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Contributions of default mode 
network stability and deactivation 
to adolescent task engagement
Ethan M. McCormick & Eva H. Telzer

Out of the several intrinsic brain networks discovered through resting-state functional analyses in the 
past decade, the default mode network (DMN) has been the subject of intense interest and study. In 
particular, the DMN shows marked suppression during task engagement, and has led to hypothesized 
roles in internally-directed cognition that need to be down-regulated in order to perform goal-directed 
behaviors. Previous work has largely focused on univariate deactivation as the mechanism of DMN 
suppression. However, given the transient nature of DMN down-regulation during task, an important 
question arises: Does the DMN need to be strongly, or more stably suppressed to promote successful 
task learning? In order to explore this question, 65 adolescents (Mage = 13.32; 21 females) completed a 
risky decision-making task during an fMRI scan. We tested our primary question by examining individual 
differences in absolute level of deactivation against the stability of activation across time in predicting 
levels of feedback learning on the task. To measure stability, we utilized a model-based functional 
connectivity approach that estimates the stability of activation across time within a region. In line with 
our hypothesis, the stability of activation in default mode regions predicted task engagement over 
and above the absolute level of DMN deactivation, revealing a new mechanism by which the brain can 
suppress the influence of brain networks on behavior. These results also highlight the importance of 
adopting model-based network approaches to understand the functional dynamics of the brain.

With the advent of resting-state fMRI, there has been an explosion of interest in characterizing intrinsic neu-
ral networks, as well as describing their various contributions to human cognition and behavior. Of particu-
lar interest to researchers has been the default mode network (DMN), a functionally-related system of regions 
which show greater metabolic activity at rest compared to task1. Regions of the DMN include posterior cingulate, 
medial-prefrontal, hippocampal, and lateral temporal areas, and are often defined as regions showing strong func-
tional connectivity with the posterior cingulate during rest2. While the exact function of the DMN has proven 
elusive, it is involved in a wide variety of cognitions, such as autobiographical memory, spontaneous thought, and 
the integration of social information3–6. Furthermore, disruption of DMN connectivity is linked to psychopatho-
logical states such as schizophrenia, ADHD, conduct disorder, and depression7–10.

Importantly, activation in DMN regions shows an inverse relationship with “task-active” regions such as the 
fronto-parietal and salience networks. These networks show increased activation during task conditions11,12, in 
contrast to the DMN, which often shows strong deactivation (relative to baseline) during decision making (i.e., 
“task-negative”)2. Furthermore, functional anti-correlations (i.e., connectivity) between task-active regions and 
the DMN are regularly seen during task11,13 and are thought to reflect the degree of task engagement and atten-
tion14,15. However, suppression (i.e., the down-regulation of a network’s influence on behavior, often indexed by 
deactivation of the BOLD signal) of the DMN by task-related activity appears to be transient16, with the default 
mode network coming back online quickly once task demands ease15. Additionally, individuals who exhibit psy-
chopathologies such as ADHD often fail to show DMN suppression17, reflecting difficulties in maintaining sus-
tained attention to a task.

One key form of task engagement is feedback learning, during which individuals must maintain mental rep-
resentations of the task structure and reinforcement history in order to guide future behavior18–20. Processes 
which impact feedback learning are important during adolescence, as teens are particularly sensitive to 
performance-relevant cues in their environment, showing both developmental19,21 and inter-individual20,22,23 
differences in sensitivity to positive and negative feedback information. Given the role of DMN in disrupting 
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attentional and engagement processes14,15, failure to suppress DMN regions during task should be related to 
decreased feedback learning, as adolescents disengage (as a result of decreased attention and/or motivation) from 
task information. This disengagement could have particularly important consequences for adolescents, as deficits 
in the ability to learn from feedback can have negative impacts on adolescent behavior19,20.

Given the transient nature of DMN suppression during task, one key unanswered question remains when 
considering potential mechanisms involved in down-regulating (or suppressing) the default mode network dur-
ing task engagement: Does the DMN need to show reduced (i.e., a decrease in the absolute level of activation), or 
more stable (i.e., reduced fluctuations in activation) activity to achieve suppression? This question distinguishes 
between the mean level of neural activation (or deactivation as the case may be) and the stability over time of 
DMN activity as the mechanism by which the brain reduces the influence of functional networks on behavior. 
Under the first hypothesis, we would expect that individuals who show greater task engagement (indexed by 
increased feedback learning) would show the greatest DMN deactivation during task. Alternatively, feedback 
learning may be reflected in more stable DMN activity over time, as suppression of the DMN causes the network 
to become less responsive to changing task dynamics. Importantly, these two explanations may not be mutually 
exclusive, as stable and strong deactivation might co-occur.

