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Abstract

Drug combinations are a promising strategy to counter antibiotic resistance. However, current experimental and computational ap-
proaches do not account for the entire complexity involved in combination therapy design, such as the effect of pathogen metabolic
heterogeneity, changes in the growth environment, drug treatment order, and time interval. To address these limitations, we present
a comprehensive approach that uses genome-scale metabolic modeling and machine learning to guide combination therapy de-
sign. Our mechanistic approach (a) accommodates diverse data types, (b) accounts for time- and order-specific interactions, and (c)
accurately predicts drug interactions in various growth conditions and their robustness to pathogen metabolic heterogeneity. Our
approach achieved high accuracy (area under the receiver operating curve (AUROC) = 0.83 for synergy, AUROC = 0.98 for antagonism)
in predicting drug interactions for Escherichia coli cultured in 57 metabolic conditions based on experimental validation. The entropy in
bacterial metabolic response was predictive of combination therapy outcomes across time scales and growth conditions. Simulation
of metabolic heterogeneity using population FBA identified two subpopulations of E. coli cells defined by the levels of three proteins
(eno, fadB, and fabD) in glycolysis and lipid metabolism that influence cell tolerance to a broad range of antibiotic combinations.
Analysis of the vast landscape of condition-specific drug interactions revealed a set of 24 robustly synergistic drug combinations with
potential for clinical use.
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Significance Statement:

Worldwide, 700,000 people die each year from drug-resistant infections. Drug combinations have great potential to reduce the
spread of drug-resistant bacteria. However, their potency is impacted by both the pathogen growth environment and the het-
erogeneity in pathogen metabolism. The metabolic heterogeneity in a pathogen population allows them to survive antibiotic
treatment. Here, we present a flexible machine-learning framework that utilizes diverse data types to effectively search through
the large design space of both sequential and simultaneous combination therapies across hundreds of simulated growth con-
ditions and pathogen metabolic states. Our approach can serve as a useful guide for the selection of robustly synergistic drug
combinations.

Introduction
Antimicrobial resistance (AMR) occurs due to extended exposure
to antibiotics, which allows bacteria to evolve resistance mecha-
nisms that render antibiotic treatments ineffective (1). In the con-
text of AMR, bacterial metabolism plays a key role. Cell-to-cell
variation in metabolism within a population can be beneficial in
responding to antibiotic stress (2, 3), and several pathogens take
on a distinct metabolic state in vivo to tolerate antibiotics (4, 5).
It is important to note that tolerant cells are predicted to be the
source of drug-resistant pathogens (5–7). In addition to stochas-
ticity in metabolic activity within a population, extrinsic factors

such as the metabolic environment also influence antibiotic effi-
cacy (8–10). For example, the availability of oxygen and extracel-
lular metabolites modulate potency of antibiotics (9). Metabolism
can, thus promote pathogen survival through adaptable use of
nutrients in the local environment (11, 12). Bacterial metabolism
also impacts susceptibility to antibiotics through the production
of reactive oxygen species (13, 14) or changes in membrane per-
meability (9). Of note, these metabolic responses are also tied
to entropy (i.e. disorder) in the bacterial stress response, which
has been shown to be a generalizable predictor for antibiotic
sensitivity (15). Altogether, these individual findings suggest that
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modeling bacterial metabolism in response to antibiotics may
be insightful for the design of novel treatments that mitigate
resistance.

Combination therapy, which involves the use of two or
more therapeutics, holds great potential for combating resistant
pathogens as it not only leverages already regulated therapeutics
(16), but also offers room for improved efficacy (17). Further, com-
bination therapy could be optimized to selectively target resistant
pathogens via collateral sensitivity (CS), which has been shown to
overcome multidrug resistance in cancer (18, 19). CS entails the in-
creased sensitivity to a therapeutic that results from initial treat-
ment with another stress agent (20). This phenomenon has been
observed across various diseases and organisms (18, 21–23), and in
context of AMR, could be leveraged to prevent and mitigate resis-
tance (24). Theoretical studies have also predicted that antibiotic
combinations can be effective in heterogeneous populations and
reduce the rise of resistance more effectively than monotherapy
(24, 25). However, these studies do not provide a guideline to iden-
tify promising combinations among thousands of possible can-
didates. Combination therapies are traditionally identified using
experimental methods; however, this approach quickly becomes
infeasible when considering the vast combinatorial search space,
the effects of the growth media, pathogen metabolic heterogene-
ity, and time-/order-dependence for treatment efficacy.

With the advent of high-throughput omics data and applica-
tion of machine learning (ML), it is now possible to expedite the
search for effective combination therapies. ML has also been ap-
plied to reveal mechanistic insights into antibiotic mechanisms
of action (26, 27) and identify novel antibacterial compounds (28,
29). In the past decade, several groups have used these methods
to computationally design combination therapies in context of
cancer (30–35) and AMR (36–38). For the latter case, prior mod-
els have been shown to generate predictions that accurately cor-
respond to experimental and clinical efficacy against Escherichia
coli and Mycobacterium tuberculosis, thus offering effective reduc-
tion of the search space for combination therapies against AMR
(36, 38). However, these approaches are limited by the availabil-
ity of omics data measuring the bacterial response to antibiotic
treatment. The combined drug effect on bacterial growth has also
only been assessed in a limited number of growth environments
(37). Moreover, current models have primarily focused on simul-
taneous combinations; consequently, the potential of designing
time- and order-dependent combination therapies that promote
CS remains unexplored. Since combination therapy is increasingly
used to treat many medical conditions such as tuberculosis (TB),
Gram-negative-, and biofilm-associated infections (39–42), it is es-
sential to consider how various metabolic factors (e.g. cell-to-cell
heterogeneity and growth environment) influence the efficacy of
different drug combinations. Computational tools are, hence nec-
essary to identify antibiotic treatments that are robustly effica-
cious across heterogeneous environments (43, 44).

