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Abstract

Background

Elevated plasma concentrations of the endogenous nitric oxide synthase (NOS) inhibitor

asymmetric dimethylarginine (ADMA) have been observed in respiratory conditions such as

asthma and cystic fibrosis. Since oxidative stress has been shown to increase the activity of

arginine methylating enzymes, hence increased ADMA synthesis, and to reduce ADMA

degrading enzymes, hence increased ADMA concentrations, we assessed methylated argi-

nines concentrations in chronic obstructive pulmonary disease (COPD), a disease charac-

terized by increased oxidative stress.

Methods

Plasma arginine, ADMA and symmetric dimethylarginine (SDMA), oxidative stress mark-

ers (thiobarbituric acid reactive substances, TBARS, and plasma proteins SH, PSH) and

antioxidants (taurine and paraoxonase 1, PON1, activity) were measured in 43 COPD

patients with mild (n = 29) or moderate (n = 14) disease and 43 age- and sex-matched

controls.

Results

TBARS significantly increased with COPD presence and severity (median 2.93 vs 3.18 vs
3.64 μmol/L, respectively in controls, mild and moderate group, p<0.0001 by ANOVA)

whereas PSH decreased (6.69±1.15 vs 6.04±0.85 vs 5.33±0.96 μmol/gr prot, p<0.0001 by

ANOVA). Increased ADMA/arginine ratio, primarily due to reduced arginine concentrations,

was also observed with COPD presence and severity (median 0.0067 vs 0.0075 vs 0.0100,

p<0.0001 by ANOVA). In multiple logistic regression analysis, only TBARS (OR 0.44, 95%

CI 0.25–0.77; p = 0.0045) and ADMA/Arginine ratio (OR 1.72, 95% CI 2.27–13.05; p = 0.02)

were independently associated with COPD severity.
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Conclusion

COPD presence and severity are associated with increased oxidative stress and alterations

in arginine metabolism. The reduced arginine concentrations in COPDmay offer a new tar-

get for therapeutic interventions increasing arginine availability.

Introduction
Chronic Obstructive Pulmonary Disease is a common respiratory condition characterized by
progressive airflow limitation, persistent productive cough, mucous plugging and dyspnea [1–
2]. Elevated concentrations of oxidative stress (OS) markers are commonly observed in this
group [3–5]. The reduced ability of cellular antioxidant defenses to fully inactivate the reactive
oxygen species (ROS) is a hallmark of OS. As a result, there is a functional impairment of sev-
eral important biomolecules as lipids, proteins or nucleic acids, which can compromise cell
health and viability. OS induces a variety of cellular responses through generation of secondary
reactive species, leading to cell death by necrosis or apoptosis and, consequently, disease onset
and progression. Moreover, activity of several enzymes can be influenced by redox regulation
[6], including enzymes involved in the formation and degradation of asymmetric dimethylargi-
nine (ADMA), such as protein arginine N-methyltransferases (PRMTs) and dimethylarginine
dimethylaminohydrolase (DDAH) [7–8]. ADMA is an effective endogenous inhibitor of nitric
oxide synthase (NOS). Its accumulation has been reported in renal failure [9–10], cardiovascu-
lar disease [11–12] and, only recently, lung disease [13–14]. ADMA synthesis is catalysed by
PRMTs through the addition of one or two methyl groups to the terminal nitrogen atom of
protein arginine. Human PRMTs are classified on the basis of their specific catalytic activities
in type I and type II. In the first step, both enzymes catalyse monomethylarginine formation.
During the second step type I enzymes produce ADMA, whereas type II enzymes lead to the
formation of SDMA [15]. During proteolysis, ADMA and SDMA are released into the cytosol
where free ADMA, but not free SDMA, is further degraded to citrulline and dimethylamine by
DDAH15. Studies have shown that PRMT1 RNA or protein expression is increased, and
DDAH activity is decreased, under OS stimuli [16–18]. While OS is well characterized, little
information is available on methylated arginine concentrations in COPD. Available data prin-
cipally focus on arginine and methylated arginines in sputum or exhaled breath condensate
[19–22], while only one report describes plasma concentrations in COPD subjects [22]. There-
fore, we tested the hypothesis that a) methylated arginines are associated with COPD presence
and severity and b) such alterations are associated with OS markers (thiobarbituric acid reac-
tive substances and Proteins–SH) and antioxidants (taurine and paraoxonase 1 activity).

