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Introduction

The history of intervention on low-density 
lipoprotein cholesterol
The role of lipids in cardiovascular disease (CVD) 
was established in epidemiological studies such  
as Framingham or the Munster Heart Study 
about 50 years ago, but its occurrence had been 
described in histological specimens of atheroma-
tous plaque about 100 years ago by Anitschow.1–3 
The role of lipids in atherosclerosis has been 
widely recognised and so the trials of lipid-lower-
ing drugs in patients with moderate elevations  
of low-density lipoprotein cholesterol (LDL-C) 
have a long history. In hyperlipidaemia (as 
opposed to hypertension) genetic causes of ele-
vated lipids are frequent. Familial hypercholester-
olaemia (FH) caused by defects affecting the 

function of the LDL receptor pathway and pre-
senting consequently with elevated LDL-C and 
premature CVD has an incidence of 1 in 350.4 
Unfortunately, there have been no CVD out-
comes studies in FH with any lipid-lowering ther-
apy despite its frequency. The contrast with trials 
in type 1 diabetes is notable.

Initial attempts at intervention in the 1970s 
with drugs such as niacin, bile acid sequestrants 
and clofibrate in patients with moderate hyper-
cholesterolaemia (with or without CVD) were 
disappointing.5 Though these early outcome 
studies often showed reductions in CVD events, 
no effect on mortality could be demonstrated. 
This, allied with the adverse effects seen, par-
ticularly with clofibrate, led to considerable 
scepticism about the benefits of lipid-lowering 
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for CVD. The echo of this controversy contin-
ues in the popular media to this day. The new 
statin class of LDL-C lowering therapy with 
double the efficacy of previous compounds was 
launched in 1990.6 The groundbreaking study 
that resolved the questions about the efficacy of 
LDL-C lowering in CVD was the Scandinavian 
Simvastatin Survival Study in 1994.7 In this 
study of 4444 patients with chronic coronary 
heart disease and LDL-C > 5 mmol/l who were 
treated with simvastatin 20–40 mg to a target 
LDL-C of 3 mmol/l, statin therapy resulted in a 
30% decrease in mortality, and a 30% decrease 
in CVD mortality, CVD events and interven-
tions as well as hospitalisation. The intervention 
was also cost-saving to health services.8 Multiple 
further trials with statins followed, extending 
the results to primary prevention [e.g. West of 
Scotland Coronary Outcomes Prevention Study 
(WOSCOPS)9], patients with type 2 diabetes 
(e.g. Collaborative Atorvastatin Diabetes Study; 
CARDS10) and progressively lower levels of ini-
tial LDL-C in each of these sub-groups. All 
these studies have now been subjected to pooled 
individual patient meta-analysis, confirming the 
benefits in all subgroups and establishing a rela-
tionship of 21% reduction in CVD events per 
1 mmol/l reduction in LDL-C.11,12 All these 
studies pushed the baseline and post-interven-
tion levels for LDL-C progressively lower, but, 
as a residual risk of CVD events still existed in 
treated cohorts, the question were still asked 
about ‘whether still lower is better’? The only 
areas where questions remain about the efficacy 
of LDL-C lowering with statins are in advanced 
chronic kidney disease (>CKD 4) or estab-
lished chronic cardiac failure, though sub-
groups analysis show benefits in less severely 
affected population with these conditions.13

Non-statin therapies and CVD outcomes
Though these studies conclusively identified the 
benefits of statin therapy, controversy has raged 
about other interventions.14 Surrogate outcome 
studies confused the story with ezetimibe, 
although eventually an outcomes study in acute 
coronary syndromes (ACS) with this drug added 
to statin therapy did finally confirm its utility. In 
the Improved Reduction of Outcomes: Vytorin 
Efficacy International Trial (IMPROVE-IT), 
ezetimibe therapy allowed patients to reach an 
average LDL-C of 1.4 mmol/l (versus 1.8 mmol/l 

in statin-alone treated patients) and reduced 
CVD events by 8% in line with the regression 
relationship predicted for the degree of LDL-C 
change from statins.15 Studies with other drugs 
such as anacetrapib, which incidentally reduce 
LDL-C, also followed the same relationship.16 
Currently, the consensus is that any drug inter-
vention that lowers LDL-C is likely to lower CVD 
events unless it has off-target side-effects.3

Proprotein convertase subtilisin kexin-9
The search for causes of the genetic defect in FH 
identified mutations in two genes – the LDL 
receptor and apolipoprotein B – as causing the 
majority of cases. However, the search continued 
for other causes, and mutations in proprotein 
convertase subtilisin kexin-9 [PCSK9; Neural 
apoptosis-regulated convertase-1 (NARC-1)] 
were identified.17 Further work clarified that these 
mutations activated the protein, causing func-
tional inactivation (enhanced intracellular degra-
dation) of LDL receptors, whereas other 
inactivating mutations increasing LDL receptor 
function were associated with lower LDL-C.18,19 
In the Dallas Heart Study, 2.6% of 3363 black 
patients who had nonsense mutation of PCSK9 
leading to a reduction of LDL-C by 28% with 
better coronary heart disease (CHD) outcomes.20 
A few clinically asymptomatic cases of homozy-
gous PCSK9 deficiency associated with hypolipo-
proteinaemia have also been described.21,22 These 
studies laid the theoretical basis for considering 
intervention to lower LDL-C by targeting PCSK9 
(Figure 1).