To address these limitations, we present an approach that in-
tegrates genome-scale metabolic models (GEMs) into ML model
development to determine effective combination therapies. Using
GEMs allows us to integrate diverse data types and account for
different pathogen metabolic states and growth conditions. GEMs
are computational models built from gene–protein-reaction asso-
ciations of metabolic genes present in the genome of an organism
(45). Additionally, they include annotation of traditional antibiotic
targets such as cell wall synthesis, DNA replication, and RNA tran-
scription. Model constraints, such as from omics data or nutrient
availability, can be imposed to simulate bacterial metabolism in
response to different perturbations (46, 47). Our approach using

GEMs and ML provides a systems-level perspective of the bacte-
rial response to antibiotic treatment in condition-specific cases.
This is critical for designing efficacious combination therapies,
since experimentally measured susceptibility to antibiotics may
not always translate into efficacy in vivo. We further extend our
approach to predict outcomes for sequential combination thera-
pies, which can be designed into cyclic antibiotic regimens that
mitigate resistance (24). Finally, we showcase how our models re-
veal mechanistic insights that explain treatment potency and can
be leveraged to finetune data-driven combination therapy design.

Results
The CARAMeL approach for combination therapy
design
Our approach, called Condition-specific Antibiotic Regimen Assess-
ment using Mechanistic Learning (CARAMeL), involves a two-step
modeling process: (a) simulating metabolic flux data using GEMs
and (b) developing a ML model to predict combination therapy
outcomes using flux from GEMs. For the first part, omics data and
metabolite composition of the extracellular environment serve as
GEM inputs to determine flux profiles in response to drug treat-
ment and growth in defined media, respectively (Fig. 1A). For the
second part, GEM-derived flux profiles and drug interaction data
serve as inputs to train a ML model that predicts interaction out-
comes for novel drug combinations (Fig. 1B). We developed ML
models predictive of combination therapy outcomes for E. coli and
M. tb using the Random Forests (RF) algorithm. We specifically
chose this ML method as it can handle small datasets and deter-
mine feature importance, i.e. how much each feature contributes
to the accuracy in model predictions. The feature importance can
reveal mechanistic insights into the factors driving combination
therapy outcomes.

We determined metabolic flux profiles in response to drug
treatment and condition-specific growth by constraining the E.
coli GEM iJO1366 (48) and the M. tb GEM iEK1011 (49). For drug
flux profiles, we imposed chemogenomic data for E. coli (50) and
transcriptomic data for M. tb (38) as GEM constraints. Briefly,
chemogenomic data measures single-gene knockout (KO) fitness
while transcriptomics data measures genome-wide expression of
genes. By selecting genes for which there was differential fitness
or expression in response to a specific treatment, we could in-
fer a set of differentially regulated genes for individual drugs.
For transcriptomic data, positive and negative differential expres-
sion directly corresponded with up- and down-regulation, respec-
tively. For chemogenomic data, we assumed that gene KOs that
result in low fitness are likely to be up-regulated upon drug treat-
ment, while gene KOs that enhance fitness were likely to be down-
regulated. This assumption is based on the cost-benefit gene ex-
pression model proposed by Dekel and Alon (51). Direct compar-
ison of flux profiles simulated from a chemogenomic-based ap-
proach against flux profiles simulated with transcriptomics and
proteomics data confirmed that these assumptions were valid
(Figure S1) (52–54). To determine growth media flux profiles, the
availability of metabolites within a media condition was used to
constrain the GEMs. Specifically, we modified the uptake rate for
exchange reactions providing key metabolites (e.g. glycerol ex-
change for M9 glycerol media) to allow cellular intake (see “Meth-
ods” for further details).

Prior to ML model development, we processed drug and media
flux profiles to determine joint profiles for all combinations of in-
terest. Joint profiles are comprised of four pieces of information:



Chung and Chandrasekaran | 3

Fig. 1. CARAMeL approach schematic. The CARAMeL approach involves a two-step process: (A) omics data (e.g. transcriptomics) measured for single
drug treatments and information on growth media composition are integrated into a GEM to simulate metabolic flux changes. (B) This information,
along with drug interaction data, serve as inputs to train a ML model; the trained model can then be used to predict outcomes for novel drug
interactions.

(a) the combined effect of all treatments (i.e. sigma scores), (b) the
unique effect of individual treatments (i.e. delta scores), (c) the
overall metabolic entropy (i.e. entropy scores), and (d) time inter-
val (relevant for time- and order-dependent combinations). To de-
termine sigma and delta scores, we adapted a strategy previously
used for creating joint chemogenomic profiles (36, 37). Specifi-
cally, we binarized drug and media flux profiles based on differ-
ential flux activity in comparison to baseline (i.e. GEM simulation
without additional constraints). Sigma scores were defined as the
union of binarized flux profiles for all treatments involved in a
combination. Delta scores were defined as the symmetric differ-
ence between flux profiles (see “Methods” for details). To account
for metabolic entropy, we first calculated entropy as defined by
Zhu et al. (15) for each drug and media flux profile. We then de-
fined entropy scores as the mean and sum of entropy among all
treatments involved in a combination. Finally, the time feature
was defined as the time interval between the first and last treat-
ments for a combination (see “Methods” and Figure S2 for further
details).

Using feature (i.e. joint profiles) and outcome (i.e. interaction
scores, IS) information for a set of drug combinations, we trained
ML models to associate feature patterns to drug combination out-
comes. Next, we used the trained ML models to predict outcomes
for new drug combinations based on their feature information
alone. We then compared our predictions against experimental
data by calculating the Spearman correlation. We also assessed
model performance by calculating the area under the receiver op-
erating curve (AUROC) for both synergy and antagonism. High and
positive values for both metrics indicate that model predictions
correspond well with actual drug interaction outcomes.

