using a rigorous threshold (FDR
adjusted outlier test P < 0.01) for calling an interaction peak
“significant” we will have minimised false positives, but we may
also have missed potentially important low frequency interac-
tions. Finally, we may have missed important target genes by
using a restricted set of cell lines that will only capture interaction
peaks between regulatory elements and genes that are expressed
in breast epithelial cells. At the other extreme, there were several
loci mapping to gene-rich regions (particularly 11q13 and 19p13),
at which we observed interaction peaks with multiple putative
target genes some of which mapped to the same HindIII
restriction fragment as another target gene (Table 2). Reducing
the size of the average restriction fragment, by using an enzyme
that cuts more frequently would provide greater resolution, but it
is clear that CHi-C cannot resolve interaction peaks at the TSS of
putative target genes that map within a few hundred base pairs of
each other.

The other metrics that are frequently used for defining putative
target genes are nearest gene, or nearest plausible gene, and eQTL
analyses. While in many cases our analyses support the nearest
gene or the nearest plausible gene the limitations to this approach
are obvious; there are many examples of long-range interactions
between regulatory elements and target genes that bypass more
proximal putative target genes34–36. Comparing CHi-C with a
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nearest gene metric for assigning putative target genes to risk loci,
our data were informative at 36 (57%) of the 63 loci we selected
for analysis and at 27 (43%), our data implicated genes in addi-
tion to, or other than, the nearest gene. Notably, our data
implicate several protein-coding genes and non-coding RNAs
that map at distances of more than 1Mb from the published risk
SNP (i.e. outside the limit of many eQTL analyses). While the
presence of these long-range interactions may inform future
follow up studies, they do not exclude effects that are more local
to the risk loci. In their functional annotation of the human
genome, the ENCODE consortium estimated that the average
number of TSSs that interact with any given distal element is
2.537 and regulatory variants that map to such elements may
influence absolute or relative levels of expression of multiple
genes. Of the six genes for which there was support from at least
two additional data sources, neither ZFP36L1 (which maps 600 kb
from rs2588809) nor FADD (mapping 4.5 Mb from rs3903072)
would have been selected by a nearest gene metric supporting the
use of CHi-C as a means of identifying putative target genes that
map several hundred kb or even Mb from the risk locus.

eQTL analyses provide an intuitive approach to the process of
identifying putative target genes. However, implicit in eQTL
analyses of breast cancer or normal breast tissue is an assumption
of a model in which a breast cancer GWAS locus influences risk
by altering steady-state expression of a gene that is transcribed in
normal or malignant breast tissue; this may not be true for a
substantial minority of loci. For this reason, a CHi-C-based
approach which detects “permissive” interaction peaks (as well as
“instructive” interaction peaks)33,38 may have benefits over an
eQTL-based approach by allowing the identification of putative
target genes that are poised for expression at a particular stage of
differentiation or in response to external stimuli such as hor-
mones or DNA damage.

The variants detected by GWAS are common variants with
small effects (ORs are typically <1.2) and any individual risk SNP
will usually only explain a small proportion of variance in levels
of expression of a target gene. For example, the association
between 11q13.1-rs3903072 and FADD is weak in all ER+ can-
cers (t-test: nominal P= 0.01); excluding ER+ cancers with copy-
number gains reduces the variance in levels of expression of
FADD and increases the proportion of variance explained by
rs3903072 (t-test: nominal P= 0.004). Given the small effects of
individual variants, eQTL approaches based on current data sets
of a few hundred samples lack power. To limit the penalty for
multiple testing, most eQTL analyses are restricted to genes
within a 1Mb window of the risk SNP or a proposed causal

variant. In our eQTL analysis we used our CHi-C results to
restrict our gene set to 69 protein-coding genes. Despite this our
eQTL analysis probably lacked power, particularly for the strati-
fied analyses where there were just four ER+ eQTLs and no ER−
eQTLs that were significant after taking account of multiple
testing. Indeed IGFBP5, KLF4, CFL1, CCND1 and IRX3 are all
fairly compelling putative target genes with nominal associations
for which the adjusted eQTL P-values were non-significant (t-
tests: all nominal PER+ < 0.05, all FDR adjusted PER+ > 0.1).