Therapies targeting PCSK-9
Once the role of PCSK9 in controlling plasma 
LDL-C had been established and there were reasons 
for suspecting that this intervention would be safe, a 
systematic search began for compounds that would 
target this pathway.23–25 PCSK9 exists as a dimer 
and auto-activates through mutual cleavage of furin-
sensitive catalytic domains. The classical approach 
of small molecule inhibition has proved difficult 
due to the hydrophobic nature of the compounds 
required to reach those binding sites,26 whereas 
other approaches remain exploratory.27 Many of 
these hydrophobic molecules have poor bioavailabil-
ity as oral compounds need to be water-soluble and 
for food (fat) effects to be limited to allow licens-
ing.27 Though no cases of autoimmune-based 
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hyper- or hypolipoproteinaemia due to anti-PCSK9 
antibodies have been described, animal studies 
showed that human PCSK9 was antigenic and this 
allowed the development of a series of antibody-
based therapies based on humanised (-zumab) or 
human (-cumab) antibodies.

Alirocumab and Evolocumab are fully human 
anti-PCSK9 antibodies and are licensed for clini-
cal practice as they reduce LDL-C by 54% when 
given fortnightly.28 As with all antibody therapies, 
their adverse effects tend to be related to the 
structure of the antibody, hence causing increases 
in injection site reaction [1.51 versus 0.83 per 100 
patient-years; relative risk (RR) 1.41, 95% confi-
dence interval (CI) 1.21–1.65); p < 0.001], but 
also in practice symptoms of flu-like myalgia 
post-injection (up to 10%).25,28,29 No compound-
specific adverse events have yet been described. 
High expression of PCSK9 in the cerebellum and 
gut exists,30 and it has been suggested that these 
drugs may be associated with neurological adverse 
effects, especially neurocognitive deterioration, 
though again nothing has been seen in the clinical 
trials to date [0.57 versus 0.55 per 100 patient-
years; RR 1.01 (0.84–1.21); p = 0.91].28,31

PCSK9 inhibitors and new-onset diabetes
It took 15 years for the effect of statins in increas-
ing blood glucose by approximately 0.3 mmol/l 
and hence rates of new diabetes to be noticed.32 
Mendelian randomisation studies that validated 
the association of variants in the 2-hydroxy-
methyl-glutaryl-CoA (HMG-CoA) reductase gene 
with increased rates of diabetes, possibly related 
to an increase in body weight,33 have also sug-
gested that PCSK9 inhibition may cause similar 
problems.34 A meta-analysis of 68,123 patients 
from 20 trials with median follow up of 78 weeks 
suggested that PCSK9 inhibitors increased fast-
ing blood glucose (1.88 mg/dl; 0.1 mmol/l; 
p = 0.001) and HbA1c by 0.03% (p < 0.001) when 
compared with placebo but, over a 2-year time-
scale, this was not sufficient to increase incidence 
of diabetes [RR 1.04 (0.96–1.13); p = 0.43]. An 
exploratory meta-regression analysis suggested  
an increased risk of diabetes with the potency 
(p = 0.03) and duration (p = 0.03) of PCSK9 
inhibitor therapy.35 However, in a meta-analysis 
of 39 trials with a weighted follow-up time of 
2.3 years comprising 150,617 patient-years, the 
rate of new-onset of diabetes mellitus was 
unchanged [1.92 versus 1.93 per 100 patient-years 

Figure 1.  Timeline from PCSK9 discovery to use in clinical practice.
Phase I–II trials in light grey; phase III trials medium grey; CVD outcome studies dark grey; clinical guidelines in black boxes.
Ab, antibody; ACS, acute coronary syndrome; ASO, antisense oligonucleotide; CVD, cardiovascular disease; EAS, European 
Atherosclerosis Society; FH, familial hypercholesterolaemia; HoFH, homozygous FH; NICE, National Institute for Health 
and Clinical Excellence; NLA, National Lipid Association USA; PCSK9, proprotein convertase subtilisin kexin-9; siRNA, short 
interfering RNA.
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(RR 1.00 (0.93–1.07); p = 0.97].28 Similar results 
were seen in the long-term clinical CVD outcome 
studies of these drugs.28,35 In a pre-specified anal-
ysis of the ODSSEY trial by glycaemic status, ali-
rocumab resulted in similar relative reductions in 
the incidence of the primary endpoint in each  
glycaemic category. Among patients without 
diabetes at baseline, no difference was seen in 
new onset diabetes [10.1 versus 9.6%; (HR 1.00 
(0.89–1.11].36 In the FOURIER study, 11,031 
patients (40%) had diabetes, 10,344 had pre-
diabetes and 6189 were normoglycaemic. No 
increase was seen in new-onset diabetes in 
patients without diabetes at baseline (HR 1.05 
(0.94–1.17), including in patients with pre-diabe-
tes (HR 1.00 (0.89–1.13). Levels of glucose and 
HbA1c were similar between evolocumab and pla-
cebo over time in all groups.37