CARAMeL predicts drug interactions with high
accuracy
We benchmarked CARAMeL against previous approaches by di-
rectly comparing our prediction accuracy against those reported
in literature and those recalculated using omics data directly in-

stead of using flux data. For these comparisons, we trained ML
models and evaluated their performance for five different cases:

1. Predicting novel pairwise drug interaction outcomes for E.
coli (36).

2. Predicting novel three-way drug interaction outcomes for E.
coli (37).

3. Predicting pairwise drug interaction outcomes for E. coli cul-
tured in a novel nutrient condition (M9 glycerol media) (37).

4. Predicting novel pairwise and three-way interaction out-
comes for M. tb (38).

5. Predicting interaction outcomes for multidrug TB regimens
used in clinical trials (55).

Of note, the first, second, and fourth cases tested the model’s
ability to predict unseen combinations involving test drugs with
new mechanisms of action. The third case assessed whether the
model could predict drug interaction outcomes in a new growth
environment, while the fifth case ascertained if predicted out-
comes corresponded with clinical efficacy. Figure 2 summarizes
our findings for all analyses listed above. For all these studies,
the same train-test datasets were used for evaluating CARAMeL
against the original methods to ensure direct comparison. The
same thresholds for synergy and antagonism defined in the orig-
inal studies were also used in all these comparisons. When re-
evaluating omic-based approaches, we followed the exact proce-
dure as reported in their respective original literature (36–38). To
ensure fair comparison between CARAMeL and omic-based ap-
proaches, we also evaluated the omic-based methods for differ-
ent parameter values and report the overall best results for all
datasets (Table S1). Further discussion on ML model development
and results, including the specific train-test allocation of interac-
tion data reported in literature for each case, is provided below.

For case 1, we used drug interaction data previously measured
for 171 pairwise combinations involving 19 drugs that cover a di-
verse set of targets (36) (Table S2). Out of this total, 105 interac-
tions involving 15 drugs were used for model training and the
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Fig. 2. CARAMeL was benchmarked against other predictive approaches. (A) CARAMeL differs from previous omics-based approaches by using
simulated metabolic flux data to define the joint profiles that are used in the RF model. CARAMeL also provides advantages over the omics-based
approaches, including the accommodation of diverse data types (e.g. chemogenomics and transcriptomics) and evaluation of user-defined media
effects. (B) The Spearman correlation between actual outcomes and model predictions are shown and compared between three approaches: CARAMeL
(this study), omics (determined using chemogenomic or transcriptomic data as input), and literature (reported in literature). (C) The AUROC for
classifying interactions as synergistic or antagonistic is also directly compared between CARAMeL and omic-based approaches.

remaining 66 interactions, which involved four new drugs
that introduced new mechanisms of action (e.g. RNA synthe-
sis), were used for model validation. The CARAMeL model
yielded significant correlations between experimental and pre-
dicted scores (R = 0.71, P ∼ 10–11; Figure S3A). Model pre-
dictions also yielded high AUROC values for classifying syn-
ergy (IS < −0.5, AUROC = 0.84) and antagonism (IS > 2,
AUROC = 0.89; Figure S3B) based on thresholds defined in
the original study. Of note, these results were considerably
better than those reported in literature (R = 0.52) (36) and
those recalculated using the omic-based approach (R = 0.64;
Fig. 2A).

For case 2, we retrained the CARAMeL model using 171 pairwise
interactions to predict 56 three-way combinations involving eight
antibiotics (37) (Table S2). Our model generated accurate predic-
tions (R = 0.62, P ∼ 10–7; Figure S3C) and notably identified syn-
ergistic interactions (IS < −0.2, AUROC = 0.95; Figure S3D) with
higher accuracy than the omics-based approach (AUROC = 0.76,
Fig. 2B).

For case 3, the CARAMeL model was once again retrained with
the 171 pairwise interactions and additional pairwise data mea-
sured for E. coli cultured in M9 glucose and lysogeny broth (LB)
media. We then applied our model to predict 55 pairwise interac-
tion outcomes for E. coli cultured in M9 glycerol media. Our model

yielded results comparable to those from literature (37) and rede-
termined using omics data across all three performance measures
(R = 0.68, P ∼ 10–8, Fig. 2; Figure S3E and S3F).

For case 4, we trained a CARAMeL model using combination
data for M. tb treated with 196 pairwise to five-way interactions in-
volving 40 drugs (38) (Table S3). We then used data for 36 unseen
interactions for model validation. The CARAMeL model yielded
predictions that significantly correlated with experimental data
(R = 0.55, P ∼ 10–4; Figure S4A) and performed well in classifying
synergistic (IS < 0.9, AUROC = 0.81) and antagonistic (IS > 1.1,
AUROC = 0.83) interactions (Figure S4B). Though the CARAMeL-
based correlation is slightly lower than that reported in literature
(38) (R = 0.63), our model classified both synergistic and antago-
nistic interactions with high accuracies that are comparable to a
model trained on omics data (Fig. 2C).