For several of the risk loci that we included, functional anno-
tation studies have been previously reported on a locus-by-locus
basis27,28,39–51 and target genes have been inferred by a combi-
nation of proximity, eQTL analysis and testing for looping
interactions on a candidate basis using 3 C. Our CHi-C targets are
consistent with many of these27,28,43,46,47, but may implicate
CENPE in addition to TET2 at 4q2440 and MRPL34 in addition to
ABHD8 or ANKLE1 at 19p13.151. The other notable feature of
our data is the frequency with which we observed interaction
peaks between adjacent loci several of which map megabase
distances apart. This feature, and our observation of an eQTL
between rs3903072 and both CFL1 and FADD, which map 4.5 Mb
apart, suggests that the number of target genes may be less than
the number of reported risk loci albeit with, potentially, multiple
co-regulated target genes at some loci.

Overall it is difficult to evaluate our list of putative target genes
when fully understanding the mechanisms by which a given gene
influences cancer risk are often complex and require many years’
work. It seems likely, however, that the first stage of this process
will be short-listing candidates for follow up studies. On that
basis, we would argue that a high-throughput CHi-C analysis can
contribute to on-going efforts to functionally annotate GWAS
risk loci and that CHi-C target genes that are supported by
additional data sources are strong candidates for in depth func-
tional follow up studies.

Methods
Target enrichment array design. 74 SNPs mapping to 68 GWAS risk loci were
selected based on all available published GWAS and replication studies as of 31/01/
2015. Capture regions were defined as the region that included all SNPs that were
correlated (r2 ≥ 0.2) with the published SNP based on 1000 Genomes pilot data
(http://www.1000genomes.org/; Supplementary Data 1). Biotinylated 120-mer
RNA baits were designed to target both ends of the HindIII restriction fragments
that mapped within these capture regions using Agilent eArray software (Agilent,
Santa Clara, CA, USA), using 2 × tiling, moderately stringent repeat masking and
maximum performance boosting options.

Cell culture and formaldehyde crosslinking. T-47D, ZR-75-1, BT-20 and MDA-
MB-231 cell lines were obtained from ATCC (Middlesex, UK), GM06990 cells were

Table 3 Nine CHi-C putative target genes that were statistically significant eQTLs (FDR adjusted P < 0.1)

Cytoband SNP Proxy Gene All cancers ER+ cancers ER− cancers

Nearest CHi-C
target

P Padj P Padj P Padj

2q31.1 rs1550623 CDCA7 CDCA7 0.007 0.087 0.511 0.666 0.330 0.892
11q13.1 rs3903072 SNX32 CTSW 0.006 0.087 0.064 0.326 0.001 0.101
11q13.1 rs3903072 SNX32 SNX32 0.007 0.087 0.032 0.268 0.036 0.506
14q13.3 rs2236007 rs1018464 PAX9 PAX9 0.003 0.066 0.054 0.317 0.248 0.854
14q24.1 rs2588809 RAD51B ZFP36L1 0.079 0.380 0.004 0.091 0.256 0.854
17q22 rs6504950 rs9902718 STXBP4 COX11 0.002 0.059 0.001 0.032 0.403 0.892
19p13.11 rs8170 rs34084277 BABAM1,

ANKLE1*
MRPL34 0.001 0.059 0.011 0.173 0.131 0.829

19p13.11 rs4808801 ELL* LRRC25 0.009 0.092 0.004 0.091 0.768 0.954
19p13.11 rs4808801 ELL* SSBP4 0.002 0.059 0.0002 0.016 0.475 0.892