In the current study, we tested the hypothesis that stability in task-negative regions of the DMN contributes 
to feedback learning (i.e., participants’ ability to extract and respond to information cues from the task environ-
ment), over and above absolute level of deactivation, against the alternative hypothesis that suppression of the 
DMN is primarily achieved through reductions in univariate activation (i.e., deactivation). To do so, adolescents 
completed a risky decision-making task, the Balloon Analog Risk Task (BART) during functional magnetic res-
onance imaging (fMRI). Using an ROI-based approach for both traditional univariate and model-based net-
work analyses, we extracted parameter estimates of DMN deactivation and stability for each individual. We then 
entered these two types of parameters as simultaneous predictors of adolescents’ engagement on the task. While 
previous work has focused on the absolute deactivation of DMN, we hypothesized that DMN stability would be 
a more powerful predictor of feedback learning than absolute level of deactivation in these regions. However, we 
further predicted that stability and level of deactivation would be positively related, with stronger deactivation 
being associated with greater DMN stability, suggesting a possible reconciliation of this hypothesis with previous 
conceptualizations of the DMN during task.

Methods
Participants. Sixty-seven adolescent participants completed an fMRI scan. One participant was scanned 
using the wrong head coil, and another was excluded for excessive movement (>10% of slices with movement in 
excess of 2 mm), resulting in a final sample of 65 adolescents (Mage = 13.32, SD = 0.62, range = 12.42–14.83; 56 
Caucasian, 2 African American, 7 mixed race/multiple responses). Participants were largely from high income 
households (1 $0–14,999; 3 $15–29,999; 6 $30–44,999; 4 $45–59,999; 8 $60–74,999; 9 $75–89,999; 30 > $90,000; 
and 4 not reported), with highly educated parents (3 completed a high school diploma; 8 completed some col-
lege; 4 completed an associate degree; 21 completed a bachelor’s degree; 5 completed some graduate school; 18 
completed a master’s degree; and 3 completed a professional degree). Written informed assent was obtained for 
all participants under the age of 18, and written informed consent was obtained from each participants’ parent 
and/or legal guardian. All methods were carried out in accordance with the relevant guidelines and regulations 
outlined by the Declaration of Helsinki and experimental protocols were approved by the University of Illinois, 
Urbana-Champaign Institutional Review Board.

Risky Decision-Making Task. Participants completed a version of the Balloon Analogue Risk Task (BART), 
a well-validated experimental paradigm24,25 that has been adapted for fMRI in developmental populations19,26. 
The BART measures participants’ willingness to engage in risky behavior in order to earn rewards, and is asso-
ciated with real-life risk taking in adolescents20,27 and adults24,25. During the scan session, participants were pre-
sented with a sequence of 24 balloons that they could pump up to earn points. Each pump decision was associated 
with earning one point but also increased the risk that a balloon would explode. If participants pumped a balloon 
too many times, the balloon would explode and participants would lose all the points they had earned for that 
balloon. However, if participants chose to cash out before the balloon exploded, the points they earned would 
be added to the running total of points, which was presented on the screen as a points meter. Participants were 
instructed that their goal was to earn as many points as possible during the task. Each event (e.g., larger balloon 
following a pump, new balloon following cashed or explosion outcomes) was separated with a random jitter (500–
4000 ms). Balloons exploded after 4 to 10 pumps, and the order of balloons was presented in a fixed order (after 
being pseudo-randomly ordered prior to data collection), although none of this information was made available 
to participants. The BART was self-paced and would not advance unless the participant made the choice to either 
pump or cash out. Participants were told that they could win a $10 gift card at the end of the neuroimaging ses-
sion if they earned enough points during the task. The point threshold for winning this prize was intentionally 
left ambiguous so that participants were motivated to continue earning points throughout the task. In reality, all 
participants were given a $10 gift card after completing the scan session.

Task Engagement. To measure adolescents’ task engagement during the risky decision-making task, we 
calculated two indices of feedback learning. Specifically, we were interested in how adolescents used feedback 
information from previous trials in order to guide their current behavior, and to adapt that behavior when it 
results in maladaptive outcomes26. Previous research using the BART has shown that adolescence is a time of 
increased feedback learning (compared with childhood), and that individual differences in feedback learning 
predict differences in risk behavior19. In the current study, we were interested in two types of feedback learning 
to measure task engagement.
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First, we estimated how sensitive adolescents were to the valence of feedback on the task. To do so, we meas-
ured the impact of experiencing positive (i.e., a cash-out) versus negative (i.e., an explosion) on the previous trial. 
For this metric, larger positive values indicate that adolescents increase their pumping behavior following positive 
feedback and decrease pumping following negative feedback, while values close to zero indicate pump behavior 
that is random with respect to the valence of feedback that adolescents receive. Secondly, we estimated adoles-
cents’ sensitivity to the value (i.e., magnitude) of feedback on the previous trial, by contrasting risk decisions 
made after receiving low-value feedback (i.e., earning or losing points on a small or medium-sized balloon) versus 
those made after high-value feedback (i.e., earning or losing points on relatively large balloons). Larger positive 
values on this metric indicate that adolescents change their pump behavior more after a high-value feedback 
event, whereas values close to zero indicate that adolescents’ decisions to pump were not impacted by the value of 
points earned (in a previous cash-out) or lost (in a previous explosion). Each of these feedback learning indices 
measure how adolescents retain relevant task information to guide their ongoing risk behavior.