Antibodies to PCSK-9
However, the humanised antibody, Bococizumab, 
which contains murine sequence, although ini-
tially delivering a 55% reduction in LDL-C like 
other antibodies, has not been licensed following 
longer-term studies. This was caused by the 
attenuation of its effect secondary to development 
of anti-drug antibodies in the outcome trials 
(SPIRE-1 and SPIRE-2) with a frequency of 48% 
after 3 months resulting in titre-dependent atten-
uation of drug effect.38,39 Though anti-drug anti-
bodies have been described for human PCSK9 
antibodies, none have been associated with loss of 
efficacy, yet there are growing anecdotal reports 
of patients who do not respond to PCSK9 ther-
apy.40 Whereas many of these non-responders 
have disturbances in lipid metabolism associated 
with increased synthesis of very-low-density  
lipoprotein (VLDL), and hence LDL-C, and thus 
logically might not respond to a drug that 
increases recycling of cholesterol back to the liver 
through the LDL receptor and so require addi-
tional treatment to correct this problem,40 some 
seem to be primary non-responders. No relation-
ship with anti-drug antibodies has been shown  
in the few cases investigated though potentially 
enhanced cell-mediated reticulo-endothelial 
clearance of PCSK9 antibodies through Fc recep-
tors has not been investigated.

PCSK-9 development trials
All PCSK-9 inhibitors have followed the stand-
ard phase I–III development programme used for 

lipid-lowering therapies.41 After individual dose, 
multiple dose and dose ranging studies, phase III 
trials have been conducted in patients with/with-
out CHD, familial hypercholesterolaemia (FH), 
and type 2 diabetes either compared with pla-
cebo, added to baseline statins or in comparison 
with ezetimibe.28 Data are still awaited on popu-
lations with chronic renal failure and human 
immunodeficiency virus (HIV). The most inter-
esting studies were in homozygous FH (HoFH) 
and statin intolerance. Statins, in contrast to 
ezetimibe, show significantly reduced efficacy in 
HoFH and do not work in patients with null 
mutations. Initial studies with PCSK9 inhibition 
showed substantially preserved efficacy in pat-
ents with HoFH due to point mutations in the 
LDL receptor, reduced efficacy in patients with a 
single null allele and no response in dual null 
allele patients.42 These findings were replicated 
in larger studies.43,44 Up to 25% of patients with 
HoFH can discontinue apheresis,45 though in 
most cases apheresis has been continued and 
LDL-C targets have been adjusted to those used 
in routine practice.

Statin intolerance is a substantial problem, with a 
claimed prevalence of 10% (although in reality 
1% in re-challenge studies).46 It is defined as ina-
bility to continue to take a statin despite trying 
three drugs at different doses.47,48 Two studies 
have been conducted with PCSK9 inhibitors in 
this population. In the GAUSS-2 trial, 307 statin-
intolerant patients with LDL-C 4.97 mmol/l were 
randomised to evolucumab or ezetimibe.49 
Evolocumab reduced LDL-C by 53–56%, com-
pared with 14–16% for ezetimibe. Muscle adverse 
events occurred in 12% of evolocumab-treated 
patients and 23% of ezetimibe-treated patients. 
The larger GAUSS-3 study in 511 patients repro-
duced these effects.50 In the ODYSSEY-
alternative study, 361 statin-intolerant patients 
received an injection and oral placebo for 4 weeks 
during placebo run-in.51 Patients (13%) reporting 
muscle-related symptoms during the run-in were 
to be withdrawn. Continuing patients were ran-
domised (2:2:1) to alirocumab 75 mg fortnightly 
(with option to increase), ezetimibe 10 mg, or 
atorvastatin 20 mg/day with appropriate placebos 
for 24 weeks and then open follow up. The base-
line LDL-C was 5.0 mmol/l. Alirocumab reduced 
LDL-C by 52% versus 17% with ezetimibe. 
Treatment was discontinued by 18% with ali-
rocumab and 25% for ezetimibe or statin therapy. 
Skeletal muscle-related events were seen in 16% 
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with alirocumab compared with 20% with 
ezetimibe and 22% with atorvastatin. Open label 
statin was well tolerated by those patients who 
were unblinded at study completion.