*In an analysis that included all genes that are nearest genes, regardless of whether they were also a CHi-C target gene, rs4808801 was also associated with expression of ELL (FDR adjusted P= 0.05 for
all cancers and P= 0.04 for ER+ cancers) and rs8170 was also associated with expression of ANKLE1 (FDR corrected P= 0.05 for all cancers)
PP-value (1df t-test) per allele association with gene expression, adjusted for methylation and copy number, Padj P value further adjusted for multiple testing
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supplied by Coriell Cell Repositories (Coriell Institute for Medical Research, New
Jersey, USA). Normal Bre80 TERT-immortalised mammary epithelial cells Bre80-
Q-TERT (Bre80) were kindly provided by Prof Georgia Chenevix-Trench
(Queensland Institute of Medical Research, Brisbane, Queensland, Australia). Cell
lines were authenticated using STR genotyping and were regularly tested for

mycoplasma contamination. Bre80 cells were grown in DMEM/F12 with phenol
red (Gibco, Life Technologies) supplemented with 5% horse serum, 10 µg/ml
insulin, 0.5 µg/ml hydrocortizone, 20 ng/ml epidermal growth factor, 100 ng/ml
cholera toxin, 50 U/ml penicillin and 50 µg/ml streptomycin (Sigma-Aldrich, St.
Louis, MO, USA). T-47D and ZR-75-1 were grown in RPMI 1640 (Gibco, Life
Technologies) supplemented with 10% foetal bovine serum (FBS, Life Technolo-
gies), 50 U/ml penicillin, 50 µg/ml streptomycin (Sigma-Aldrich, St. Louis, MO,
USA) and, for T-47D, 10 µg/ml insulin (Sigma-Aldrich, St. Louis, MO, USA). BT-
20 cells were grown in EMEM (ATCC, Middlesex, UK) supplemented with 10%
FBS, 50 U/ml penicillin, 50 µg/ml streptomycin. MDA-MB-231 cells were grown in
DMEM supplemented with 10% FBS, 50U/ml penicillin, 50 µg/ml streptomycin
and GM06990 cells were grown in RPMI 1640 supplemented with 15% FBS, 50 U/
ml penicillin, 50 µg/ml streptomycin and 2 mM L-Glutamine. Formaldehyde
crosslinking of 20 million cells was performed as described by Belton and collea-
gues52 by substituting standard culture media with FBS-free media containing 2%
formaldehyde for 5 min at room temperature. Crosslinking was quenched by
addition of glycine to a final concentration of 150 mM. Adherent T-47D, ZR-75-1,
BT-20, MDA-MB-231 and Bre80 cells were scraped off the culture flask after
crosslinking, non-adherent (GM06990) cells were transferred directly to a falcon
tube. Cells were washed with cold PBS, snap-frozen in liquid nitrogen and stored at
−80 °C before preparation of the Hi-C library.

Hi-C library generation. Each cross-linked cell aliquot (~20 million cells) was
resuspended in 50 ml of permeabilisation buffer (10 mM Tris-HCl pH8, 10 mM
NaCl, 0.2% IGEPAL CA-630 (Sigma-Aldrich, St. Louis, MO, USA), supplemented
with complete mini EDTA-free tablets (Roche, Basel, Switzerland) and incubated
on ice for 30 min with occasional mixing. T-47D, ZR-75-1 and GM06990 cells were
lysed using 10 strokes of a dounce homogeniser. BT-20, MDA-MB-231 and Bre80
cells were lysed by incubating with trypsin (0.25%, Sigma-Aldrich, St. Louis, MO,
USA) at 37 °C for 5 min. Trypsin was inactivated by addition of 500 µl FBS. Per-
meabilised cells were centrifuged for 6 min at 600x g and washed three times in 1
ml 1.3 × NEBuffer 2 (New England Biolabs, Ipswich, MA, USA). Nuclei were
resuspended and chromatin digestion and Hi-C library preparation were carried
out as described by van Berkum and colleagues7 with the following modifications:
(i) cells were split into three microcentrifuge tubes instead of five (ii) restriction
fragment overhangs were filled in with biotinylated dATP instead of biotinylated
dCTP (iii) dGTP was not added to the reaction mixture for the removal of bio-
tinylated dATP from unligated ends (iv) an agarose gel size selection step was not
included, and (v) after PCR amplification (5–8 cycles) of the Hi-C library-bound
streptavidin beads the PCR product was pooled and subjected to target enrichment
(below) before paired-end sequencing.