To obtain these indices, we took a multi-level modeling approach utilizing the SAS software package (SAS 
version 9.4; SAS Institute Inc., Durham, NC), in which trials (24 balloons) were nested within adolescents, and 
the level 1 outcome was the final number of pump decisions made on a given balloon. To obtain our learning 
indices, we modeled pump number at the trial level as dependent on (1) previous feedback and (2) the size of that 
feedback. Consistent with previous research27,28, we also controlled for the overall trial number and the outcome 
of the current balloon, resulting in the following Level 1 equation:

γ γ γ

γ γ μ ε

= + +

+ + + +

Number of Pumps Trial Number Current Outcome
Previous Outcome Valence Previous Outcome Value

ij j j ij j ij

j ij j ij j ij

0 1 2

3 4 0

Total pumps on a particular balloon trial (i) for a given adolescent (j) was modeled as a function of the average 
number of pumps across the task (γ0j), the trial number (γ1j; range = 0–23), the outcome of the current trial (γ2j; 
coded Cash-Out = 0, Explosion = 1), the outcome of the previous trial (γ3j; coded Cash-Out = 0, Explosion = 0), 
and the size of the previous outcome (γ4j), in which we calculated a 75th percentile threshold for each participant’s 
pump behavior based on their individual data. For previous trial outcomes on balloons where adolescents 
pumped above this threshold, the predictor was coded as 1, as points earned or lost on these trials were high value 
for the individual, while all other previous trials were coded as 0, indicating lower value earnings or loss28. As our 
focus was on adolescents’ individual sensitivity to the valence and value of previous feedback, these parameters 
were allowed to vary randomly in our model in order to gain individual effect estimates. Nesting of trials within 
balloons was achieved by modeling a between-person random intercept (μ0j) assumed to be independent and 
identically distributed and follow a Normal distribution with a constant variance (i.e., τ~u N[0, ]j0 00 ). Finally, the 
individual-level residuals errors (εij) were assumed to be independent and identically distributed, following a 
Normal distribution with a constant variance (i.e., ε σ~ N[0, ]ij

2 ). In order to use these two metrics of task 
engagement, we extracted empirical Bayes estimates for each adolescent. Empirical Bayes estimates are 
optimally-weighted averages which combine individual- and group-level slope estimates, and “shrink” individual 
slope estimates towards group mean effect29.

fMRI Data Acquisition and Processing. fMRI data acquisition. Imaging data were collected utilizing a 
3 Tesla Trio MRI scanner. The BART included T2*-weighted echoplanar images (EPI; slice thickness = 3 mm; 38 
slices; TR = 2 sec; TE = 25 ms; matrix = 92 × 92; FOV = 230 mm; voxel size = 2.5 × 2.5 × 3 mm3). Additionally, 
structural scans were acquired, including a T1* magnetization-prepared rapid-acquisition gradient echo 
(MPRAGE; slice thickness = 0.9 mm; 192 slices; TR = 1.9 sec; TE = 2.32 ms; matrix = 256 × 256; FOV = 230 mm; 
voxel size = 0.9 × 0.9 × 0.9 mm3; sagittal plane) and a T2*-weighted, matched-bandwidth (MBW), high res-
olution, anatomical scan (slice thickness = 3 mm; 192 slices; TR = 4 sec; TE = 64 ms; matrix = 192 × 192; 
FOV = 230 mm; voxel size = 1.2 × 1.2 × 3 mm3). EPI and MBW scans were obtained at an oblique axial orienta-
tion in order to maximize brain coverage and minimize dropout in orbital regions.

fMRI data preprocessing and analysis. Preprocessing utilized FSL FMRIBs Software Library (FSL v6.0; https://
fsl.fmrib.ox.ac.uk/fsl/). Steps taken during preprocessing included correction for slice-timing using MCFLIRT; 
spatial smoothing using a 6 mm Gaussian kernel, full-width-at-half maximum; high-pass temporal filtering with 
a 128 s cutoff to remove low frequency drift across the time-series; and skull stripping of all images with BET. 
Functional images were re-sampled to a 2 × 2 × 2 mm space and co-registered in a two-step sequence to the MBW 
and the MPRAGE images using FLIRT in order to warp them into the standard stereotactic space defined by the 
Montreal Neurological Institute (MNI) and the International Consortium for Brain Mapping. Preprocessing was 
completed utilizing individual-level independent component analysis (ICA) with MELODIC combined with an 
automated component classifier30 (Neyman-Pearson threshold = 0.3), which was applied to filter signal originat-
ing from noise sources (e.g., motion, physiological rhythms). Global signal regression was not performed due 
to its tendency to increase distance-related dependencies in the strength of functional connectivity measures31.