For case 5, we used the same CARAMeL model from case 4 to
predict interaction outcomes for 57 multidrug TB regimens involv-
ing nine drugs prescribed in separate clinical trials (55) (Table S3).
Of note, interaction outcomes for this dataset measured regimen
efficacy based on sputum clearance after 2 months of treatment.
We found that model predictions were significantly correlated
(R = 0.56, P ∼ 10–6; Figure S4C) with sputum clearance, and that
model predictions classified as synergistic (IS < 0.9) captured most
of the efficacious treatments (sputum clearance > 80%) amongst



Chung and Chandrasekaran | 5

Fig. 3. Model performance for sequential drug interactions. (A) The sequential treatment data used in this work measured outcomes based on the
change in the minimal inhibitory concentration (MIC) or bacterial growth for a second antibiotic treatment given after exposure to a first antibiotic
and compared to an untreated control (i.e. no pretreatment with a first antibiotic). CARAMeL model performance using sequential data was evaluated
based on 10-fold CV, leave-first-drug-out, and leave-second-drug-out analyses. Shown are the (B)–(D) scatter plots between experimentally measured
outcomes (change in MIC or growth) vs. model predictions and (E)–(G) the AUROC performance for detecting CS (outcome < 0) or CR (outcome > 0).
AUROC: area under the receiver operating curve. ∗∗∗P-value < 10–3.

all 57 TB regimens (Figure S4D). These results were comparable to
both literature- (38) and omic-based results across all three per-
formance measurements (Fig. 2).

Overall, we found that our approach retained high accuracies in
predicting combination therapy outcomes for a diverse set of test
cases based on E. coli and M. tb data. This is striking, considering
that CARAMeL solely relies on simulated metabolic information,
which was determined using only ∼25% to 35% of available omics
data.

Using CARAMeL to predict sequential
interactions
Current approaches for predicting combination therapy outcomes
focus on drug treatments that are given simultaneously. Here,
we extended our approach to predict treatment efficacy for time-
and order-dependent (i.e. sequential) interactions. In contrast to
simultaneous combinations, the order and length of each drug
treatment dictates how a pathogen adapts itself, and in turn, in-
fluences its sensitivity to successive drug treatments. As such, in-
teraction outcomes are interpreted as leading to CS (analogous to
synergy) or cross-resistance (CR; analogous to antagonism). For

this task, we used data for E. coli evolved in single drug treat-
ments over three timespans (10, 21, and 90 days) then subse-
quently treated with a second drug (53, 56, 57, Fig. 3A). To ac-
count for both time- and order-dependent drug effect, we rede-
fined the delta scores for sequential joint profiles. Briefly, delta
scores were defined as the difference in binarized drug profiles
scaled by the time interval between treatments (mathematically
defined for pairwise sequences below):

δ = t2v2 − t1v1

t2 − t1
, (1)

where δ = delta scores, t = length of treatment time, and v = bi-
narized flux profile.

To initially assess how well the CARAMeL approach could pre-
dict sequential treatment outcomes, we first conducted a 10-fold
CV of the sequential data (N = 628), which involved 27 unique
drugs (Table S4). We found that CARAMeL predictions moder-
ately, but significantly, correlated with experimental outcomes
(R = 0.49, P < 10–16, Fig. 3B). Further, the model performed well in
determining whether a sequential interaction resulted in CS (IS <

−0.1, AUROC = 0.73) or CR (IS > 0.1, AUROC = 0.75; Fig. 3E).



6 | PNAS Nexus, 2022, Vol. 1, No. 3

Table 1. Metabolic pathways enriched amongst top predictors for
the E. coli CARAMeL model. Pathway enrichment was determined
based on 580 features explaining 95% of the variance in model
predictions. These features mapped to 333 reactions in the E.
coli GEM iJO1366, out of which 167 had differential flux that sig-
nificantly distinguished between synergy and antagonism (two-
sample t test, adjusted P-value < 0.05). Based on this 167-reaction
list, eight pathways were found to be significantly enriched (hyper-
geometric test, adjusted P-value < 0.05). N = number of reactions
in pathway, ratio = N/total reactions in pathway, and P-value = hy-
pergeometric test adjusted P-value.

Pathway N Ratio P-value

Purine and pyrimidine biosynthesis 9 0.36 3E-05
Pyruvate metabolism 5 0.50 1E-04
Inorganic ion transport and metabolism 19 0.17 1E-04
Transport, inner membrane 37 0.11 1E-03
Glycine and serine metabolism 4 0.29 6E-03
Glycolysis/gluconeogenesis 5 0.23 8E-03
Nucleotide salvage pathway 17 0.12 1E-02
Cell envelope biosynthesis 15 0.12 3E-02

We next evaluated the extent of our model’s predictive power
by conducting two types of leave-out analyses: (a) leave-first-
drug-out and (b) leave-second-drug-out. The first case tested
whether the model could generalize sequential treatment out-
comes for an unknown evolved strain, while the second case as-
sessed whether the model could generalize the immediate effect
of a drug on strains evolved in other drugs. For a leave-out anal-
ysis, all interactions involving the drug of interest in the appro-
priate sequence position (first or second) were left out of model
training and instead predicted for by the trained model. Similar to
the CV analysis, model performance was measured by the overall
Spearman correlation and AUROC values for CS and CR. We found
that both leave-out analyses yielded accuracies similar to those
attained from CV (Fig. 3C–D and F–G). Overall, these results indi-
cate that CARAMeL generates robust and accurate predictions for
sequential interactions.

To gain mechanistic insight into which factors influence com-
bination therapy outcomes, we trained a CARAMeL model us-
ing all interaction data available for E. coli. We then ranked fea-
tures by their predictive importance based on how the model
accuracy decreases when a feature is removed (see “Methods”
for details). In total, we found that 580 features explained 95%
of the variance in model predictions (Data S1). Of note, entropy
features were amongst the top 20, implying that metabolic dis-
array due to antibiotic stress is indicative of treatment efficacy
(Figure S5). For the GEM-derived features (i.e. sigma and delta
scores), we determined that the differential flux through 167
metabolic reactions associated with the top features significantly
distinguished between synergistic and antagonistic interactions
(two-sample t test, adjusted P-value < 0.05, Data S2). We then de-
duced that eight metabolic pathways were enriched by this set
of 167 reactions (hypergeometric test, adjusted P-value < 0.05,
Table 1). Differential activity through these pathways aligned with
the expected metabolic response to antibiotic treatments. For
example, increased flux through DNA repair systems (e.g. nu-
cleotide salvage) is expected after exposure to quinolones, which
target DNA gyrase (58). Differential flux through transport reac-
tions is also a common tactic that decreases drug concentra-
tions within the bacterial cell, therefore, minimizing their adverse
effects (59).