Target enrichment. Target enrichment was performed based on the SureSelect
protocol (Agilent, Santa Clara, CA, USA), but incorporating the following mod-
ifications: (i) Biotinylated Hi-C di-tags bound to streptavidin beads were amplified
pre-hybridisation directly from beads using 24 parallel 25 µl PCR reactions with
five to eight cycles using Q5 High-Fidelity DNA Polymerase (New England Biolabs,
Ipswich, MA, USA) and pre-hybridisation PCR primers: ACACTCTTTCCCTA-
CACGACGCTCTTCCGATC*T and CTCGGCATTCCTGCT-
GAACCGCTCTTCCGATC*T. PCR products were pooled and purified using
Agencourt Ampure XP beads (Beckman Coulter, Brea, CA, USA) to yield
~750–1300 ng total DNA. 750 ng of library DNA was dried using a speedvac
concentrator then resuspended in 3.4 µl of water. (ii) Enriched fragments were
amplified post-hybridisation again directly from the streptavidin beads, using 18
parallel 25 µl reactions of five to eight cycles of PCR. PCR products were again
pooled and purified using Agencourt Ampure XP beads (Beckman Coulter, Brea,
CA, USA). Post-hybridisation PCR primers to the paired-end adaptors were as
described in Belton and colleagues52
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rs3903072 (FADD) FADD (ER+)

FADD (ER+)

CDCA7 (ER+)

ZFP36L1 (ER+)

MRPL34 (ER+)

Int. exp.: HR = 1 (0.73–1.36), P = 0.993
High exp.: HR = 1.73 (1.32–2.28), P = 8.36e–05
P = 4.44e–05

Int. exp.: HR = 0.88 (0.62–1.26), P = 0.478
High exp.: HR = 1.16 (0.83–1.62), P = 0.397
P = 0.4

Int. exp.: HR = 1.26 (0.92–1.72), P = 0.152
High exp.: HR = 2.24 (1.68–2.98), P = 3.66e–08
P = 1.22e–08

Int. exp.: HR = 0.91 (0.7–1.19), P = 0.499
High exp.: HR = 0.72 (0.54–0.96), P = 0.027
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Fig. 5 Box plots of gene expression according to genotype and
Kaplan–Meier plots of disease-specific survival according to levels of
expression for FADD (11q13), CDCA7 (2q31.1), ZFP36L1 (14q24.1) and
MRPL34 (19p13.1). a Levels of expression of FADD are associated with
11q13.1-rs3903072 genotype in all cancers (P= 0.04) and ER+ cancers (P
= 0.01); b in ER+ cancers, levels of expression of FADD are also associated
with disease-specific survival (DSS) (c) excluding samples with copy-
number gains strengthened the eQTL association in ER+ cancers (P=
0.004) (d) but attenuated the association with DSS. e, g, i Levels of
expression of CDCA7, ZFP36L1 and MRPL34 are associated with 2q31.1-
rs1550623 genotype in all cancers (P= 0.007), 14q24.1-rs2588809
genotype in ER+ cancers (P= 0.004) and 19p13.1-rs8170 in all cancers (P
= 0.001) and ER+ cancers (P= 0.01), respectively. f, h, j In ER+ cancers,
levels of expression of all three genes are associated with DSS
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Next generation sequencing (NGS), mapping and filtering. A total of 12 target
enriched Hi-C libraries (two biological replicates for each of six cell lines) were
prepared. Eight of the libraries (all at concentrations >2,500 pM) were sequenced
on single flow cell lanes on an Illumina HiSeq2000 (Illumina, San Diego, CA, USA)
generating 76 bp paired-end reads. The other four libraries, which were at lower
concentrations (330–630 pM), were sequenced on two flow cell lanes each. Casava
software (v1.8, Illumina) was used to make base calls; reads failing the Illumina
chastity filter were removed before further analysis. Sequences were output in fastq
format before mapping against the human reference genome (GRCh37/hg19)
generating between 86 and 153 million di-tags with both ends uniquely mapped to
the reference genome. Filtering to remove experimental artefacts was carried out
using the publicly available Hi-C User Pipeline (HiCUP). Full details of this
pipeline are available from Babraham Bioinformatics (http://www.bioinformatics.
babraham.ac.uk/). In addition to the standard pipeline, off-target di-tags (defined
as di-tags where neither end mapped to one of the capture regions) were removed
from the final processed data sets. After excluding invalid pairs52,53, PCR duplicates
and off-target di-tags, the number of valid di-tags ranged from 24 to 71 million.
Full details of the number and proportion of excluded di-tags are given in Sup-
plementary Table 2.