PCSK-9 cardiovascular outcomes trials
There are increasing challenges in designing out-
come trials in CVD. Progressive lowering of 
acceptable LDL-C levels for recruitment into 
studies as a result of guidelines and ethical con-
siderations leads to lower event rates and thus 
potentially larger trial populations. It is now 
increasingly common to concentrate on high-risk 
sub-groups such as patients with ACS and to 
require the presence of additional CVD risk fac-
tors such as increased age, smoking, or type 2 dia-
betes. All of these changes make the trials possible 
in terms of timescales, logistics, and finance, but 
cause difficulties for guideline groups that have to 
generalise the findings outside the original trial 
population. The recent PCSK9 trials follow these 
design precepts.

FOURIER trial: evolocumab and CVD outcomes
The FOURIER recruited 27,564 patients with a his-
tory of recent atherosclerotic vascular disease (cere-
brovascular, cardiovascular and peripheral artery 
disease) but also an additional one major or two 
minor risk factors allied with a LDL-C > 1.8 mmol/l 
(70 mg/dl) or nonHDL-C > 2.6 mmol/l (100 mg/dl).52 
Additional risk factors included hypertension (80%), 
type 2 diabetes (37%) and smoking (29%). These 
patients had to be receiving statin therapy of at least 
20 mg of atorvastatin with or without ezetimibe, but 
only 70% were on high-intensity statin. In reality, 
given questions about the efficacy of ezetimibe at the 
time, 5% were on this treatment. Patients were ran-
domised to evolocumab injections (either 140 mg 
every 2 weeks or 420 mg every 4 weeks) or matching 
placebo. The primary endpoint was a combination 
of fatal and non-fatal myocardial infarction (MI) and 
stroke (cerebrovascular accident; CVA) including 
unstable angina (UAS)warranting hospital admis-
sion or coronary revascularisation. The secondary 
outcome excluded revascularisation episodes. 
LDL-C decreased by 59% from 2.2 mmol/l (92 mg/dl) 
to 0.8 mmol/l (30 mg/dl) in the evolocumab group, 
while non-HDL-C levels decreased by 52% and 
ApoB levels by 49%. Evolocumab reduced the  
five-point primary endpoint (9.8% versus 11.3%; 
HR 0.85; p < 0.001) and secondary endpoint (a 

composite of CVD death, MI, or CVA) (5.9% versus 
7.4%; HR 0.80; p < 0.001) at a median follow up of 
2.2 years. This was driven by reduction in the risk of 
non-fatal MI, CVA and coronary revascularisation. 
Few serious adverse events were found, with no dif-
ference in new-onset diabetes or neurocognitive 
events. However, injection-site reactions were more 
common with evolocumab (2.1% versus 1.6%).

Major CVD events declined progressively with 
decreasing LDL-C concentrations achieved, 
with adjusted HR in the group with LDL-
C < 0.2 mmol/l (10 mg/dl) of 0.69 for the pri-
mary and 0.59 for secondary endpoints 
compared with those with LDL-C > 2.6 mmol/l 
(100 mg/dl).53 High-risk subgroups such as 
those with differing extent of coronary artery 
disease,54 type 2 diabetes mellitus37 or periph-
eral arterial disease55 had higher event rates and 
consequently greater absolute benefits with 
evolucumab therapy.

ODYSSEY-outcomes: alirocumab and CVD 
outcomes
The ODYSSEY Outcomes trial randomised 
18,924 patients with history of an ACS within the 
previous 12 months to either alirocumab 75 mg or 
placebo every 2 weeks. Inclusion criteria included 
either LDL-C > 1.8 mmol/l (70 mg/dl), nonHDL-
C > 2.6 mmol/l (100 mg/dl) or ApoB > 80 mg/dl 
after maximal statin therapy (atorvastatin  
40–80 mg or rosuvastatin 20–40 mg).56 The pri-
mary composite end-point included death from 
CAD or CVD, myocardial infarction, ischemic 
stroke or angina requiring hospital admission. 
Most patients (93%) were enrolled due to  
LDL-C > 1.8 mmol/l (70 mg/dl). The on-treat-
ment LDL-C target was 0.6–1.3 mmol/l (25–
50 mg/dl). Alirocumab was up-titrated from  
75 mg to 150 mg every 2 weeks in patients who 
had LDL > 1.3 mmol/l (50 mg/dl). Conversely, 
patients who had LDL-C levels consistently below 
0.2 mmol/l (15 mg/dl) were switched to placebo. 
After a median follow up of 2.8 years, LDL-C lev-
els had decreased by 55% to 1.3 mmol (53 mg/dl) 
from 2.4 mmol/l (101 mg/dl). The primary end-
point was significantly lower in the alirocumab 
group compared with the placebo group (9.5% 
versus 11.1%, HR 0.85, p = 0.0003) after a median 
2.8 years, with benefit seen only after 1 year of 
treatment as in statin trials. The reduction in 
MACE with alirocumab was primarily because of 
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reduction in ischaemic events: nonfatal MI was 
reduced by 14%, CVA by 27% and UAS by 39%. 
All-cause mortality was reduced by 15% (3.5% 
versus 4%, p = 0.03) but CAD (2.2% versus 2.3%) 
and CVD (2.5% versus 2.9%) deaths were similar. 
Minor injection site reactions were commoner 
with alirocumab (3.1 versus 2.1%). In patients 
with baseline LDL-C > 2.6 mmol/l (100 mg/dl) 
comprising 30% of total, CVD events were 
reduced by 24%, with all endpoints showing 
reductions, including CAD death and CVD death 
by 28% and 31%, respectively.