Methods

Subjects
Forty-three consecutive COPD patients (29 mild and 14 moderate) without a previous diagno-
sis of COPD, were enrolled from the Respiratory Unit of the University of Sassari. Each patient
underwent physical examination, chest radiographs, routine blood tests and respiratory func-
tion tests. The latter included forced expiratory volume in 1 sec (FEV1), forced vital capacity,
and FEV1/FVC ratio. A structured questionnaire was administered to obtain demographic and
clinical information including age, sex, body mass index (BMI) and smoking status. No patient
was treated with long-acting muscarinic antagonists, long or short acting β-agonists at the time

Oxidative Stress and Arginines in COPD

PLOSONE | DOI:10.1371/journal.pone.0160237 August 1, 2016 2 / 10

Funding: This research was funded by the
“Fondazione Banco di Sardegna – Sassari – Italy ”
and by the “Ministero dell’Università e della Ricerca”
Italy. The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

Abbreviations: ADMA, asymmetric dimethylarginine;
COPD, chronic obstructive pulmonary disease; NOS,
nitric oxide synthase; OS, oxidative stress; PON1,
paraoxonase 1, PSH, Proteins–SH; SDMA,
symmetric dimethylarginine; TBARS, thiobarbituric
acid reactive substances.



of the assessments. Moreover, no patient received inhaled corticosteroids within four weeks
prior to the study. COPD patients with significant symptom deterioration within the last three
months, indicative of disease exacerbation, were excluded.

COPD diagnosis and severity were assessed according to physical examination, spirometric
results,

smoking history and respiratory symptoms based on the Global Initiative for Chronic
Obstructive Lung Disease criteria [23]. In particular, classification of COPD severity was based
on spirometric values reported in Table 1.

A group of 43 age and sex-matched healthy controls was also included in the study. Exclu-
sion criteria included the presence of concomitant inflammatory disease such as autoimmune
disorders and infections, liver, kidney, heart disease and cancer.

This study was approved by the Institutional Local Ethics Committee (Azienda Sanitaria
Locale n°1 di Sassari (Italy) (prot. 2175/CE del 21/04/2015), and was in accordance with the
principles of Declaration of Helsinki. All subjects provided written informed consent.

Biochemical analysis
Arginine, ADMA, SDMA and taurine were determined by capillary electrophoresis UV detec-
tion as previously described [24–25]. As inadequate precision of the assay used for the analysis
of ADMAmay increase the chance of statistical type 2 errors in clinical studies and may also
lead to a severe underestimation of the strength of the association between ADMA and other
biochemical or clinical variables [26], we used a capillary electrophoresis method that give
inter-assay CV between 2 and 3% for Arginine, ADMA and SDMAmeasurement.

TBARS were determined according to the method described by Esterbauer and Cheeseman
[27]. TBARS methodology measures MDA and other aldehydes produced by lipid peroxida-
tion induced by hydroxyl free radicals. Plasma was mixed with 10% trichloroacetic acid and
0.67% thiobarbituric acid and heated at 95°C in a thermoblock heater for 25 min. TBARS were
determined by measuring the absorbance at 535 nm. A calibration curve was obtained using
standard MDA and each curve point was subjected to the same treatment as that of the sam-
ples. Paraoxonase activity was determined by measuring the increase in absorbance at 412 nm
(formation of 4-nitrophenol) using paraoxon (O,O diethyl-O-p-nitrophenyl phosphate) as a
substrate [28]. Enzyme activity was calculated by using the molar extinction coefficient of
17,100 M−1cm−1 and one unit (U) of paraoxonase activity was defined as 1 nmoL of 4-nitro-
phenol formed per minute. Plasma PSH determination was performed by spectrophotometry
with 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) as titrating agent by measuring the absorbance
of conjugate at 405 nm [29]. Concentration in samples was determined from a GSH standard
curve.

Statistical analysis
All results are expressed as mean values (mean ± SD) or median values (median and range).
Variables distribution was assessed by the Kolmogorov-Simirnov test. Statistical differences

Table 1. Classification of COPD severity on the basis of spirometry values.