Analysis of Hi-C interaction peaks. The power of our analysis to detect sig-
nificant interaction peaks depends on the read density, which in turn depends on
the size of the bin or unit of analysis. Given that our purpose was to identify
individual target genes, we restricted the analysis to a high-resolution (single
HindIII fragment) analysis of valid di-tags generated by ligations between a cap-
tured fragment and (i) another captured fragment in cis or (ii) a non-captured
fragment in cis, mapping within 5 Mb6. We carried out separate analyses for each
type of ligation on the basis that the statistical properties of ligations where both
ends of the di-tag have been captured (type (i)) will differ from those where just
one end has been captured (type (ii)).

To assess the reproducibility of our libraries we calculated Spearman’s ρ for
each possible combination of HindIII fragments, for each type of analysis ((i) and
(ii)) using the two biological replicate libraries for each of the six cell lines. We
excluded combinations of HindIII fragments for which there were zero read pairs
in both libraries and stratified our analysis on the distance between the two HindIII
fragments (0–500 kb, 500 kb–1Mb, 1Mb–1.5 Mb, >1.5 Mb). The correlation
between duplicates was strongest when both fragments were captured and mapped
within 500 kb of each other (ρ= 0.78 to ρ= 0.92). For fragments separated by
distances of >1Mb (where most of the raw di-tags represent “noise”) there was
weak or no correlation between replicates (all ρ < 0.4); for fragments separated by
500 kb to 1Mb correlation was moderate (ρ= 0.53 to ρ= 0.77 when both
fragments were captured, and ρ= 0.33 to ρ= 0.59 when just one fragment was
captured; Supplementary Figs. 6 and 7).

There were eight loci annotated by 10 SNPs (5p15.33-rs10069690, 5p15.33-
rs7726159 and rs2736108, 11q13.3-rs554219 and rs78540526, 11q13.3-rs75915166,
16q12.2-rs17817449, 16q12.2-rs11075995, 19p13.1-rs8170, 19p13.1-rs2363956),
where the capture regions were too close for us to analyse separately. Accordingly,
we collapsed these eight regions into four regions. There was one region at 10q23.1-
rs7071985 (82909977-83064943) that failed to generate high numbers of reads in
any of the cell lines we assayed. After excluding this region and combining eight
regions into four, there were 63 separate loci for analysis (Supplementary Data 1).
On our arrays, there were also 1,254 captured HindIII fragments that did not map
to known breast cancer risk loci and were not considered further in this study.
Three of these fragments comprising the GSTP1 promoter, mapped within 5Mb of
the 11q13.1-rs3903072 capture region and formed interaction peaks with this
capture region. For clarity these interaction peaks are excluded from Fig. 4. For the
63 risk loci we generated data sets that comprised all di-tags in both categories
(type (i) and (ii)) using the SeqMonk mapped sequence analysis tool (www.
bioinformatics.babraham.ac.uk/projects/seqmonk/). Where a captured region
mapped within 5 Mb of another captured region we considered HindIII fragments
mapping to these two regions as part of a “within capture” (type (i)) analysis.