In a pre-specified analysis of ODYSSEY Outcomes 
study, the total number of nonfatal CVD events 
and deaths prevented with alirocumab was twice 
the number of first events prevented.57 In this 
study, 3064 first and 5425 total events occurred in 
the whole cohort. In the alirocumab arm, there 
were 190 fewer first and 385 fewer total nonfatal 
CVD events or deaths. Alirocumab thus decreased 
the occurrence of first, but also subsequent, CVD 
events.

An overview of PCSK9 outcome trials
Both trials reduced primary composite CVD end 
points. The Kaplan–Meier curves diverged after 
12 months and the effects accumulated as the 
length of treatment extended. The incidence of 
primary composite end points in the FOURIER 
trial decreased by 15 (12–27)%, similar to the 12 
(7–16)% achieved during the first year of treat-
ment with statins in the Cholesterol Treatment 
Trialists' (CTT) meta-analysis.52 Similar results 
were obtained in ODYSSEY outcomes, indicat-
ing that the CVD event, i.e. change in LDL-C 
relationship (21% relative risk reduction per 
1 mmol/LDL-C reduction), held for these drugs 
as well as statins and ezetimibe.

As usual for lipid trials, the greatest effects with 
PCSK9 inhibitors were seen on coronary inter-
vention and non-fatal outcomes.58 In a meta-anal-
ysis of 83,321 patients, PCSK9 inhibitor therapy 
did not reduce all-cause mortality [RR 0.94 
(0.81–1.09); p = 0.41], even after excluding the 
bococizumab studies.59 Predictably, this risk 
reduction varied with baseline LDL-C, in showing 
a significant reduction only in patients with LDL-
C > 100 mg/dl (2.4 mmol/l) [RR 0.39 (0.20–0.76); 
p = 0.01]. PCSK9 inhibitor therapy showed no 
significant effect on CVD mortality, but, after 

regrouping ODYSSEY OUTCOME estimates, 
again an effect restricted to patients with LDL-
C > 100 mg/dl (2.4 mmol/l) [RR 0.67 (0.51–0.87); 
p = 0.006] was detected.59

Concerns have been expressed about the association 
of low LDL-C with excess CVD risk, especially for 
haemorrhagic stroke.60 The PCSK-9 endpoint trials 
allowed this to be explored, though the ODYSSEY 
trials did have a compulsory dose reduction if 
achieved LDL-C was 0.5 mmol/l (20 mg/dl). In the 
FOURIER study, 8003 (31%) patients achieved 
concentrations of 0.5–1.3 mmol/l.53 The relationship 
between lower LDL-C and lower risk of CVD end-
points continued and extended to the bottom first 
percentile (LDL-C < 0.2 mmol/l. No excess adverse 
events, including haemorrhagic strokes, were seen. 
This confirms the safety of achieving ultra-low 
LDL-C in patients with ACS.

Insights of PCSK-9 trials into optimal 
targets
Imaging-based studies have a long history in 
CVD studies. Originally studies were preformed 
using quantitative coronary angiography, and 
these showed the benefits of statin, fibrate, nia-
cin and bile acid sequestrant treatment as well 
as strict LDL-C-lowering diets. The technology 
evolved and later trials were conducted using 
intravascular ultrasound (IVUS) in patients 
with one 50% coronary artery stenosis over a 
2-year time period. The first trial using this 
methodology was the Reversal of Atherosclerosis 
With Lipitor (REVERSAL) trial comparing 
Pravastatin 40 mg with Atorvastatin 80 mg.61 
This data was later analysed by achieved LDL-
C, and regression began to be seen with 
LDL-C < 1.8 mmol/l.62,63