CARAMeL simulates the impact of intrinsic and
extrinsic metabolic heterogeneity on drug
interactions
In vivo metabolic conditions span growth in diverse substrates
such as sugars, nucleotides, glycerol, lipids, and hypoxic condi-
tions (44). In contrast to existing approaches for drug combina-
tion design, CARAMeL enables drug interaction predictions in a
large array of metabolic conditions. This can help prioritize drug
combinations for successful clinical translation considering that
the predominant nutrient source can change depending on where
bacteria reside inside the host (11). By screening different con-
ditions that are representative of in vivo environments, we can
identify drug combinations that target E. coli in diverse metabolic
conditions. Moreover, evaluating drug combinations based on effi-
cacy across a large compendium of metabolic network states will
ensure robustness against heterogeneity.

To demonstrate the power of using CARAMeL in predicting
condition-specific combination therapy outcomes, we applied it
to predict pairwise drug interactions in multiple media conditions.
For this task, we gathered experimental data for E. coli treated with
four single drug treatments (Aztreonam (AZT), Cefoxitin (CEF),
Tetracycline (TET), and Tobramycin (TOB)) and two pairwise drug
treatments (CEF + TET and CEF + TOB; Table S5). Of note, this
treatment panel evaluated the metabolic response in E. coli to
bactericidal (i.e. death-inducing) and bacteriostatic (i.e. growth-
inhibiting) drugs, both individually and in combination. Each drug
treatment outcome was assessed in E. coli cultured in Biolog phe-
notype microarray (PM) (60) plate-1, which measured metabolic
respiration in 95 carbon sources and one negative control (Fig. 4A).
Out of these 95 media conditions, 57 could be simulated based on
the metabolites annotated in the E. coli GEM (Data S3). As a re-
sult, ML model development and all downstream analyses were
conducted using the data subset pertaining to the 57 media con-
ditions that were simulated.

We constructed a ML model using the following inputs: flux
profiles for the four drug treatments as well as the 57 media con-
ditions, and interaction outcomes for 228 (4 × 57) drug–media
combinations. We then evaluated our model by predicting out-
comes for 114 (2 × 57) drug–drug–media combinations (Fig. 4B).
Overall, we found that model predictions significantly correlated
with experimental outcomes (R = 0.68, P < 10–16, Fig. 4C). We also
assessed correlations specific to each drug pair and found that
model predictions still corresponded well with experimental data
(CEF + TET: R = 0.59, P ∼ 10–6, CEF + TOB: R = 0.81, P < 10–16). This
large-scale inspection of combination therapy outcome in differ-
ent growth environments was only possible with the CARAMeL
approach, where flux profiles could be determined for 57 media
conditions. A direct comparison of the same scale was not possi-
ble with the omic-based approach, as neither chemogenomic nor
transcriptomic data was available for all these media conditions.

We next evaluated how cell-to-cell heterogeneity influenced
combination therapy outcomes using population FBA (61), a mod-
eling approach that simulates cell-specific metabolic heterogene-
ity based on single-cell proteomics data (62). Specifically, infor-
mation on the protein copy number levels measured for E. coli
cultured in M9 glucose media is used to constrain the metabolic
model (62). To simulate heterogeneity between cells, the single-
cell proteomics data is randomly sampled based on the gamma
distribution for each cell and subsequently used to constrain
the GEM to simulate cell-specific metabolic states (Fig. 5A). We
used population FBA to simulate 1,000 E. coli cells cultured
in M9 glucose media (“Methods”). We then generated pairwise
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Fig. 4. CARAMeL accurately predicted drug interaction outcomes in 57 carbon sources. (A) Escherichia coli was cultured in 96 carbon sources (Biolog
PM01 plate), then treated with four single drug treatments (AZTreonam, CEFoxitin, TETtracycline, and TOBramycin) and two pairwise treatments
(CEF + TET and CEF + TOB). (B) Heatmap of metabolic activity (measured based on the respiration ratio between treatment vs. control) in response to
all experimental perturbations (data only shown for the 57 media conditions simulated using the E. coli GEM). (C) Spearman correlation between
experimental outcome and model predictions for all combinations in the test set are shown. GEM: genome-scale metabolic model. ∗∗∗P-value < 10–3.

Fig. 5. Single cell-specific combination therapy predictions. (A) Schematic showing how population FBA (61) was applied to simulate cell-specific
metabolic heterogeneity. Specifically, single-cell proteomics data (62) was randomly sampled (based on the gamma distribution) and used to constrain
the E. coli GEM to simulate cell-specific fluxes, which were ultimately used to generate cell-specific drug interaction predictions. (B) Cells were found to
cluster into two distinct groups after applying principal component analysis (PCA) onto the simultaneous prediction data (PC loadings for the first two
dimensions reported in Data S6). (C) The sampled level for three enzymes (eno, fadB, and fabD) were found to significantly correlate with cell-specific
scores along principal component 1 (PC1) from panel B. (D) Cluster-1 cells were predicted to be more sensitive to most drug combinations (e.g.
AMK + AZT) compared to cluster-2 cells. (E) For a smaller set of drug combinations (15%), primarily involving quinolones (e.g. AMK + NAL), cluster-2
cells were predicted to be more sensitive than cluster-1 cells. AMK: amikacin, AZT: aztreonam, ans NAL: nalidixic acid.
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predictions between all drugs for which the E. coli CARAMeL model
was trained on (N = 33) against the 1,000 simulated cells (Data S4).
For each drug pair, we evaluated three interaction cases: (a) simul-
taneous treatment (D1 + D2), (b) sequential treatment from D1 to
D2, and (c) sequential treatment from D2 to D1. For sequential in-
teractions, we set the duration for the first treatment to 14 days,
based on the most commonly prescribed antibiotic treatment du-
ration against bloodstream infection by Enterobacteriaceae (63), and
1 day for the second treatment.