In common with other “C”-based techniques, our Capture Hi-C methodology
includes several steps that will show local differences in efficiency thereby
introducing biases in the detection of interaction peaks35. To correct for these
biases, we used a modification of the procedure described by Sanyal and

colleagues6,35. Briefly, our method assumes that some of our captured fragments
“fail” and we exclude these; we then used a truncated negative binomial model,
which takes account of both the large number of zero counts in the data and allows
for overdispersion, to model all ligations for which one end maps an unexcluded
captured fragment. R-scripts are available on request. In detail, on the assumption
that the majority of trans ligations represent random events, we calculated the total
number of trans ligations (NT) made by each of the captured HindIII fragments as
a measure of the fragment’s “interactability”, its propensity to interact with other
fragments. The interactability had a bimodal distribution, which we assumed to
arise from two components corresponding to low numbers of counts, which we
regarded as stochastic noise, and higher numbers of counts, which we regarded as
genuine signal. For each cell line and biological replicate a truncated negative
binomial distribution, based on the number of di-tags, was fitted to the higher
component. By visually inspecting the histogram, it was apparent that the
truncation point varied between each cell line and biological replicate. Both the
histograms and individual truncation points were used to define an individual
threshold, this being the 5% quantile point of the corresponding non-truncated
distribution, for each cell line and replicate. All fragments with a total number of
trans di-tags below the corresponding threshold value were regarded as noise and
were filtered out. This resulted in excluding between 8.6% and 30.0% of the
fragments with the lowest number of trans ligations (di-tags). We fitted negative
binomial regression models to the filtered data sets, combining data from the two
biological replicates for each cell line. We corrected for experimental biases due to
differing interactability of fragments by including as a covariate the loge of the total
number of trans ligations (ln(NT)) for each captured fragment from each biological
replicate; for cis ligations within the capture regions we also included a term for
interaction products of ln(NT) for each of the two ligated fragments in each
biological replicate. We corrected for distance between the ligated fragments by
including as a covariate the loge of the distance between the mid-points of the two
fragments (ln(D)); to approximate local smoothing we fitted the data in bins each
of which contained 1 percentile of the distance range. P-values were obtained by
comparing the observed counts to the fitted distributions. For each capture region
in each cell line, we controlled the false discovery rate using the method of
Benjamini & Hochberg54. Supplementary Figs. 8 and 9 show raw read counts
aligned to the reported interaction peaks in two libraries ((i) T-47D and (ii) MDA-
MB-231 at the 10q26.13-rs2981579 locus (see Fig. 2a) and the 11p15.5-rs3817198
locus (see Fig. 3a). Data were visualised using the WashU Epigenome Browser:
http://epigenomegateway.wustl.edu/browser/ and aligned with DNase I and ChIP-
Seq data from ENCODE: https://www.encodeproject.org/ (Supplementary Table 3)

Comparison of interaction peaks between cell lines. Non-parametric equality
tests (Mann–Whitney for two samples, Kruskal–Wallis for multiple samples) were
used to test for a difference in the median number of interaction peaks per locus
and the median distance between interacting fragments, across cell lines. We tested
the probability of an excess of shared interaction peaks among breast cancer cell
lines and all breast-specific cell lines using a random sampling (10,000 permuta-
tions) and we estimated the similarity according to receptor status (ER+ /ER−) for
the breast cancer cell lines using the Jaccard similarity coefficient.

Allocating putative target genes and nearest genes. To define a set of putative
target genes, we identified all catalogued RefSeq genes (GRCh37/hg19), mapping
within, or in cis (≤5Mb) to a captured region. From these we selected the subset for
which the TSS mapped to one end of an interaction peak (an interacting fragment).
Given that cancer cell lines are aneuploid, with multiple rearrangements and
regions of loss or gain, we further required that the TSS mapped to an interacting
fragment in at least two cell lines. For SNPs that mapped to a RefSeq gene (UTR,
exon or intron), this gene was considered to be the nearest gene (Table 2). For
intergenic SNPs, the nearest gene was determined on the basis of the nearest RefSeq
catalogued TSS. Where the nearest catalogued TSS was for a non-coding RNA, this
non-coding RNA is listed along with the nearest protein-coding gene (Table 2).

Aligning CHi-C data with TADs. In order to align CHi-C data with TADs, we
accessed Hi-C data generated in HMECs24 through the 3D genome browser
(http://promoter.bx.psu.edu/).