Other groups performed similar studies with 
ezetimibe added to statin therapy. The largest is 
the plaque regression with cholesterol absorption 
inhibitor or synthesis inhibitor evaluated by intra-
vascular ultrasound (PRECISE-IVUS) trial in 
202 patients with previous CAD intervention.64 
Statin therapy was optimised to deliver LDL-
C < 1.8 mol/l and patients were randomised to 
ezetimibe or placebo for 1 year and followed by 
IVUS imaging. The achieved LDL-C was 
1.6 mmol/l (63 mg/dl) compared with 1.9 mmol/l 
(73 mg/dl) resulting in percent atheroma volume 
(PAV) change of 1.54 (0.003–3.08)%, which did 
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not exceed the pre-defined noninferiority margin 
of 3%. The absolute change with statin-ezetimibe 
in PAV was –1.4% versus –0.3% with statin alone 
(p = 0.001) and 78% versus 58% (p = 0.004) 
patients showed evidence of regression.

A similar study has been conducted with a 
PCSK-9 inhibitor. The global assessment of 
plaque regression with a PCSK9 antibody as 
measured by intravascular ultrasound (GLAGOV) 
trial randomised 968 patients aged 60 years with 
angiographic CAD to 420 mg monthly or placebo 
on top of statin therapy for 76 weeks.65 The 
evolucumab group achieved a LDL-C of 
0.9 mmol/l (37 mg/dl) compared with 2.2 mmol/l 
(93 mg/dl) in the placebo group. Evolocumab 
treatment reduced PAV by 1.0% overall, induc-
ing 0.95% regression compared with a 0.05% 
increase in the placebo group. In 144 patients 
with LDL-C levels < 1.8 mmol/l (70 mg/dl) the 
change in PAV was more marked (−1.97% versus 
−0.35%; p < 0.001), with 81% of patients on evo-
locumab showing plaque regression. The study 
confirmed that evolocumab added to statin ther-
apy induced significant plaque regression.

Health economics of PCSK-9 therapy
The main problem with PCSK-9 therapies has 
been their substantial price differential compared 
with other agents used in CVD medicine.66 
Though priced similarly to other antibody-based 
therapies, this has provoked resistance from pay-
ers and caused controversy within guidelines 
groups. Health economic analyses show that off-
patient drug therapies are highly cost-effective in 
primary prevention, whereas in secondary pre-
vention on-patent therapies costing about $100/
month are cost effective in ACS but not chronic 
CVD if a low threshold of $30,000 ($30k) per 
quality adjusted life year (QALY) is used as in the 
United Kingdom (UK).67 Using thresholds more 
typical of the United States (US) at $50–100k/
QALY, these drugs may be cost effective in 
higher-risk secondary prevention but are limited 
in primary prevention.68,69 Analyses using the ini-
tial process of PCSK-9 inhibitors suggested poor 
cost-effectiveness at a $150k threshold unless 
optimistic assumptions were made.70,71 Value-
based pricing analyses in the US suggested that a 
price in the region of $5–6k was reasonable given 
their benefits.70 Prices for PCSK-9 inhibitors 
have since been reduced in the US from $15–16k 

per year to a new global price in the region of $6k, 
rendering these drugs more acceptable to payers. 
European payers have negotiated further dis-
counts to improve the acceptability of these drugs 
in social insurance/government-funded health 
systems, but concerns about price still limit access 
to these medications in many countries.69,72

The outcome of these concerns about the afford-
ability of PCSK-9 inhibitors has been a tendency 
towards underuse of these drugs compared with 
specialist society guideline recommendations at 
1–2% of the population concentrated on the 
highest risk groups.73–75 However, significant 
differences are likely to arise between payer-
derived guidelines [e.g. UK National Institute 
for Health and Clinical Excellence (NICE)] and 
specialist societies that do not need to consider 
reimbursement.76 The gap between clinical 
desires and financial affordability opens the way 
to alternative methods of lowering LDL-C.

Alternative approaches to lowering LDL-C
Data from imaging and CVD outcomes studies 
suggest that most therapies that reduce LDL-C 
will also reduce CVD events. This has encour-
aged the development of further compounds that 
reduce LDL-C.

Reduction of LDL-C with small interfering RNA 
therapy: inclisiran
An alternative approach to inhibiting PCSK9 in 
plasma with antibodies is to inhibit translation of 
the protein in the cytoplasm by interfering with the 
messenger RNA (mRNA).77 Theoretically, this 
has the advantage that this will inhibit the intra-
cellular activities of PCSK9, whereas antibodies 
only affect the extracellular compartment. Two 
approaches exist to inhibit the mRNA. The longer 
established strategy in lipids is to inhibit mRNA 
translation through the use of subcutaneously 
administered antisense oligonucleotides (ASOs). 
The alternative is to use short interfering RNA 
(siRNA). The siRNA blocks translation of PCSK9 
mRNA and promotes RNA degradation through 
RNA-induced silencing complex (RISC), in con-
trast with ASOs, which use a RNAse H1-based 
degradation pathway.77,78 Further targeting speci-
ficity can be added through a n-acetyl-glucosamine 
(NAG) moiety that targets the drug to hepato-
cytes, enabling siRNA doses to be reduced 
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compared with untargeted ASOs. Unfortunately, 
ASO approaches to PCSK9 have proved unsuc-
cessful due to high rates of injection-site reactions 
and renal tubular toxicity.79

