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Objective: This study investigates whether the dynamic functional connectivity (dFC)
of the amygdala subregions is altered in children with attention-deficit/hyperactivity
disorder (ADHD).

Methods: The dFC of the amygdala subregions was systematically calculated
using a sliding time window method, for 75 children with ADHD and 20 healthy
control (HC) children.

Results: Compared with the HC group, the right superficial amygdala exhibited
significantly higher dFC with the right prefrontal cortex, the left precuneus, and the left
post-central gyrus for children in the ADHD group. The dFC of the amygdala subregions
showed a negative association with the cognitive functions of children in the ADHD
group.

Conclusion: Functional connectivity of the amygdala subregions is more unstable
among children with ADHD. In demonstrating an association between the
stability of functional connectivity of the amygdala and cognitive functions, this
study may contribute by providing a new direction for investigating the internal
mechanism of ADHD.

Keywords: ADHD, dynamic functional connectivity, anxiety, amygdala, rs-fMRI

INTRODUCTION

Globally, nearly 1 in 20 youth suffers from attention-deficit/hyperactivity disorder (ADHD),
making it one of the most prevalent psychiatric disorders among children (Polanczyk et al., 2007;
Polanczyk et al., 2014). Inattention, hyperactivity, and impulsivity are the three recognized core
symptoms of ADHD (American Psychiatric Association, 2013); however, research deems these

Abbreviations: ADHD, attention-deficit/hyperactivity disorder; BLA, basolateral amygdala; BOLD, blood oxygen level-
dependent; CMA; centromedial amygdala; dFC, dynamic functional connectivity; DPABI, Data Processing and Analysis of
Brain Imaging; FC, functional connectivity; FD, framewise displacement; FSIQ, full-scale intelligence quotient; HC, health
control; K-SADS-PL, Schizophrenia for School-Aged Children Present and Lifetime Version; IS, interference score; PFC,
prefrontal cortex; ROIs, regions of interest; rs-fMRI, Resting-state functional magnetic resonance imaging; SFA, superficial
amygdala; TR, repetition time.
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symptoms inadequate to explain the functional impairment of
children (Anastopoulos et al., 2011; Skirrow and Asherson, 2013;
Szuromi et al., 2013). Research on school-age children revealed
that most children with ADHD have psychiatric comorbidities
that worsen functional impairments (Cuffe et al., 2020). This
condition includes markedly elevated rates of anxiety disorders,
with common features such as excessive fear, anxiety, and
avoidance behavior.

Studies on anxiety over the last few decades have further
clarified the impairment associated with ADHD (Prevatt et al.,
2015; Overgaard et al., 2016; D’Agati et al., 2019). Abundant
evidence suggests that people with ADHD have elevated levels
of anxiety. For instance, researchers found that up to 25% of
children with ADHD have comorbid anxiety disorders (Wolraich
et al., 2005). O’Rourke et al. (2020) believe that people with
ADHD are at a greater risk of having anxiety symptoms and
its associated features than people without ADHD. Similarly,
Gau et al. (2010) noticed that children and adolescents with
persistent ADHD have a higher risk of developing anxiety
disorders than those without persistent ADHD. People suffering
from ADHD and with high levels of anxiety have demonstrated
significantly different performances than individuals with pure
ADHD in terms of working memory deficits, symptoms of
impulsivity, and cognitive efficiency (Schatz and Rostain, 2006;
Sorensen et al., 2011; Prevatt et al., 2015). For example, a recent
meta-analysis suggested that patients with both ADHD and
an anxiety disorder had better response inhibition, compared
with individuals afflicted only with ADHD (Maric et al., 2018).
March et al. (2000) found that children with ADHD and anxiety
exhibited more symptoms of inattentiveness than impulsivity. In
a recent study, the researchers found that adolescents with higher
trait anxiety performed better on indices of sustained attention,
reaction time, and motor variability among people with ADHD
but not among those without ADHD (Ruf et al., 2017).