Motion Correction. Prior to modeling the fMRI data further, we took several steps to reduce the influence of 
motion. First, as mentioned previously, we subjected each participants’ data to individual-level ICA in order to 
remove motion-related signal from each participants’ time-series. We also controlled for 8 nuisance regressors 
in the GLM and time-series analyses: 6 motion parameters generated during realignment and the average sig-
nal from both the white matter and cerebrospinal fluid masks. Finally, slices with greater than 2 mm of motion 
were censored from the time-series (or modeled as a junk regressor in the GLM) to remove the effects of large, 
sudden movements on the functional data. No participant exceeded 5% of slices being censored (range: 0–2.5%). 

https://fsl.fmrib.ox.ac.uk/fsl/
https://fsl.fmrib.ox.ac.uk/fsl/
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Previous work has shown that these strategies effectively reduce the influence of motion on functional connec-
tivity analyses31.

Regions of Interest. To estimate how autoregressive stability in the default mode network impacts task 
behavior, we constructed 10 a priori regions of interest (ROIs) based on previous neuroimaging work with this 
network (Fig. 1). We based our ROIs off of resting-state maps of the default mode network32,33. Regions included 
the medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), bilateral dorsal superior frontal gyrus 
(dSFG), bilateral temporal poles (TP), bilateral hippocampus, and bilateral angular gyrus (AG). Regions were 
extracted from the templates using FSL. Most ROIs showed good separation from other DMN regions, however, 
in order to separate the mPFC and bilateral dSFG (which overlap in standard maps), we took additional steps 
to create 3 separate ROIs by zeroing voxels between the two regions with a z-stat < 6. This approach achieved 
appreciable separation for our masks. Individual masks were then evaluated again using the Marsbar toolbox in 
SPM34 and FSL to ensure that ROIs did not contain any voxels that overlapped with another mask or exceeded 
the boundaries of the whole-brain mask. A 3D, navigable image containing all masks superimposed onto a single 
brain map is available on NeuroVault (https://neurovault.org/collections/VSWQSTDA/ 35.

Whole-brain Univariate Analyses. For our univariate analyses, we modeled the BART as an event-related 
design. Whole-brain statistical analyses were performed using the general linear model (GLM) in SPM8. Fixed 
effects models were constructed for each participant with several conditions of interest, including pump deci-
sions, cash-outs, and explosion events. The jittered inter-trial period between pump decisions and between out-
comes and a new balloon was not modeled and served as an implicit baseline. A parametric modulator (PM) was 
included for conditions of interest and corresponded to the current pump number for the current trial at the time 
of event. This PM serves to control for differences across pumps within a balloon. For descriptive purposes, we 
ran whole-brain, group-level, random effects analyses for pump decisions using GLMFlex (http://mrtools.mgh.
harvard.edu/index.php/GLM_Flex). This approach corrects for variance-covariance inequality, removes outliers 
and sudden activation changes in the brain, partitions within- and between-person error terms, and analyzes all 
voxels containing data. Since this analysis was purely for visualization purposes, we thresholded the resultant 
statistical image at p < 0.001, with a minimum cluster size of 40 voxels. For the central univariate analyses, we 
extracted parameter estimates from each individual’s unthresholded fixed effects statistical map using the 10 a 
priori ROIs we constructed for the DMN network.

Time-series Analysis. Granger Causality. Originally developed in the context of economic models36, 
Granger causality emerges from a vector autoregression framework (VAR), where the contemporaneous and 
lagged relationships between a system of variables can be examined. A weak form of causal inference (compared 
to experimental designs for example), Granger causality relies on the intuition that x cannot cause y if x tempo-
rally follows y (i.e., cause precedes effect)37. Based on this idea, Granger causality can be inferred if x at a previous 
time point (e.g., t − 1) predicts y at time (t) above and beyond the self-predictive effect of y at t − 1 on y at t. In 
other words, the combined information of x(t−1) and y(t−1) is more predictive of y(t) than is y(t−1) alone. Under this 
causal definition, it is possible for variables to Granger cause one another across time38.