Inclisiran is a long-acting siRNA molecule tar-
geting PCSK9 mRNA. A dose-ranging study of 
several doses of inclisiran in adult healthy  
volunteers with an LDL-C > 2.6 mmol/l 
(100 mg/dl) showed that multiple-dose regi-
mens of inclisiran reduced levels of PCSK9 
and LDL-C by 84% and 60% from baseline at 
day 84.80 Doses ⩾300 mg reduced PCSK9 and 
LDL-C levels for at least 6 months. No serious 
adverse events were seen with inclisiran, and 
the most common adverse events in the trial 
were cough, musculoskeletal pain, nasophar-
yngitis, headache, back pain and diarrhea. This 
study prompted further development of incli-
siran. In the ORION-1 study of 501 patients, 
inclisiran produced dose-dependent reductions 
in PCSK9 levels and LDL-C.81 The greatest 
reduction in LDL-C was seen with two-doses 
of 300 mg inclisiran regimen (first dose at day 
1 and second dose at day 90), resulting in 48% 
of patients achieving LDL-C < 1.2 mmol/l 
(50 mg/dl) at 6 months to 1 year.82 Various 
phase III studies with inclisiran are ongoing. 
The ORION-4 study is randomising 15,000 
patients aged >55 years with pre-existing CVD 
to inclisiran or placebo.83 They will be followed 
up for 5 years for safety and efficacy in prevent-
ing major adverse CVD events. More than 
1550 patient-years of safety data have been 
accumulated in the ORION phase III program 
with no significant adverse safety signals.

PCSK9 vaccines
As PCSK9 is antigenic and can be used to pro-
duce human antibodies, then it is feasible to 
attempt a long-term vaccine strategy to accom-
plish similar effects on a permanent basis. Initial 
experimental results in animals vaccinated with 
bacteriophage virus-like particle (VLP) conju-
gated with PCSK9 epitopes adjacent to the 
LDLR binding domain have been encouraging.84 
Immunisation against PCSK9 in various mouse 
models has been shown to decrease cholesterol 
and LDL-C levels, reduce development of CVD, 
and decrease systemic and vascular inflamma-
tion.85 However, no human studies have yet been 
performed.

PCSK9 gene therapy
Individuals homozygous for PCSK9 deficiency have 
been identified and have clinical phenotypes of being 
healthy though profoundly hypocholesterolaemic.21 
Thus, clinical intervention to knock out PCSK9 
using gene therapy technology such as Clustered 
regularly interspaced short palindromic repeat-
(CRISPR)-associated protein -9 (CRISPR-Cas9) 
may be feasible to deliver a cure for conditions such 
as FH.86,87 Again, no studies in man have yet been 
performed.

Bempedoic acid
As there is considerable confidence in the LDL-C 
hypothesis, and as statins target the cholesterol 
synthesis pathway, it may be possible to further 
inhibit this pathway.88 Originally, studies concen-
trated on squalene synthase inhibition later in the 
pathway, but these drugs (e.g. zaragozic acid, 
lapaquistat) proved to have limited efficacy and 
potentially high toxicity.89

The newest development is to target the step 
before HMG-coA reductase in the liver: ATP-
citrate lyase. Bempedoic acid is an oral inhibi-
tor of hepatic ATP citrate lyase, which decreases 
LDL-C levels by 17% in patients receiving 
maximally tolerated statin therapy at 12 weeks 
without obvious serious adverse events.90 In 
statin-intolerant patients, bempedoic acid 
added to other lipid lowering therapy, includ-
ing ezetimibe, was well tolerated and resulted 
in 24% lower LDL-C compared with placebo 
or when added to ezetimibe therapy again after 
12 weeks.91 Longer-term safety has been dem-
onstrated in 2230 patients.92 This drug is now 
being evaluated in a CVD outcomes study.

Implications of PCSK-9 trials for guidelines
Lipid guidelines have generally followed the 50th 
centile of achieved LDL-C from the CVD outcome 
trials as a target. Thus, targets fell rapidly from 
3 mmol/l in secondary prevention (4S) to 1.8–
2.0 mmol/l (CARE and LIPID studies).76 The 
high-dose compared with low-dose statin studies in 
secondary prevention reinforced the 1.8–2.0 mmol/l 
target especially after the CTT meta-analysis was 
published, but did not reduce the targets further 
despite the analysis showing continuing linear rela-
tive risk reduction down to 1.5 mmol/l. The results 
of recent studies, such as IMPROVE-IT or the 
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PCSK-9 trials, in ACS are just beginning to be 
implemented in the guidelines.93,94 Almost all new 
guidelines have agreed that ezetimibe should be 
added to statin therapy in ACS as it is moderately 
effective and off-patent, and thus cheap.93,94  
UK NICE is the only exception as its appraisal is 
dated.