It is important to study the complex mechanisms underlying
ADHD, together with the functional impairments of the diseased
brain, to ensure effective diagnosis, treatment, and prevention.
Resting-state functional magnetic resonance imaging (rs-fMRI)
is a safe and non-invasive tool that can detect spontaneous
activity in the brain (Bin et al., 2018).The amygdala, which
can respond to a wide range of emotional stimuli in time,
has long been considered a critical component of emotional
processing (Aghajani et al., 2014; Fox et al., 2015). In the
study of pediatric anxiety, the amygdala is also the most
frequently examined region of interest (ROI) (Hamm et al.,
2014). The association between the functional connectivity (FC)
of the amygdala and elevated anxiety levels has been identified
in numerous clinical populations via this technology (Gold
et al., 2016; Jalbrzikowski et al., 2017; Porta-Casteras et al.,
2020). For example, Jalbrzikowski et al. (2017) specified that
increased FC based on the centromedial amygdala (CMA)–
rostral anterior cingulate cortex is associated with greater anxiety
symptoms during early adulthood, whereas increased structural
connectivity in the CMA–anterior ventromedial prefrontal cortex
(PFC) white matter is associated with greater anxiety during
late childhood (Jalbrzikowski et al., 2017). In another study
involving children aged 7 to 9 years, researchers found that

high childhood anxiety is associated with abnormal function
and volume of the amygdala (Qin et al., 2014). The amygdala
has also been found to contribute to cognitive functions such
as working memory and executive functions (Schaefer et al.,
2006; Schaefer and Gray, 2007). Previous studies have proven
that the amygdala of patients with ADHD is significantly
abnormal in terms of function and volume compared with
those of normal people (Yu et al., 2016; Tajima-Pozo et al.,
2018). Hence, the relationship among the amygdala, anxiety,
and cognitive functions may provide essential insights into the
psychopathology of ADHD. However, the amygdala is a complex
structure and may functionally segregate into several subregions
(Han et al., 2014). According to an rs-fMRI study, the FC
patterns of each of the amygdala subregions in healthy humans is
distinctive (Roy et al., 2009). Thus far, there have been few similar
studies on children with ADHD.

Reliance on the implicit assumption that participants’ brain
activity remained static throughout the rs-fMRI scan was
a common feature of many previously mentioned studies.
However, a growing body of research confirms that brain activity
changes dynamically over time (Yao et al., 2017; Liao et al.,
2019; Li et al., 2019). Most rs-fMRI studies in the ADHD
domain currently focus on the characteristics of the static state
of brain activity but fail to demonstrate the dynamic temporal
changes in spontaneous brain activity among humans. Using
the sliding window approach, researchers have inspected the
dynamic mechanisms of voluntary brain activity in humans
(Voytek and Knight, 2015) and non-human primates (Hutchison
et al., 2013). The abnormalities concerning the variance of
dynamic FC (dFC) in patients with common neuropsychiatric
diseases, such as schizophrenia (Guo et al., 2018), Alzheimer’s
disease (Gu et al., 2020), major depressive disorders (Yao et al.,
2019), and autism spectrum disorder (Li et al., 2020), have
been effectively revealed by the sliding window method. These
studies suggest that changes in dFC may be biological markers of
specific diseases. In this approach, a fixed-length time window
is selected and used to calculate the FC metric. The window
then slides to the next time window after a predetermined
duration, leading to many FC metrics that can elucidate the
temporal features of FC over the entire duration of the scan
(Yue et al., 2018). By calculating the time-varying covariance
of interregional neural signals, dFC can describe precisely the
collaboration of brain regions; that is, the higher the value of
the dFC, the more unstable the FC (Yao et al., 2017). Therefore,
further investigation of the overall dFC between brain regions
may be necessary. In this regard, several studies have found
abnormal dFC in ADHD patients. For example, a recent study
found that patients with ADHD had significantly changed dFC of
the cingulo-opercular network and sensorimotor network (Sun
et al., 2021). Another research reported that the default-mode
and task-positive networks in people with ADHD exhibit a quasi-
periodic clustering recurrence pattern during the entire rs-fMRI
scan, suggesting that dFC alterations in people with ADHD may
be a neuroimaging marker for ADHD (Kaboodvand et al., 2020).
However, no systematic study on the dynamic characteristics
of abnormal amygdala-related neural networks in people with
ADHD has emerged thus far.
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To address this gap, we first used the sliding window method
to study the abnormal dFC of the amygdala subregions of
children with ADHD, specifically focusing on anxiety symptoms
and cognitive functions, and further studied the relationship
between the dFC of the amygdala subregions and anxiety
symptoms and cognitive functions. Based on previous studies, we
hypothesized that (1) higher dFCs of the amygdala subregions
can be observed in children with ADHD; (2) higher dFC is
positively associated with anxiety symptoms among children with
ADHD; and (3) higher dFC is negatively associated with the
cognitive functions of children with ADHD.