Group Iterative Multiple Model Estimation (GIMME). GIMME is a model-based network approach, which uti-
lizes both individual and group-level information to derive directed functional connectivity maps39. GIMME esti-
mates connectivity graphs using both unified SEM40 and extended unified SEM41 to assess whether the presence 

Figure 1. Default Mode Network. We defined 10 ROIs composing regions central to the default mode network 
(DMN). (A) A 3D video of our a priori regions of interest in free space. (B) Regions included the medial 
prefrontal cortex, posterior cingulate cortex, and bilateral complements of the dorsal superior frontal gyrus 
(dSFG), temporal pole, hippocampus, and angular gyrus.

https://neurovault.org/collections/VSWQSTDA/.
http://mrtools.mgh.harvard.edu/index.php/GLM_Flex
http://mrtools.mgh.harvard.edu/index.php/GLM_Flex
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of a path between ROIs significantly improves the overall model fit to the time-series data. GIMME estimates 
both contemporaneous (e.g., ROI1 at t predicts ROI2 at t) and lagged (e.g., ROI1 at t − 1 predicts ROI2 at t) effects 
between ROIs, as well as the autoregressive (e.g., ROI1 at t − 1 predicts ROI1 at t) effects for each ROI time-series. 
Formally, a GIMME model for a set of p time-series with t measurements is:

η η η ζ= + + Φ + Φ − +t A A t t t( ) ( ) ( ) ( ) ( 1) ( )i i i i i i i i1, 1,g g

where A represents a p × p matrix of contemporaneous paths for the individual (Ai) and group (Ai g) parameters, 
Φ1 is matrix of first-order lagged paths (for the individual and group respectively), and ζ is the p-length vector of 
errors, assumed to be a white noise process, with means of zero, a finite variance, and no sequential dependencies 
(i.e., all temporal information is contained within A and Φ1)42. The diagonal of Φ1 contains path estimates for the 
autoregressive effects (e.g., ROI1 at t − 1 predicts ROI1 at t), which represent the autocorrelations of each ROI 
predicting itself forward in time. GIMME assesses directional paths by testing whether a given ROI can predict 
another, controlling for the predicted ROI’s autoregressive effect (i.e., establishing Granger causality). GIMME 
has been developed for both block40 and event-related41 fMRI data, and is freely available through the open-source 
R platform43.

In contrast with many other functional connectivity approaches (e.g., graph theoretical approaches), GIMME 
constructs functional maps through a model-driven, multi-step processing of model building and pruning. 
First, information across all participants is used to derive a common network map that is representative of the 
majority of the sample. Group paths are only retained if they are significant for 70% of all individuals in the 
sample. All autoregressive paths are automatically estimated in order to accurately assess directionality in the 
between-ROI paths. Once a group map has been obtained, additional paths at the individual level are evaluated 
based on improvements to model fit for that individual. Unnecessary paths are pruned at the group level, and 
additional paths at the individual level are evaluated based on improvements to model fit for that individual. 
Individual-level paths are then pruned if they do not significantly improve the fit of the final model. This approach 
offers the unique advantage of being able to derive a group-level map that should be applicable to the majority of 
the sample, while still recognizing that individuals often show significant heterogeneity from the group map. This 
approach shows significant advantages over other methods in recovering “true” paths in simulated data while 
minimizing false positives44.

Our task provided two main challenges when measuring neural connectivity. First, our goal was to analyze 
connectivity patterns during risky decisions; however, the BART also contains feedback trials (i.e., cash-out out-
comes, explosions). Secondly, our task was self-paced and as such, we needed a modeling approach that would 
allow for individuals to possess different amounts of data. Fortunately, GIMME is capable of handling unequal 
amounts of data between participants, as well as the inclusion of missing data45. Missing values are replaced with 
placeholder NaN values to maintain the temporal ordering of scans, and neither contemporaneous nor lagged 

Figure 2. Main Effect of Risk Decisions. The univariate condition of risk decisions showed robust deactivation 
across all DMN regions. Salience regions, such as the anterior cingulate and anterior insula showed strong 
positive activation.
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effects are estimated based on missing values. These features make GIMME especially well-suited to estimating 
connectivity graphs for the BART, allowing for the self-paced nature of the task, as well as specifically examining 
connectivity during risk decisions, without considering connectivity during outcomes.

Autoregressive Paths. Autoregressive pathways are estimated as the predictive effect of activity in an ROI at one 
time point on that ROI’s activity at the next time point. As such, stronger autoregressive path indicate that an 
ROI’s activation is more stable over time. In our analyses, we were specifically interested in testing whether the 
strength of an individual’s autoregressive paths was related to task behavior on the BART. As such, the parame-
ter estimates from GIMME for each ROI’s autoregressive path were extracted for use in subsequent regression 
analysis.