Incorporation of PCSK-9 trials into guidelines 
has proved problematic, due primarily to cost 
considerations. Specialist societies later followed 
by guidelines have based their recommendations 
on the trial populations by creating the concept of 
high-risk groups of patients with CVD distin-
guished by excess vascular risk (ACS or multi-
vascular bed disease) hyperlipidaemia and 
additional risk factors.95–97 The American and 
European society guidelines,93,94 like their spe-
cialist lipid societies, introduced the concept of 
ultra-high-risk groups based on the secondary 
prevention populations recruited to trials, whereas 
others have suggested the use of number needed 
to treat (NNT) thresholds, which are a proxy for 
CVD risk.98 Patients with FH or recurrent ACS, 
LDL-C > 2.5 mmol/l and additional risk factors 
qualify for treatment. European guidelines have 
gone further by extending the concept to ultra-
high primary prevention. UK NICE is conserva-
tive in preserving the concept of one category of 
established CVD and suggesting prescription in 
FH with LDL-C > 5 mmol/l or patients with 
CVD and LDL-C > 4 mmol/l for monovascular 
or >3.5 mmol/l in multi-vascular bed or recurrent 
disease in patients despite maximally tolerated 
statin and ezetimibe.

These guidelines might be thought to substan-
tially increase the population eligible for PCSK-9 
therapy. Currently, the UK NICE guidelines sug-
gest 2% of patients with CVD may be eligible for 
PCSK9 inhibitors despite 29% not achieving 
LDL-C targets of <2 mmol/l,99 whereas a 
Canadian analysis suggests up to 52% may 
require PCSK-9 therapy.72 However, in both 
FOURIER and ODYSSEY, lipid-lowering ther-
apy was not maximised prior to randomisation 
and ezetimibe usage was low. In IMPROVE-IT, 
baseline lipid levels were similar to the PCSK-9 
trials at a LDL-C of 2.43 mmol/l (94/dl), but 
optimisation of statin therapy (simvastatin only) 
reduced this to 1.81 mmol/l (67 mg/dl), whereas 
addition of ezetimibe allowed a mean LDL of 
1.38 mmol/l (53 mg/dl) to be achieved, in line 

with suggested targets from both major guide-
lines. The only major difference between these 
guidelines is in the new European guidelines, 
which suggests a lower target of 1 mmol/l for 
LDL-C in patients with recurrent ACS within 
1 year of initial intervention based on the PCSK9 
trials.

All the guidelines and some advisory strategies 
concentrate on lipid-lowering as part of their 
brief, in effect focusing on NNT and, hence, 
underlying CVD risk.98 These approaches neglect 
the substantial benefits seen on CVD mortality 
and events seen in some sub-groups from  
non-lipid-lowering-based therapies. Sodium-
glucose lithium transporter-2 (SGLT-2) inhibi-
tors reduce mortality, heart failure and CVD 
events in patients with diabetes,100 whereas 
glucagon-like peptide-1 (GLP-1) agonists reduce 
CVD events.101 These patients may encompass 
25–30% of eligible patients based on PCSK-9 
trial recruitment. Furthermore, other interven-
tions such as high-dose omega-3 fatty acids 
(reduction of cardiovascular events with EPA-
intervention trial; REDUCE-IT) in patients with 
moderate hypertriglyceridaemia (which overlap 
with PCSK-9 trial recruitment criteria) also 
reduce CVD events.102 Other data suggest that 
more aggressive anti-thrombotic therapy or even 
colchicine therapy may further reduce the eligi-
ble population by reducing CVD events from 
other causes without needing to prescribe expen-
sive drugs.103 Thus, the eligible population for 
PCSK9 inhibitors is, in reality, patients with 
hypercholesterolaemia who are statin-intolerant 
or those with FH.

Conclusion
PCSK-9 inhibitors are a major innovation in lipid 
management and are undoubtedly effective in 
reducing both CVD events and LDL-C by 50% 
with acceptable rates of discontinuation. Uptake 
of these drugs has been slow, driven by concerns 
about affordability from payers, but increasing 
flexibility on pricing is helping to resolve this in 
many countries. New PCSK-9 interventions are 
in development, as are alternative oral methods of 
lowering LDL-C. Though PCSK-9 inhibitors 
will undoubtedly have a place in lipid manage-
ment, it is unclear as to whether they will be uni-
versally used or just prescribed to selected 
high-risk groups.
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