Severity of obstruction Post bronchodilator FEV1/FVC FEV1% PRED

MILD COPD < 0.7 > 80%

MODERATE COPD < 0.7 50–80%

SEVERE COPD < 0.7 30–50%

VERY SEVERE < 0.7 < 30%

doi:10.1371/journal.pone.0160237.t001
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between groups were compared using unpaired Student’s t-test or Mann-Whitney rank sum
test, as appropriate. Correlation analysis between variables was performed by Pearson's correla-
tion or Spearman’s correlation as appropriate. Multiple comparisons were performed by one-
way ANOVA. Levene's test for equality of error variances was employed, while student-New-
man-Keuls test for all pairwise comparisons was used. Non-normally distributed variables
were log10-transformed prior to being used with parametric tests. Normal distribution of the
residuals was checked to assess the goodness of fit of the transformations.

Logistic regression analysis with COPD absence vs. presence as dependent variable was con-
ducted to determine associations between variables potentially involved in disease develop-
ment. A further logistic regression analysis with mild or moderate condition as dependent
variable was conducted to determine associations between COPD severity and variables poten-
tially involved in disease progression.

Statistical analyses were performed using MedCalc for Windows, version 15.4 64 bit (Med-
Calc Software, Ostend, Belgium) and SPSS for Windows, version 14.0 32 bit (IBM Corporation;
Armonk, NY, USA).

Results
Table 2 describes the clinical and demographic characteristics of COPD patients and age- and
sex-matched controls. FEV1 decreased significantly from 2.75±0.59 L in controls to 2.24±0.56
L in mild and 1.56±0.32 L in moderate COPD patients (p<0.001), whereas FVC was 3.40±0.73
L, 3.18±0.77 L and 2.44±0.54 L, respectively (p<0.001). FEV1/FVC ratio was 80.4±4.9% in con-
trols, 70.2±3.12% in mild, and 64.8±7.9% in moderate COPD patients, respectively (p<0.001).

Table 2. Clinical, functional and biochemical parameters of healthy subjects and COPD patients.

Characteristics Controls (n = 43) Mild COPD (n = 29) Moderate COPD (n = 14) p value

Age (years) 73.4±6.9 75.4±4.8 73.4±7.7 NS

Sex (F/M) 9/34 7/22 2/12 NS

BMI (kg/m2) 26.4±3.6 27.4±3.4 27.4±4.5 NS

Current smokers 3 (7%) 2 (6.9%) 1 (7.1%) NS

Never smoked 14 (32.6%) 8 (27.6%) 2 (14.2%) NS

Ex smokers 26 (60.4%) 19 (65.5%) 11 (78.6%) NS

FEV1 (L) 2.75±0.59 2.24±0.56*** 1.56 ± 0.32***°°° <0.001

FVC (L) 3.40±0.73 3.18±0.77 2.44±0.54***°° <0.001

FEV1/FVC 80.8±4.9 70.2±3.1*** 64.8±7.9***°° <0.001

TBARS (μmol/L) 2.93 (2.46–3.23) 3.18 (2.50–3.54) 3.64 (3.16–4.38)**° 0.003

PSH (μmol/ g prot) 6.69±1.15 6.04±0.85 5.33±0.96***° <0.001

PON1(U/L) 253 (147–340) 230 (154–376) 211(157–284) NS

Taurine (μmol/L) 55.8 (47.7–72.1) 59.3 (49.0–76.8) 57.6 (50.8–75.3) NS

Arginine (μmol/L) 79.8 (68.3–90.4) 70.4 (60.3–78.2)* 53.4 (41.4–59.8)***°° <0.001

ADMA (μmol/L) 0.488 (0.454–0.544) 0.505 (0.432–0.588) 0.513 (0.412–0.625) NS

SDMA (μmol/L) 0.460 (0.395–0.590) 0.513 (0.429–0.594) 0.485 (0.456–0.577) NS

ADMA/arginine 0.0067 (0.0056–0.0077) 0.0075 (0.0053–0.0098) 0.0100 (0.0079–0.0117)***°° <0.001