Analytic Plan. To test the hypothesis that stability versus deactivation of the default mode network would be 
important for feedback learning, we took two analytic approaches. First, we utilized standard univariate analyses 
to extract each individual’s parameter estimates of deactivation in the 10 a priori DMN ROIs during risk deci-
sions. Secondly, we took a model-based network approach using the same 10 ROIs to estimate stability over time 
in DMN activation. After completing both univariate and network analyses, each participant had 10 parameter 

Anatomical Region +/− BA x y z t k

“Task-Positive” Regions

   ACC + 24/32 −4 24 30 4.69 514

   L Anterior Insula + −34 14 10 6.52 530

   R Anterior Insula + 34 20 8 4.39 42

   L MFG + 9/46 −32 42 18 4.53 364

   R MFG + 9/46 28 42 22 3.91 48

   R Putamen + 22 8 −8 4.32 109

   L Cerebellum + −36 −50 −32 5.99 341

   R Cerebellum + 38 −56 −28 5.97 773

“Task-Negative” Regions

   R MTGa − 21 56 −4 −12 9.99 18365

   R TPa − 38 58 4 −12 9.52

   R STGa − 22 62 −28 12 8.67

   L STGa − 22 −58 −28 6 9.38

   L dSFGa − 8 −18 36 46 6.12

   R dSFGa − 8 20 22 42 6.85

   L IFG (triangularis)a − 45 −48 20 24 7.20

   R IFG (triangularis)a − 45 40 16 24 6.26

   L IFG (orbitalis)a − 47 −54 32 10 5.79

   R IFG (orbitalis)a − 47 54 36 6 7.35

   L Lateral OFCa − 11 −40 34 −10 4.26

   R Lateral OFCa − 11 30 34 −12 5.75

   L Hippocampusa − −28 −40 −14 7.90

   R Hippocampusa − 22 −38 −12 4.58

   Rectal Gyrusa − 11 0 18 −6 5.60

   Medial OFCa − 11 −4 42 −6 5.35

   vmPFCa − 10/11 2 58 −2 5.15

   amPFCa − 10 −1 65 8 4.62

   dmPFCa − 9 8 60 28 5.09

   Precuneusb − 7 8 −56 18 9.23 32480

   L TPb − 38 −52 −16 −8 8.57

   Calcarine Gyrusb − 17 −6 −70 20 8.45

   PCCb − 29/30 6 −46 26 8.12

Table 1. Neural Regions Showing Significant Activation During Risky Decisions (i.e., Pumps). Note: L 
and R refer to left and right hemispheres; + and − refer to positive or negative activation; BA refers to 
Brodmann Area of peak voxel; k refers to the number of voxels in each significant cluster; t refers to peak 
activation level in each cluster; x, y, and z refer to MNI coordinates. Superscripts (e.g. a, b, etc.) indicate that 
peak voxels are part of a contiguous cluster. mPFC = Medial Prefrontal Cortex; ACC = Anterior Cingulate 
Cortex, MFG = Middle Frontal Gyrus, MTG = Middle Temporal Gyrus, TP = Temporal Pole, STG = Superior 
Temporal Sulcus, dSFG = Dorsal Superior Frontal Gyrus, IFG = Inferior Frontal Gyrus, OFC = Orbitofrontal 
Cortex, vmPFC = Ventromedial Prefrontal Cortex, amPFC = Anterior Medial Prefrontal Cortex, 
dmPFC = Dorsomedial Prefrontal Cortex, PCC = Posterior Cingulate Cortex.
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estimates of mean activation and 10 parameter estimates of stability in activation over time. To avoid concerns of 
multiple comparisons by regressing each of these 20 estimates on behavioral metrics of interest, we took a dimen-
sion reduction approach through principal components analysis (PCA). PCA also offers a key advantage by parti-
tioning variance into bins: variance that is common across regions (and representative of the DMN as a network), 
and variance that is unique to a particular region. Because activation in a given region is likely a combination of 
network- and ROI-level information, partitioning this region-specific variance out helps remove noise from our 
estimates that originate from individual ROIs. For both sets of parameters, we extracted the first principal com-
ponent from a PCA where estimates from all 10 ROIs were used as inputs. We utilized the R function, “principal” 
(https://cran.r-project.org/web/packages/psych/psych.pdf), to extract the first principal component utilizing the 
covariance matrix and varimax rotation. We ran follow-up analyses using the cross-validation function in the R 
function “pca” (https://cran.r-project.org/web/packages/mdatools/index.html), and results remained unchanged. 
These principal component scores were then used in subsequent regression analyses to predict task engagement 
(i.e., sensitivity to the valence and value of feedback in the task).