Table 4 Six CHi-C putative target genes for which there was orthogonal support for at least two additional data sources

Locus SNP Gene eQTL Pall eQTL PER+ DSS PER+ 727 cancer genes source

2q31.1 rs1550623 CDCA7 0.007 (0.09) 0.51 (0.67) 4 × 10−7

11q13.1 rs3903072 FADD 0.04 (0.28) 0.01* (0.17) 0.0009 Cancer related genes panel
12q24.21 rs1292011 TBX3 0.28 (0.50) 0.21 (0.52) 0.012 Cancer gene census
14q13.3 rs2236007 PAX9 0.003 (0.07) 0.05 (0.32) 0.20 Cancer related genes panel
14q24.1 rs2588809 ZFP36L1 0.08 (0.38) 0.004 (0.09) 0.09 Identified in Nik-Zainal et al 2016
19p13.11 rs8170 MRPL34 0.001 (0.06) 0.01 (0.17) 0.004

eQTL P values in parenthesis are FDR adjusted, * excluding 119 ER+ cancers with copy-number gains at FADD, P= 0.004
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eQTL analysis. TCGA breast cancer (BRCA) data set was used to test for an
association between genotype and mRNA abundance further adjusted for DNA
methylation and somatic copy-number profiles. Pre-processed controlled access
germline genotype calls (birdseed algorithm) were downloaded from the TCGA
data portal. Putative target genes at each of the risk loci were assigned as described
above. For SNPs missing from the Affymetrix SNP6 platform, proxy SNPs were
identified using phase 3 data from the 1000 Genomes project (r2 > 0.8, distance
limit= 500KB). TCGA BRCA mRNA, DNA methylation and DNA copy-number
data were downloaded from GDAC (version: 2016_01_28). After excluding data
from women of Asian (N= 37), African (N= 159) or American Indian/Alaska
Native (N= 1) ethnicity, matched data (including germline genotype data) were
available for 547 samples; 415 ER+ samples and 95 ER− samples (ER status was
unknown for 37 samples). mRNA data was log2 transformed for eQTL analysis.
Statistical association between mRNA abundance levels and genotype groups (AA,
AB, BB) was estimated using multivariate linear regression models with one degree
of freedom for genotype groups, adjusted for DNA methylation and copy-number
data. For DNA methylation arrays, methylation levels of the probe with strongest
inverse correlation (otherwise minimum correlation coefficient) with its target
gene’s expression were used as representative methylation levels of the target gene.
Analyses for ER+ and ER− subsets were performed separately. P-values were
adjusted for multiple comparisons using the Benjamini–Hochberg method54. eQTL
analyses in ER+ samples of genes at chromosome 11q13 were further stratified by
copy-number gains using the threshold defined in TCGA25 (log2 copy number
>0.3). The variation in copy number within strata was greatly reduced and the
eQTL regression models for these additional stratified analyses were as described
above, but adjusted for DNA methylation only.

Survival analysis. The Metabric30 breast cancer cohort (EGA Study ID:
EGAS00000000083) was used for DSS analysis. Data were summarised and
quantile-normalised from the raw expression files generated by Illumina Bead-
Studio (R packages: beadarray v2.4.2 and illuminaHuman v3.db_1.12.2). Raw data
files of one Metabric sample were not available at the time of our analysis, and were
therefore excluded. The most variable probe was used as a representative for the
corresponding gene’s mRNA abundance levels. A Cox proportional hazards model
was used to estimate pairwise hazard ratios with the lowest expression group
treated as baseline. P-values for pairwise comparison of survival curves were
estimated using Wald tests. The overall test of the Null hypothesis that the
expression-derived survival curves show no association with patient outcome was
tested with Wald tests (1 degree of freedom, P-trend). P-values were further
adjusted for multiple comparisons using the Benjamini–Hochberg method54.
Survival analysis was carried out for ER+ and ER− subsets separately.

Data availability. All CHi-C data sets generated as part of this analysis are publicly
available at (https://www.ebi.ac.uk/ena) under the accession code PRJEB23968.
Processed data can be visualised at bit.ly/CHiC-BC/. Publicly available data sets
that were accessed for this analysis are detailed in Supplementary Table 3.
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