Using the prediction landscape for the 1,000 cells, we deter-
mined the extent of cell-to-cell variability for each unique drug
pair (Data S5). Overall, sequential predictions varied more largely
between cells (up to 14% change in standard deviation relative to
the mean) while there was less than 5% change in standard devia-
tion compared to the mean for the simultaneous case, suggesting
that simultaneous treatments may be more robust to heterogene-
ity (Figure S6). Interestingly, the variation among simultaneous
predictions tended to follow a bimodal distribution (Figure S7). Ap-
plying principal component analysis (PCA) onto the simultaneous
prediction landscape for all 1,000 cells confirmed that two distinct
subpopulations can be determined via k-means clustering (Fig. 5B;
Figure S8, see “Methods” for details). We further confirmed that
the cell clustering was not being driven by nonuniform sampling
of the flux solution space by resampling single-cell fluxes using
optGpSampler (64) (Figure S9). Of note, this distinct cell group-
ing was not observed when PCA was applied to cell-specific pro-
teomics data nor metabolic flux data (Figure S10).

We next sought to determine whether the clustering pattern
seen in the drug interaction PCA plot was being driven by specific
enzyme levels or metabolic activity. Thus, we evaluated the corre-
lation between the cell-specific scores along principal component
1 (PC1) against corresponding enzyme levels and simulated flux
profiles. We determined that sampled levels for three enzymes
(eno, fadB, and fabD) significantly correlated with the cell map-
ping along PC1 (Fig. 5C). These enzymes correspond to enolase (in-
volved in glycolysis), a multifunctional enoyl-CoA hydratase (in-
volved in lipid metabolism), and malonyl-CoA-acyl carrier protein
transacylase (involved in lipid metabolism), respectively. A similar
comparison of PC1 scores with the simulated flux data revealed
more than 400 significantly associated reactions (Data S7), which
altogether correspond to 16 pathways (hypergeometric test, ad-
justed P-value < 0.05; Figure S11). These findings confirm that
cluster-1 cells differ from cluster-2 cells based on their metabolic
activity through glycolysis (eno) and lipid metabolism (fadB and
fabD).

Hence, fluctuations in the levels of these three proteins were
predicted to drive the broad metabolic shift between the two sub-
populations. To confirm the causality, we performed KOs of these
three proteins. A similar PCA assessment for cells simulated to
have single- and multigene KO of eno, fadB, and fabD confirmed
that the PCA-based cell clustering seen in Fig. 5B is strongly driven
by the metabolic states characterized by eno and fabD levels
(Figure S12).

Based on the direction of the enzyme correlation with PC1
scores, we inferred that cluster-1 cells exhibit low glycolysis and
high lipid metabolism, while cluster-2 cells exhibit the opposite
behavior. For a large set of drug combinations (85%), we found
that reduced glycolysis coupled with high lipid metabolism pro-
moted more synergistic outcomes (Fig. 5D; Data S8), while the
same metabolic state was found to promote more antagonistic
outcomes for a smaller set (15% of the combinations; Fig. 5E; Data
S8). Of note, a small number of cells representing < 1% of the total

population (labeled as “cluster-3”) did not cluster together with ei-
ther dominant subpopulation, but instead fell near the center of
the drug interaction PCA space (Fig. 5B; Figure S7). Closer inspec-
tion of enzyme levels for eno, fadB, and fabD revealed that the
sampled levels for eno were much lower for cluster-3 cells (∼400
per cell) compared to cluster-1 and cluster-2 cells (∼600 per cell;
Figure S13). Considering that enolase is an essential enzyme for
maintaining glycolysis and cell growth, an adequately high level
for enolase (e.g. > 500 per cell) may be required to simulate sta-
ble flux solutions that lead to the patterns we observe in Fig. 5(B).
These cells may represent an unstable transition state between
clusters 1 and 2.

Interestingly, the smaller set of drug combinations with an-
tagonistic outcomes in cluster 1 is overrepresented by combina-
tions that include quinolones such as nalidixic acid (∼12% among
synergistic vs. ∼86% of antagonistic combinations in cluster-1 in-
volved quinolones, refer to Data S8). A prior study has found that
quinolone efficacy is reduced in high-density bacterial popula-
tions, likely due to depletion of metabolites that couple carbon
metabolism to oxidative phosphorylation (65). The same study
subsequently shows that quinolone efficacy can be restored via
supplementation with glucose and an electron acceptor, which
stimulate respiratory metabolism. Our findings, coupled with the
literary evidence described above, indicate that cluster-1 cells
may represent a subpopulation that is tolerant to treatments in-
volving quinolones. Given the highly interconnected nature of
cellular metabolism, stochastic changes in a small number of
key metabolic enzymes can result in distinct phenotypes when
treated with stressors. These two subpopulations may not be evi-
dent in an unperturbed system, which shows fluctuations in nu-
merous proteins; however, when exposed to antibiotics they may
result in bifurcation into two stable subpopulations. Though ex-
perimental validation would be required to fortify these results,
we confirmed that all the reported findings tied to the cell-specific
predictions are robust to a wide range of modeling parameters
(Figure S8).