MATERIALS AND METHODS

Participants
In total, 76 drug-naive ADHD boys aged 8 to 10 years
were recruited from Shenzhen Children’s Hospital. All patients
were interviewed by two experienced psychiatrists, fulfilling
the diagnostic criteria for ADHD based on clinical interviews
that follow the Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition. The Schedule for Affective Disorder
and Schizophrenia for School-Aged Children Present and
Lifetime Version (K-SADS-PL) was used to interview the
participants and their parents (Kaufman et al., 1997). Meanwhile,
20 boys aged 8 to 10 years were recruited from the Children’s
Health Care Department of the same hospital for the healthy
control (HC) group. Children in this group, together with
their parents, were also interviewed using the K-SADS-PL
to ensure that they did not meet the diagnosis of ADHD
or any other mental disorders. Notably, all participants
were Han Chinese.

The inclusion criteria also included normal vision and hearing
and a Full-Scale Intelligence Quotient (FSIQ) ≥ 70 estimated
by the Wechsler Intelligence Scale for Children, Fourth Edition.
Participants who currently or previously had psychological
disorders or who had serious physical disorders, neurological
disorders, or brain injuries were excluded from this study.
This study was approved by the Medical Research Ethics
Committee of the Shenzhen Children’s Hospital. All children
agreed to participate, and written informed consent was obtained
from their parents.

Measures of Anxiety Symptoms
Conner’s Parent Rating Scale (Conners et al., 1998) is a
widely used scale for screening children’s behavioral problems,
especially ADHD, and comprises items that assess anxiety.
The scale’s Chinese version has good reliability and validity
and is used to evaluate children between 3 and 16 years old
(Conners et al., 1998). This scale constitutes five factors:
behavioral problems, learning problems, psychosomatic
disorders, hyperactivity impulse, and anxiety. This study chose
four items to assess the anxiety symptoms of children, namely,
“fear of new environments, places, new people, and going to
school,” being “more afraid of loneliness, illness, or death than
others,” “bashfulness,” and having a “feeling that he or she is
threatened frequently.” The questionnaire, which was completed

by the parents according to their observations of their child,
adopted a four-level scoring method (0, 1, 2, and 3).

Cognitive Measures
The neuropsychological test battery consisted of the Stroop
color-word and N-back tests. The two tests were considered
representative of two areas of cognitive function: response
inhibition and working memory.

The Stroop test, translated from the Victorian version (Lee
and Chan, 2010), consists of three cards printed with colors,
representing color, word, and color–word tasks. The color task
consists of colored dots; the word task comprises ordinary words
that are unrelated to the meaning of color; the color–word task
consists of words written in color that indicate the meaning of
the color, but the color of these words differ from the meaning
of the word itself. All these tasks require participants to read the
color of dots or words and the researcher to record the time it
takes participants to read through each card and the number of
mistakes they make. Interference control ability is represented by
the interference score (IS), that is, the time taken to complete
the color–word task minus the time taken to complete the word–
word task, or the number of errors made in the color–word task
minus the number of errors made in the word–word task.

The N-back task consists of three subtasks, namely, 0-back, 1-
back, and 2-back tasks. The 0-back task requires participants to
press the left mouse button when a gray square appears at the top
left of the central fixation (“ + ”) and to press the right mouse
button when the square appears at the top right or right bottom
of central fixation (“ + ”). The 1-back (2-back) task requires
participants to identify whether the orientation of the X square
displayed on the screen is the same as that of the X-1 (X-2) square.
If the orientation is the same, they press the right mouse button;
otherwise, they press the left button.

rs-fMRI Data Acquisition
The rs-fMRI data for all participants were obtained using a 3.0-T
system scanner (Siemens Magnetom Skyra), and all participants
were instructed to close their eyes, relax, stay awake, and try not
to move their head during the scan. Participants were checked
after the scan to ensure that they remained awake during the
procedure. The rs-fMRI data were obtained using an echo-planar
imaging sequence with the following parameters: repetition time
(TR) = 2,000 ms; echo time = 30 ms; flip angle = 90◦; field of
view = 220 × 220 mm2; matrix size = 94 × 94; 32 axial slices;
and slice thickness = 3 mm and 130 volumes.