Results
Group-Level Results. DMN Deactivation During Risk Decisions. We first ran main effects analysis at the 
whole brain level, for descriptive purposes, to check for the expected deactivation of the default mode regions 
during decisions to pump across individuals in the sample. Consistent with prior work2, adolescents showed 
strong deactivation of default mode regions during risk decisions at the group level, including mPFC, PCC, STS, 
AG, dSFG, and hippocampus (Fig. 2; Table 1). In contrast, typical task-active regions such as the anterior cin-
gulate, anterior insula, and motor cortex showed positive activation during risk decisions. However, substantial 
individual differences emerged such that not all adolescents showed strong deactivation of DMN regions, and 
some adolescents even showed positive activation of DMN regions during risk decisions (Fig. 3).

Network Map of the DMN During Risk Decisions. Next, we constructed model-based functional networks 
between our a priori DMN ROIs. While our focus was on the autoregessive paths, we estimated and displayed the 
full group model for descriptive purposes. Results show a strongly interconnected default mode network (Fig. 4). 
In addition to connections between bilateral complements (e.g., left and right dSFG), the PCC, left TP, and left AG 
show many between-region paths. Importantly for testing our hypothesis, the autoregressive pathways for each of 
the 10 DMN ROIs were estimated for all subjects.

Individual Differences in DMN Deactivation and Stability Differentially Predict Feedback Learning. Finally, our 
key analysis explored individual differences in deactivation (from the univariate analyses) and stability (from the 
functional network analyses) in DMN regions to task engagement. We took parameter estimates of univariate 
activation and autoregressive strength for each of the 10 a priori DMN regions and ran separate PCA analyses 
on each type of parameter and obtained one score per person, per analysis. For univariate analyses, this analysis 
resulted in a representative level of deactivation across DMN regions. For network analyses on the autoregressive 
paths, the PCA score reflected representative activational stability in the DMN as a whole (see Table 2 for factor 
loadings to each principal component).

Next, we entered both of the scores into a multiple regression analysis with adolescents’ two indices of feed-
back learning (i.e., sensitivity to the valence and sensitivity to the value of previous feedback) as our outcomes 

Figure 3. Distribution of Activation and Deactivation in the DMN. While regions of the default mode network 
show mean deactivation at the group-level, there are individual differences, including individuals who show 
positive activation of the DMN on average.

https://cran.r-project.org/web/packages/psych/psych.pdf
https://cran.r-project.org/web/packages/mdatools/index.html
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in two separate analyses (thresholded at p = 0.025 to correct for multiple comparisons). Results showed that 
DMN stability (B = 0.063, SE = 0.026, p = 0.018) but not mean deactivation (B = 0.025, SE = 0.026, p = 0.349), 
is associated with adolescents’ sensitivity to the valence of the previous outcome. Similarly, stability (B = 0.150, 
SE = 0.048, p = 0.003) but not deactivation (B = 0.033, SE = 0.048, p = 0.487) is associated with adolescents’ sen-
sitivity to the value (i.e., magnitude) of previous feedback on the task. Furthermore, the two factor scores were 
uncorrelated (r = 0.112, p = 0.376), meaning that deactivation did not indicate more stability in DMN activity, 
nor were interactions between deactivation and stability predictive of feedback learning (p = 0.186 and p = 0.963 
respectively). These results suggest that stability in DMN activity, even if that activity is positive on average (as is 
characteristic of some adolescents; Fig. 3), is more predictive of adolescents’ feedback learning than absolute level 
of (de)activation.

Discussion
The exact role of the default mode network in cognition and behavior remains an important open question 
for cognitive neuroscientists. Traditionally, the DMN has been conceptualized as a “task negative” network1, 
with suppression of the network being important for normal decision-making processes and task engage-
ment2,14. Indeed, DMN suppression is an important marker of task engagement14, showing linear deactivation 
as the difficulty of the task increases15. Furthermore, disruption of DMN suppression is thought to contribute 
to attention-related disorders such as ADHD7. However, unanswered questions remain as to the mechanism by 
which DMN suppression is implemented in the brain. We utilized both traditional univariate, as well as a novel, 
model-based network approach to test two competing hypotheses related to this mechanism of DMN suppres-
sion. Consistent with previous work1,2, main effects analyses showed characteristic deactivation in DMN regions 
during task. Furthermore, the group connectivity map revealed large numbers of connections between central 

Figure 4. DMN Network during Risk Decisions. DMN seed regions showed strong interconnectivity (grey), 
with hubs such as the left angular gyrus and posterior cingulate showing several cross-region connections. 
However, for the purpose of the current study, our main focus was the autoregressive paths (black) which are 
estimates of within-region stability in activation. Autoregressive paths are dashed to denote a lagged temporal 
relationship.
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DMN nodes (e.g., PCC and angular gyrus) and the other nodes of the network. We then used the overall level of 
DMN deactivation and stability in DMN activation across time to assess whether the absolute level or stability in 
DMN activation was related to task engagement, operationalized as adolescents’ ability to extract and use feed-
back information learned from the task environment.