Screening for robust combination therapies
Synergy observed in the lab may not result in synergy in vivo
due to differences in growth conditions or drug pharmacokinet-
ics, wherein drugs may reach the infection site at different times
rather than simultaneously (66). Considering these factors, com-
bination therapies that show synergy across growth conditions
and time scales hold the best potential for successful clinical
translation. To discover such therapies, we predicted pairwise and
three-way regimen outcomes for all drugs for which the E. coli
CARAMeL model was trained on (N = 33) across 57 carbon sources
(from Biolog PM01). For sequential interaction predictions, treat-
ment duration for pairwise treatments was set to 14 days fol-
lowed by 1 day, while three-way treatments were set to a 14–14–
1-day prescription. In total, we generated predictions for 90,288
pairwise combinations (33C2 pairs × 3 interaction cases × 57
PM01 conditions, Data S9) and 2,176,944 three-way combinations
(33C3 combinations × 7 interaction cases × 57 PM01 conditions,
Data S10).

Out of 528 unique drug pairs and 5,456 unique three-way in-
teractions, none was predicted to be synergistic across all media
conditions and interaction cases. In fact, sustained synergy across
media conditions seems to occur for only a small subset (<10%)
of drug interactions (Figure S14). Specifically, 73 drug pairs and
165 three-way interactions were predicted to yield synergy both
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Fig. 6. Pairwise combination therapy prediction across 57 media
conditions. (A) Out of 528 drug pairs, 73 were predicted to yield synergy
(IS < 0) in at least one media condition for both the simultaneous and
sequential cases (the top 15 robustly synergistic drug pairs are listed in
the legend). (B) Heatmap of the predicted IS for the 73 drug pairs across
57 media conditions and three interaction types (D1 + D2, D1 → D2, and
D2 → D1). Refer to Tables S2 and S4 for full descriptions on antibiotics
used for E. coli.

simultaneously and sequentially in at least one media condition
(Fig. 6; Figure S15). Of note, all 73 drug pairs showed less than 5%
cell-to-cell variation based on population FBA for all interactions
cases (i.e. simultaneous and sequential interactions). Upon closer
inspection of both pairwise and three-way sets, synergy was not
found to be retained across a majority of media conditions for
three-way drug interactions. On the other hand, several pairwise
interactions were found to retain synergy well; specifically, 24 drug
pairs out of 73 were found to be synergistic in more than 50% of
conditions in both simultaneous and sequential cases.

Interestingly, several of these 24 drug pairs possess evidence for
clinical use against bacterial infections. For example, amikacin–
ampicillin treatment (AMK–AMP) has previously been shown to
be clinically effective for a wide range of infections (67–69) in-
cluding treatment of bacteremia in neutropenic patients (70) and
neonatal bacterial infections (71). Other drug interactions of note
include: azithromycin–rifampicin (AZI–RIF), which has demon-
strated clinical efficacy in treating arthritis induced by pathogenic
chlamydia (Gram-negative) (72); fusidic acid–rifampicin (FUS–
RIF), which has shown clinical efficacy against prosthetic joint
infection caused by drug-resistant staphylococci (Gram-positive)
(73); and minocycline–rifampicin (MIN–RIF), which has been
shown to prevent colonization by slime-producing staphylococci
in catheters (74). Additionally, rifampicin combined with other
drugs has been advised as treatment for Gram-negative and non-
mycobacterial infections (42, 75). Further investigation into the set
of 24 drug pairs predicted to yield robust synergy may lead to the
discovery of new combination therapies that could be put to clin-
ical use.

Discussion
Here, we introduced CARAMeL, a modeling approach to design
condition-specific antibiotic regimens. CARAMeL offers multiple
advantages over prior methods of similar nature. First, our ap-
proach enables use of diverse data types (e.g. chemogenomics
and transcriptomics) individually or in combination, derived from
a single source or in combination from multiple sources, there-
fore, maximizing the number of drugs that are screened. For in-
stance, our E. coli CARAMeL model leveraged use of both chemoge-
nomics data (for defining drug flux profiles) and proteomics data
(for simulating single cells), a feat that cannot be accomplished
with prior methods of similar nature. Second, we extended our
approach to simulate different interaction cases (simultaneous vs.
sequential) when designing combination therapies. To our knowl-
edge, no framework currently exists to incorporate these factors
into drug discovery efforts against AMR. Third, the use of GEMs en-
ables simulation of highly tunable metabolic conditions (as show-
cased with our analysis of the Biolog PM01 data), which may be
leveraged to investigate combination therapy outcomes in the
host environment. GEMs also enable the simulation of pathogen
metabolic heterogeneity, due to both intrinsic stochasticity and
the metabolic environment. Pathogen heterogeneity is a critical
barrier in designing effective antibiotic therapies, and this must
be factored into combination therapy design to mitigate the rise
of resistant strains.

Additional advantages to the CARAMeL approach include
its mechanistic model interpretability, its ability to simulate
pathogen metabolic heterogeneity, and its use in generating pre-
dictions across numerous conditions in large-scale. Regarding
model interpretation, the E. coli CARAMeL model revealed that en-
tropy, or metabolic disarray, plays an important role in combina-
tion therapy outcome. The direct link between model features (i.e.
sigma and delta scores) and GEM reactions also pinpointed path-
ways that are activate in response to drug treatment (Table 1),
many of which align with the expected resistance mechanisms
against antimicrobial stress (58, 59).

Using population FBA (61), we investigated how drug interac-
tion outcomes may differ from cell-to-cell. Our findings poten-
tially point to a connection between the metabolic state of a cell
and its tolerance against combination treatments. Specifically, we
found that sensitivity to a broad-range of drug combinations may
be influenced by the variation in activity of glycolysis and lipid
metabolism; these processes are directly related to antibiotic ac-
tion and interaction such as uptake, respiration, and oxidative
stress (76). Our results also imply that drug interaction outcomes
measured for a bulk cell population may not be representative
for cell subpopulations. Surprisingly, very few cells show the “av-
erage” behavior of the population; in most cases, the average pre-
diction may be defined by the outcome in two dominant subpopu-
lations where one is more sensitive to treatment while the other is
more tolerant. This investigation, along with our results with the
Biolog data, demonstrate how pathogen metabolic heterogeneity
may arise due to both intrinsic stochasticity and the local growth
environment. Pathogen heterogeneity is a critical barrier in de-
signing effective antibiotic therapies, and this must be factored
into combination therapy design to mitigate the rise of resistant
strains.