Preprocessing
rs-fMRI data preprocessing was performed using the Data
Processing and Analysis of Brain Imaging (DPABI) toolbox
(http://rfmri.org/dpabi; Yan et al., 2016). The first 10 volumes
were discarded to allow the machine to reach magnetization
equilibrium and enable participants to adapt to the MRI scanning
environment. The remaining volumes were processed based
on the following steps: slice timing, head motion correction,
normalization to a Montreal Neurological Institute template via
the gray matter segment, and resampling to isotropic 3-mm
voxels. Multiple nuisance covariates (i.e., the estimated motion
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parameters based on the Friston-24 model (Friston et al., 1996),
the linear drift, the white matter signal, and the cerebrospinal
fluid signal) were regressed out from the data. Finally, the rs-fMRI
time series were temporal bandpass filtered (0.01 < f < 0.10 Hz).

Head Motion
Following Jenkinson’s relative root-mean-square algorithm
(Jenkinson et al., 2002), the mean framewise displacement (FD)
generated during the scanning process was excluded. Notably, the
participant was excluded if the mean FD exceeded 0.2 mm. Based
on this criterion, one participant was excluded, and the study had
a final total sample of 75 ADHD and 20 HC children. We used
mean FD as a covariable in the subsequent statistical analysis to
further reduce the impact of head movement on the findings.

Dynamic Functional Connectivity
Analysis
To examine whole-brain dFC, using a seed method based on
the anatomical ROIs, we used six previously validated seed
ROIs in the bilateral amygdala (Zimmermann et al., 2018).
These regions were divided into the basolateral amygdala (BLA),
CMA, and superficial amygdala (SFA; radius = 6 mm; the
detailed coordinates of each seed are provided in Supplementary
Table S1). The mean blood oxygen level–dependent (BOLD) time
series of each seed region was extracted from the rs-fMRI data of
each participant (Chao-Gan and Yu-Feng, 2010) and correlated
with the BOLD time series of each voxel in the brain to generate
six three-dimensional dFC maps.

A sliding window method was used in this study to formulate
dFC maps for each participant. This method can elucidate the
temporal features of FC over the entire duration of the scan
and calculate the time-varying covariance of interregional neural
signals, which is the variance of dFC. The window length is a key
parameter based on the sliding window method. According to
Leonardi and van de Ville (2015), the minimum window length
should not be less than 1/f min because a very short window length
may cause spurious fluctuations. Additionally, the f min denotes
the minimum frequency of the time courses. Conversely, if a
window length is too long, the dynamic characteristics of the time
series would be rendered unobservable. Hence, we decided to use
a Hamming window with a width of 50 TRs (100S) and a step of 1
TR. Moreover, the entire rs-fMRI time series was segmented into
71 windows for each participant. The resting-state r value matrix
was obtained by computing the partial correlation coefficients,
and the z value matrix was obtained via Fisher-z transformation.
Before the statistical analyses, the result maps were smoothed out
with a 4-mm full-width at the half-maximum Gaussian kernel.
Furthermore, to exclude the influence of window width on the
results, the window width was set as 32/64 TR to repeat the
calculations. The results were similar with the results of the 50TR
and are detailed in the Supplementary Materials Figure S1.

Statistical Analyses
The Statistical Package for the Social Sciences 21.0 was used to
analyze the demographic and clinical data. A two-sample t test
was used to evaluate differences in age, grade, FSIQ, mean FD,