ADMA/SDMA 1.07 (0.80–1.28) 0.98 (0.81–1.31) 1.12 (0.86–1.25) NS

*P<0.05

**p<0.01

***p<0.001 vs Controls;

°P<0.05

°°p<0.01

°°°p<0.001 vs mild COPD obtained by ANOVA (Student-Newman-Keuls test for all pairwise comparisons or Krustall-Wallis test as appropriate)

doi:10.1371/journal.pone.0160237.t002
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TBARS plasma concentrations increased significantly with COPD presence and severity
(p<0.001 by ANOVA). In particular we found a significant difference between controls and
patients with moderate COPD (median 2.93 vs 3.64 μmol/L, p<0.01) and between mild and
moderate COPD patients (median 3.18 vs 3.64 μmol/L, p<0.05). By contrast, a significant
decrease in plasma PSH concentrations was observed with COPD presence and severity
(p<0.001). Multiple comparisons by ANOVA showed significant differences in PSH mean val-
ues between controls and moderate COPD (6.69±1.15 μmol/g prot vs 5.33±0.96 μmol/g prot,
p<0.001) and between mild and moderate COPD (6.04±0.85 vs 5.33±0.96 μmol/g prot
P<0.001). ADMA and SDMA plasma concentrations were not significant different between
controls and COPD patients. By contrast, median arginine concentrations were progressively
lower in controls (79.8 μmoL), mild (70.4 μmol/L) and moderate COPD patients (53.4 μmolL,
P<0.001). As consequence also ADMA/arginine showed significant differences according to
COPD presence and severity (p = 0.0001). Multiple comparisons demonstrated a significant
difference between controls and patients with moderate COPD (median 0.0067 vs 0.0100,
p<0.001) and between mild and moderate group (median 0.0075 vs 0.0010, p<0.05).

As reported in Table 3, univariate analysis in COPD patients showed that FEV1 was corre-
lated with age (rho = -0.31, p = 0.043), PSH (rho = 0. 36, p = 0.016) and ADMA/arginine ratio
(rho = -0.43, p = 0.0001). In controls FEV1 was correlated only with age (rho = -0.34;
p = 0.036) and sex (rho = -0.55, p<0.0001). Table 4 report as, after adjusting for age, sex, BMI,
smoking status, TBARS, PSH and ADMA/arginine ratio, sex (β = -0.44, p = 0.007), PSH (β =
0.33, p = 0.047), and ADMA/arginine ratio (β = -0.45, p = 0.005) were independently associ-
ated with FEV1 in COPD patients in regression analysis. In controls, only age (β = -0.38,
p = 0.009) and sex (β = -0.68, p =<0.0001) were independently associated with FEV1.

When considering controls and COPD patients together, a negative relationship between
PSH and ADMA/arginine ratio was also observed (rho = -0.23, p = 0.033). In multiple logistic
regression analysis of the total population (COPD and controls), after adjusting for age, sex,
BMI, smoking status, ADMA/arginine ratio, TBARS, PSH, PON and taurine, only PSH (OR
0.44, 95% CI 0.25–0.77; p = 0.004) and ADMA/Arginine ratio (OR 172, 95% CI 2.27–13,055;
p = 0.02) were independently associated with presence of COPD.

Table 3. Linear regression analysis between FEV1 and some demographic and biochemical variables
in controls and COPD patients.

Controls (n = 43) COPD (n = 43)

r or rho p-value r or rho p-value

Age -0.34 0.036 -0.31 0.043

Sex -0.55 <0.0001 – –

PSH – – 0.36 0.016

ADMA/Arginine – – -0.43 <0.0001

doi:10.1371/journal.pone.0160237.t003

Table 4. Multiple regression analysis with FEV1 as dependent variable and age, sex, BMI, smoking
status, TBARS, PSH and ADMA/arginine ratio as independent variables, in controls and COPD
patients.

Controls (n = 43) COPD (n = 43)

β p-value β p-value

Age -0.38 0.009 – –

Sex -0.68 <0.0001 -0.44 0.007

PSH – – 0.33 0.047

ADMA/Arginine – – -0.45 0.005

doi:10.1371/journal.pone.0160237.t004
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Data of multiple logistic regression analysis performed on 43 COPD patients according to
disease severity (mild vs. moderate), after adjusting for age, sex, BMI, smoking status, ADMA/
arginine ratio, TBARS, PSH, PON and taurine are reported in Table 5. Lower plasma PSH and
higher TBARS and ADMA/arginine ratio were independently associated with disease severity.