In line with our hypothesis, the stability of activation in default mode regions (as estimated by the autoregres-
sive pathways in GIMME) predicted both metrics of feedback learning over and above the absolute level of DMN 
deactivation (as measured through the univariate contrast). Indeed, adolescents’ mean level of deactivation in 
DMN was not a significant predictor of either metric of feedback learning within the task. Interestingly, DMN 
deactivation was uncorrelated with the stability within those regions, suggesting that highly stable DMN activa-
tion was possible even when the DMN showed positive activation during the task. These results suggest that the 
brain may be able to suppress the influence of neural regions during a task without an apparent change in resource 
consumption (at least as measured by the BOLD signal).

The implications of the current study offer promise for future research for two reasons. First, the current 
results offer a validation for the adoption of model-based network approaches for functional data. Traditional 
approaches to functional connectivity (e.g., seed-based, graph theoretical) only consider concurrent relation-
ships between ROIs. However, methods such as GIMME41 and other vector autoregression40,46 (VAR) models are 
capable of estimating both concurrent and lagged effects, which improve network model fit for each individual. 
Importantly for the current study, GIMME automatically estimates autoregressive paths (i.e., lagged effects within 
an ROI) as part of its model-building approach, allowing us to examine the temporal stability of activation across 
time. Our finding that activational stability, as measured through these autoregressive paths, is key for promoting 
feedback learning highlights the importance of considering these lagged effects and provides encouragement for 
an increased focus on model-based network approaches that can estimate them.

Secondly, the implication of the current results (i.e., that network influence can be suppressed through stability 
rather than through deactivation) raises questions about the inferences made about negative BOLD estimates 
(i.e., deactivation) in fMRI. While deactivation is often viewed as synonymous with a reduced role in decision 
making processes, the fact that deactivation is not correlated with stability suggests that a highly-deactivated 
region can still show low stability in activation across the task. Furthermore, we found unexpected variability 
in the mean level of deactivation in the DMN at the main effect level, such that some adolescents showed the 
expected pattern of strong DMN deactivation whereas others showed weak deactivation or even positive activa-
tion. This suggests that deactivation of the DMN may not be a universal phenomenon during decision making, 
and that a failure to deactivate DMN does not a priori impair performance on the task. Whether there are differ-
ences in the behavioral profiles associated with activation fluctuations between individuals who show strongly 
versus weakly deactivated DMN remains an open question, as the current sample is likely underpowered to detect 
interaction effects. Future research may be able to address this by examining the interaction between stability and 
level of deactivation in the DMN, and the consequences of different configurations (e.g., low stability and strong 
deactivation versus high stability and strong deactivation) for task behavior.

Factor Type DMN Region Rescaled Factor Loading

Deactivation

Left dSFG 0.758

Left Hippocampus 0.741

Left AG 0.877

Left TP 0.662

PCC 0.892

Right dSFG 0.623

Right Hippocampus 0.691

Right AG 0.770

Right TP 0.760

mPFC 0.828

Autoregressive Strength (Stability)
Left dSFG 0.744

Left Hippocampus 0.025

Left AG 0.341

Left TP 0.514

PCC 0.768

Right dSFG 0.644

Right Hippocampus 0.205

Right AG 0.594

Right TP 0.229

mPFC 0.633

Table 2. Factor Loadings for Regions of DMN on Principal Components for Mean Levels of Deactivation and 
Autoregressive Stability.
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For future research, unanswered questions to consider are the potential mechanisms by which the brain 
instantiates stability in activation in the DMN regions. One possibility is that task-relevant regions (e.g., ACC, 
insula) or some third set of regions actively suppresses DMN involvement during task by producing signals which 
down-regulate default mode regions. Alternatively, other networks could simply disengage from DMN regions. 
By increasing the segregation between networks, the brain may isolate the DMN, decreasing its ability to influ-
ence cognition and behavior. Uncovering the mechanism that instantiates DMN suppression is important for 
understanding both normal cognition but also has implications for disease states which are associated with dis-
ruptions to the DMN7,8,47.

In conclusion, we tested two competing hypotheses related to the suppression of the default mode network 
during a risky decision-making task. In contrast with a focus on the mean level of deactivation, we proposed that 
stability in activation, rather than absolute level, would be a more-important mechanism for reduced DMN influ-
ence on feedback learning. We adopted both traditional univariate and a novel model-based network approach to 
test these hypotheses, and found support for our hypothesis that increased DMN stability is related to increased 
sensitivity to information from the task (i.e., learning). These results shed light on a new mechanism by which the 
brain reduces the influence of a functional network, and highlights the importance of adopting network methods 
which consider both contemporaneous and lagged effects.
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