anxiety scores, and cognitive scores between the ADHD and
HC groups. Moreover, dFC maps were analyzed using the two-
sample t test based on DPABI to distinguish dynamic changes in
FC between the two groups. Previous studies based on rs-fMRI
have shown that FC in the brain is significantly associated with
intelligence (Song et al., 2008; Pamplona et al., 2015). Therefore,
we included the FSIQ as a covariate, in addition to mean FD and
age. The Gaussian random field theory was applied for multiple
comparison corrections (two-tailed, voxel p < 0.001, cluster
p < 0.05) in DPABI (Yan et al., 2016). Furthermore, we conducted
partial correlation analyses between anxiety scores/cognitive
scores and dFC, which showed significant difference between
the groups in the two-sample t test, while using mean FD, age,
and FSIQ as covariates, to examine the association between
the dFC of the amygdala subregions and the anxiety symptoms
and cognitive functions of children with ADHD. p < 0.05 was
considered statistically significant. However, the two groups had
an imbalanced number of participants, and this may have resulted
in low statistical power. To test the reproducibility of this study’s
results, we selected an equal number of children from the ADHD
group as in the control group and rematched the children by age,
grade, and FSIQ. The two-sample t tests were performed, and the
same statistical method was used.

RESULTS

Demographic Information
Altogether, 75 children with ADHD and 20 HC children were
recruited to participate in this study, and their demographic
and clinical information is provided in Table 1. A comparison
between the two groups showed no statistical difference in
age, education level, and psychosomatic disorders, whereas

TABLE 1 | The participants’ demographic and clinical information.

ADHD (n = 75) HC (n = 20) p values

Age, mean ± SD (y) 8.86 ± 0.58 8.93 ± 0.68 0.75

Grade, mean ± SD 2.88 ± 0.73 2.63 ± 0.77 0.14

FSIQ, mean ± SD 86.07 ± 8.05 95.85 ± 10.20 < 0.01

Mean FD, mean ± SD 0.07 ± 0.03 0.10 ± 0.06 0.01

Anxiety scores, mean ± SD 0.66 ± 0.54 0.14 ± 0.19 < 0.01

Behavioral problems,
mean ± SD

1.14 ± 0.51 0.41 ± 0.35 < 0.01

Learning problems,
mean ± SD

1.91 ± 0.63 0.57 ± 0.45 < 0.01

Psychosomatic disorders,
mean ± SD

0.26 ± 0.31 0.23 ± 0.30 0.71

Hyperactivity–impulse scores,
mean ± SD

1.59 ± 0.68 0.39 ± 0.43 < 0.01

IS(time), mean ± SD 19.43 ± 11.46 11.08 ± 4.00 < 0.01

IS(error), mean ± SD 2.22 ± 2.72 1.20 ± 1.61 0.04

Correct rate of working memory,
mean ± SD

0-back 0.87 ± 0.14 0.94 ± 0.08 0.01

1-back 0.63 ± 0.21 0.80 ± 0.17 < 0.01

2-back 0.41 ± 0.15 0.56 ± 0.14 < 0.01

ADHD means attention-deficit/hyperactivity disorder; FD, framewise displacement;
FSIQ, Full-Scale Intelligence Quotient; HC, health control; IS, interference score.
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significant differences were observed in the mean FD, FSIQ,
behavioral problems, learning problems, hyperactivity–impulse
scores, anxiety scores, IS, and N-back scores of the two groups.
As expected, the FSIQ and the N-back scores of the ADHD group
were significantly lower than those of the HC group, whereas
their behavioral problems, learning problems, hyperactivity–
impulse scores, IS, and anxiety scores were higher.

Group dFC Comparisons
For the patients with ADHD (vs. the HC group), the dFC of
the amygdala subregions showed significant differences in some
areas, and the right SFA exhibited a significantly higher dFC in
the right PFC, the left precuneus, and the left post-central gyrus.
However, no regional differences in dFC were found between the
children with ADHD and those in the HC group with regard to
the bilateral BLA, CMA, and the left SFA. Detailed information
is shown in Figure 1 and Table 2. After we rematched the
subjects (Supplementary Materials Table S1), the results of the
group dFC comparisons were slightly different (Supplementary
Materials Figure S2). However, the dFC between the right SFA
and the right PFC for the ADHD group was still higher than that
for the HC group.

FIGURE 1 | Compared with the HC group, the right SFA of the children in the
ADHD group exhibited significantly higher dFC with the right PFC, the left
precuneus, and the left post-central gyrus. ADHD, attention-deficit/
hyperactivity disorder; dFC, dynamic functional connectivity; HC, health
control; PFC, prefrontal cortex; SFA, superficial amygdala.