Discussion
Chronic obstructive pulmonary disease is a major and increasing global health problem.
According to the World Health Organization COPD will become the third leading cause of
death and the fifth leading cause of disability in the world by 2020 [30]. Despite increasing
awareness, the pathogenesis of COPD has received relatively little attention from clinicians,
researchers, and the pharmaceutical industry [31]. This is likely due because COPD is viewed
as self-inflicted (by smoking) and also because the underlying disease process is generally con-
sidered to be irreversible. Consequently, there is a fundamental lack of knowledge about the
cellular, molecular, and genetic mechanisms of this pathology. COPD is associated with a
chronic inflammatory response, predominantly in small airways and lung parenchyma, which
is characterized by an increase of activated neutrophils and macrophages and increased num-
bers of inflammatory mediators in the airways [32–33]. It has been proposed that in COPD the
increased oxidant burden may not be adequately counterbalanced by the lung antioxidant sys-
tems, resulting in OS. Increased OS may be induced both directly, as a result of smoking, or
indirectly by the increased release of reactive oxygen species from airspace inflammatory cells
stimulated by noxious particles and gases. Analysis of cell profile in alveoli and small airways
of COPD patients shows, in fact, an increase in several inflammatory cell types, including mac-
rophages, T lymphocytes, B lymphocytes, and neutrophils [34]. These cells, once activated, can
generate anion superoxide (O2�-) probably through reduced nicotinamide adenine dinucleo-
tide phosphate oxidase pathway. In addition, the impaired ventilation may results in a
decreased hemoglobin oxygen saturation level (hypoxemia), resulting in local tissue hypoxia
[35]. Experimental evidence suggests that hypoxaemia enhances OS in COPD [36] and that the
source of ROS production in hypoxia is likely to be the mitochondria at the respiratory chain
level [37]. In support of these observations we found increased concentrations of TBARS (+-
13.2%) and reduced concentrations of PSH (-13.3%) in COPD subjects vs. controls, indicating
the presence of significant OS. PSH assay, in fact, provide a measure of total protein sulfhydryl
groups in plasma. The most representative -SH group in plasma is that of human serum albu-
min, due to its high concentrations. The Cys34 –SH group of HSA represents ~80% of all
reduced thiols in human plasma. It is an important scavenger of reactive oxygen and nitrogen
species in blood acting as an effective redox buffer in the vascular compartment [38]. When
oxidative stress compromise this redox buffer system, ROS are free to attack lipids, thus yield-
ing some products of lipid peroxidation as malondialdehyde, measurable by TBARS assay.
Interestingly, simple linear regression suggests that in COPD patients, FEV1 is associated with
age, PSH and ADMA/Arginine ratio, while in controls only age and sex were related to FEV1.

Table 5. Logistic regression analysis (including TBARS, PSH and ADMA/arginine ratio) showing ORs
for moderate disease.