TABLE 2 | Brain areas with significant dFC differences between children in the
ADHD and HC groups.

Regions Brodmann
areas

Voxels
size

Peak MNI coordinates t value

x Y z

Right PFC 10 45 30 48 24 3.49

Left precuneus 5/7/31 42 −12 −48 45 4.01

Left post-central gyrus 2/3/4 53 −24 −36 48 4.31

ADHD means attention-deficit/hyperactivity disorder; HC, health control; MNI,
Montreal Neurological Institute; PFC, prefrontal cortex; SFA, superficial amygdala.

Correlation Analysis
For patients with ADHD, the dFC between the right SFA and the
right PFC showed a negative correlation with the 2-back scores
(r = -0.234, p = 0.043) and a positive correlation with the IS
(error) (r =−0.247, p = 0.041) (Figure 2). However, no significant
results were found regarding the anxiety symptoms.

DISCUSSION

To our knowledge, this study is the first to use the dFC method
to explore the amygdala subregion network of children with
ADHD. We observed that compared with the HC group, the right
SFA of the ADHD group showed a higher dFC; this highlights
greater temporal variability in FC with the right PFC, the left
precuneus, and the left postcentral gyrus. Another key finding
is the correlation between the subregion of the amygdala and
cognitive functions of patients with ADHD. The dFC of the
amygdala subregions showed a specific association with working
memory and response inhibition among patients with ADHD.
These outcomes suggest that the FC of the amygdala is more
unstable among children with ADHD, and the dFC of the
amygdala subregion network is related to the cognitive functions
of children with ADHD.

Unlike the resting-state FC, the stability of the FC is reflected
by the dFC. The findings of this study may provide new
insights into the abnormal brain activity of children with
ADHD. Previous studies that analyzed the amygdala as a whole
failed to recognize its structural complexity. Instead, research
demonstrated that different subregions of the amygdala perform
different functions (Han et al., 2014). Primarily, BLA is involved
in associative learning processes as it receives incoming signals
from the cortex and subcortical regions, including the PFC,
thalamus, and hippocampus (Roy et al., 2009; Bzdok et al.,
2013). Meanwhile, CMA is involved in attention regulation,
motor generation, and autonomous emotional responses (Pessoa,
2011; Bzdok et al., 2013), whereas SFA addresses olfactory and
reward-related information (Heimer and Van Hoesen, 2006;
Bzdok et al., 2013).

In this study, the right SFA of the ADHD group showed
a significantly higher FC variability in the right PFC, the left
precuneus, and the left post-central gyrus. Previous studies
suggested that the PFC is fundamentally involved in mechanisms
underlying anxiety (Bishop, 2007; Hare et al., 2008). In the
brain, the PFC and amygdala are interconnected and work in
concert to control the expression of emotions, such as fear and
anxiety (Likhtik et al., 2014). The PFC exerts inhibitory top-down
control over amygdala activities under physiological conditions,
preventing inappropriate emotional expressions (Rosenkranz
et al., 2003). Several studies have shown that the PFC is necessary
for the neurobiology of ADHD (Cheng et al., 2017; Chen et al.,
2020; Liu et al., 2020). Posner et al. (2011) detected a stronger
FC between the amygdala and PFC in adolescents with ADHD.
In contrast to previous studies, our study further analyzed
the dFC of the amygdala subregion, taking into account its
heterogeneity. We analyzed the dFC of the amygdala, and the
elevated dFC represented poor stability of FC; this means that
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FIGURE 2 | In ADHD patients, the dFC between the right SFA and the right PFC showed (A) a negative correlation with the 2-back scores and (B) a positive
correlation with IS (error). ADHD, attention-deficit/hyperactivity disorder; dFC, dynamic functional connectivity; IS, interference score; SFA, superficial amygdala.

Frontiers in Neuroscience | www.frontiersin.org 6 September 2021 | Volume 15 | Article 648143

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-648143 September 28, 2021 Time: 13:23 # 7

Yang et al. Amygdala Subregions Network in ADHD

the interaction between the amygdala and PFC is unstable in
children with ADHD.

Generally, the precuneus belongs to the parietal lobe, which
is involved in a variety of complex functions and is critical for
emotion processing (Cavanna and Trimble, 2006), mediation of
subjective happiness, and somatomotor processing (Sato et al.,
2015). The amygdala is involved in several of these functions,
including emotional processing. The results obtained in our
study, along with the proven psychological functions of these
regions, suggest that the unstable functional connection between
the amygdala and the parietal lobe may be a potential cause
of ADHD. A survey of adolescents with ADHD signified that
there was significantly less activation in the parietal lobe when
these adolescents were asked to perform a mental rotation
task that required spatial working memory; this may indicate
parietal dysfunction in patients with ADHD (Vance et al., 2007).
Hale et al. (2015) believe that parietal electroencephalogram
asymmetry is associated with mood and anxiety disorders.
However, in our study, we did not find a relationship between
anxiety symptoms and brain regions. This may be because (1)
in this study, the factors from Conner’s Parent Rating Scale were
used to represent anxiety symptoms, which had no correlation
with the three brain regions; and (2) the sample size of this study
is relatively small.

This study also finds a relationship between the dFC of the
amygdala subregions and the cognitive functions of patients
with ADHD. Specifically, for patients with ADHD, the dFC
between the right SFA and the right PFC showed a negative
correlation with the 2-back scores and a positive correlation with
the IS (error). This means that the more unstable the functional
connection between SFA and PFC, the worse the cognitive
function of patients with ADHD. Halperin and Schulz (2006)
believe that the structure and function of the PFC are intimately
involved in the manifestation of ADHD symptoms. A previous
study found a reduced activation in the left PFC of children with
ADHD during an inhibition task (Miao et al., 2017). Among
people with ADHD, an increasing number of studies have shown
that there are functional changes in the PFC. For example, a study
found that young people with ADHD show decreased FC of the
left dorsolateral PFC for high-load visuospatial working memory
(Bedard et al., 2014). Another study found that a higher brain
signal variability in the medial prefrontal areas is related to overall
ADHD symptom severity and inattention across children with an
ADHD diagnosis (Nomi et al., 2018), which is consistent with our
findings. However, a previous study showed that increased brain
signal variability is associated with improved task performance
(Garrett et al., 2013). This contradicts our results and might be
explained by the Yerkes–Dodson curve. There is an optimal value
for brain functioning. It is possible that the signal variability in
the PFC of people with ADHD exceeds this optimal value and
thus appears to impair cognitive performance.

This study’s outcomes should be interpreted with caution
because of the following limitations. First, the scanning time
was relatively short, which might reduce the reliability of the
rs-fMRI data. Each participant underwent an rs-fMRI scan for
260 s, whereas similar studies were typically performed for 5 to
8 min (Yu et al., 2016). Second, several methods, with unverified
consistencies, have been proposed to calculate the dFC. However,

this study used the sliding time window method only to explore
the differences in the amygdala subregion network of children
with ADHD. Various methods can be used to confirm the
results of this study in future work. Third, the number of
participants in the two groups was imbalanced, and the sample
size of this study was relatively small, resulting in low statistical
power. This disparity arose because of (1) the difficulty of
recruiting participants who were willing to provide experimental
data and (2) the use of stringent inclusion and exclusion
criteria. Randomized controlled trials with larger sample sizes are
warranted in the future to verify the findings of this study.

Despite these limitations, the following two advantages
enhance the reliability of the results. Previous studies have
outlined that stimulants can change the brain structure and
function of patients with ADHD (An et al., 2013; Querne et al.,
2017; Walhovd et al., 2020) and the dose of the stimulant
correlates with the size of the amygdala (Becker et al., 2015). The
participants selected for this study were not on any stimulants.
Furthermore, researchers confirmed differences in FC among
children with ADHD belonging to different age groups (Tang
et al., 2018). This study minimized the confounding effect of age
by including children between 8 and 10 years old and controlling
for the participants’ ages in the statistical analysis.

In summary, we investigated the dynamic variability of
amygdala-based FC and its association with anxiety symptoms
and the cognitive function of children with ADHD. The results
of this study suggest that the dFC of the amygdala subregion of
children with ADHD is significantly different from that of healthy
children, and higher dFCs are negatively associated with the
cognitive functions of children with ADHD. In demonstrating an
association between the variability of amygdala FC and cognitive
functions, this study may contribute by providing a new direction
for studying the internal mechanism of ADHD.
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