Factor Moderate disease p-value

OR 95%CI

TBARS 481 x1012 26–9x1027 0.030

PSH 0.0125 0.0003–0.4731 0.018

ADMA/arginine 49x106 25–96x1012 0.016

doi:10.1371/journal.pone.0160237.t005
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These data, further supported by multiple linear regression analysis after correction for other
important variables, confirms that increased OS is strictly linked to deterioration in lung func-
tion. Moreover, similarly to our previous observations in the general older population [39], we
found a significant negative association between ADMA/arginine ratio and FEV1, suggesting a
detrimental effect of arginine methylation on key lung functional parameters. This observation
was further confirmed by multiple logistic regression analysis indicating that PSH and ADMA/
arginine ratio were independently associated with COPD development. When analyzing the
factors independently associated with COPD severity both OS markers, PSH and TBARS, and
ADMA/arginine ratio showed significant associations. Arginine metabolism plays an impor-
tant role in the maintenance of airways tone and function by production of nitric oxide via the
NOS pathway [40]. Dysregulation of the competing enzymes has been shown to contribute to
airway obstruction in asthma and in patients with cystic fibrosis [13–14,21]. Bode-Boger and
coworkers recently proposed the calculation of the ADMA/arginine ratio as an index reflective
of NOS imbalances activity caused by the accumulation of ADMA. As such, a “normal”
ADMA/arginine ratio is in the range of 0.0044–0.0076 [40], consistent with our reported values
in the control group, while COPD subjects had higher values in accordance with recent data
reported by Aydin et al. [22]. In this last report, however, there is no information regarding the
impact of disease severity on ADMA concentrations. We found that, when categorizing on the
basis of disease progression, only moderate COPD patients had values above the normal range,
whereas mild COPD patients had median values in the normal range, further supporting the
hypothesis that ADMA and arginine could be involved primarily during disease worsening.
Pending additional evidence from experimental and human studies, it is plausible to speculate
that COPD disease exacerbation states are associated with further increases both in oxidative
stress and in the ADMA/Arginine ratio. The mechanisms responsible for the reported imbal-
ance between ADMA and arginine may be related to OS. The reduction in arginine concentra-
tions observed in COPD patients is likely due to the well-known increase of arginase activity
stimulated by OS [41]. Moreover, the increase of neutrophil numbers typical of COPD may
contribute to arginine depletion since these cells constitutively express high levels of arginase I
in azurophilic granules. These granules may be released in patients with COPD together with
other constituents of the granules such as elastase [42]. It is also known that neutrophil num-
bers increase as COPD worsens [43]. This might further explain the further reduction of argi-
nine concentrations observed in moderate vs. mild forms of disease.

Moreover, the activity of the enzymes involved in the formation and degradation of ADMA
such as PRMTs and DDAH is regulated in a redox-sensitive fashion [16–18]. Studies in cul-
tured endothelial cells have reported that the gene expression of PRMTs is increased by oxLDL
in a concentration-dependent manner [7]. There is growing body of evidence that OS decreases
the activity of the ADMA demethylating enzyme, DDAH [8]. The presence of a reactive cyste-
ine residue (Cys249) in the active site of DDAH leads to diminished activity of the enzyme in
presence of ROS. Thus, OS, through DDAH inhibition, PRMTs synthesis stimulation and argi-
nase increase activity might be primarily responsible for an imbalance of ADMA/arginine
ratio. This hypothesis is also supported by the significant negative correlation observed
between ADMA/arginine ratio and PSH in the analyzed subjects. In our COPD cohort,
ADMA/arginine ratio is altered mainly because of a reduction in arginine concentrations, even
if a non significant increase in ADMA levels of about 3.5% has been found in all COPD
patients with a rise of about 5.2% in moderate COPD. It will be interesting to evaluate if
ADMA concentrations are further increased in patients with more severe symptoms (COPD
stages 3 and 4).SDMA concentrations and ADMA/SDMA ratios were also similar in controls
and COPD patients. Obtained ADMA/SDMA values were besides in accordance to that
reported by Bulau et al [42].
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Therefore, our data indicate that OS and ADMA/arginine ratios are related in COPD
patients, confirming previous reports showing reduced PRMT RNA or protein expression,
arginase and DDAH activity under OS stimuli [16–18, 43–44]. Both PRMT and DDAH are
widely expressed in lung tissue. Recent evidence also suggest that methylarginine metabolism
in the lung may significantly contribute to circulating ADMA and SDMA concentrations [42].
In particular, pulmonary DDAH-1 is actively involved in ADMA degradation while PRMT-I
pulmonary expression is related to increased protein arginine methylation of the lung prote-
ome. Moreover, as previously discussed, neutrophils significantly contribute to arginine
decrease in the lung through the release of arginase I. Although no specific assessment of the
expression and activity of these enzymes in lung tissue was performed in our study, it is plausi-
ble that the structural and functional lung alterations in COPD may lead to changes in arginine
metabolites plasma concentration.

In conclusion our data, while confirming the role of OS and imbalanced arginine concentra-
tions in COPD patients, show for the first time that increased ADMA/arginine ratio is inde-
pendently associated with OS and COPD severity. Further studies, with a larger number of
subjects covering all stages of COPD disease, are required to fully characterize the impact of
arginine and ADMA on disease worsening.
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