Finally, analysis of the drug interaction landscape suggests
that only a small set of 24 out of ∼ 6,000 combinations show
robust synergy across growth conditions and interaction cases,
with some possessing clinical evidence for efficacy (42, 68–75).
Further investigation into this list of drug interactions may
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lead to the discovery of new combination therapies for clinical
application.

Ultimately, CARAMeL serves as a proof-of-concept of how com-
putational approaches, such as systems-level metabolic modeling
and ML, can be combined to create hybrid models that provide
mechanistic insight into various biological processes (77–79), in
this case antimicrobial efficacy and resistance. Although the use
of GEMs in CARAMeL offers major advantages with data compat-
ibility, condition tunability, and mechanistic insight, it also intro-
duces some limitations. The level of accuracy and thoroughness
in GEM annotation may influence CARAMeL model performance.
Moreover, our current approach only provides a “snapshot” per-
spective of the metabolic response to a condition. This may be a
potential reason for the diminished CARAMeL model performance
in predicting sequential outcomes. Nevertheless, these are areas
that can be addressed with continued curation of GEMs (80) and
advances in dynamic metabolic modeling (81, 82). Overall, the
ability to simulate specific growth environments and pathogen
metabolic heterogeneity offers the potential to evaluate treat-
ment efficacy in vivo and advance clinical translation of novel an-
tibiotic regimens. Moreover, these combination therapies could re-
store use of defunct antibiotics against resistant pathogens while
mitigating further resistance (24, 83). Beyond bacterial infections,
CARAMeL has the potential to design explainable combination
therapies that are urgently needed to combat fungal infections
(84) and drug-resistant cancer cells (85). Such broader applica-
tions can be achieved by leveraging the large volume and diversity
of highly curated GEMs that exist and continue to be constructed
(86). Our approach can further be used to understand the role of
metabolic heterogeneity in cancer treatment, which plays a major
role in tumor drug resistance (87, 88).

Methods
Experimental design (Biolog PM)
Escherichia coli MG1655 was cultured in Biolog PM 1, which
screened bacterial growth in 95 carbon sources and a negative
control (i.e. water) (60). Escherichia coli was subsequently treated
with six distinct drug treatments in duplicate: AZT (0.03 ug/mL),
CEF (1.87 ug/mL), TET (1.42 ug/mL), TOB (0.15 ug/mL), CEF (1.87
ug/mL) + TET (1.42 ug/mL), and CEF (1.87 ug/mL) + TOB (1.42
ug/mL). Including a reference plate (E. coli growth in PM01 only),
phenotype in each treatment was colorimetrically measured in
duplicate using tetrazolium violet dye, which quantifies cellu-
lar respiration. All experimental procedures, data collection, and
quality control were performed at Biolog, Inc. The area under the
respiration curve was calculated using MATLAB and reported as
the ratio of treatment to reference.

Simulating metabolic flux using GEMs
The E. coli GEM iJO1366 (48) and the M. tb GEM iEK1008 (49) were
used to simulate metabolic fluxes at steady-state. To simulate
drug flux profiles, chemogenomic data for E. coli (50) and transcrip-
tomic data for M. tb (38) served as GEM constraints. Specifically,
differential gene regulation in response to each drug treatment
was inferred from each dataset. For chemogenomic data, which
measured single-gene KO fitness, gene KOs that promoted growth
were assumed as dispensable while gene KOs that resulted in low
fitness were assumed to be essential for growth in said condition.
Based on these assumptions, genes corresponding with low (z <

−2) and high (z > 2) fitness were inferred to be up- and down-
regulated, respectively. Of note, the original source for the E. coli

chemogenomic data used in this study was already processed and
normalized into z-scores that accounted for both the gene KO and
drug treatment effects. For transcriptomic data, which measured
single-gene expression, up- and down-regulation were directly in-
ferred based on high (z > 2) and low (z < −2) expression values, re-
spectively. These processes yielded individual sets of differentially
regulated genes that were integrated into corresponding GEMs us-
ing a linear optimization version of the integrative metabolic anal-
ysis tool (iMAT) (89, 90). To determine media flux profiles, metabo-
lite availability was computationally defined by constraining ex-
change reactions annotated in iJO1366. For each carbon source of
interest (e.g. glycerol), the lower bound (i.e. uptake rate) for the
corresponding exchange reaction (e.g. glycerol exchange) was set
to −10 g/mmol to allow cellular intake.

Of note, use of the linear iMAT algorithm required constraint-
based modeling (CBM) parameter fine-tuning for three variables:
kappa, rho, and epsilon (91). Kappa and rho serve as relative
weights for “off” and “on” reactions associated with the differen-
tially expressed genes, respectively, in their contribution to the
objective function. Epsilon represents the minimum flux through
“on” reactions. For the purposes of this research, we varied all
three parameter values from 10–3 to 1 and determined the op-
timal parameter set based on three criteria: (1) maximizing the
Spearman correlation between predicted and actual IS after 10-
fold CV using a training dataset, (2) minimizing the number of
conditions simulated to have no growth, and (3) ensuring nonzero
variability in the simulated growth rates between conditions. Ta-
ble S6 provides results for all three assessments for all parame-
ter sets of interest. The following optimal parameter values were
obtained for each GEM using the training dataset: (1) iJO1366–
kappa = 10–2, rho = 10–2, and epsilon = 1 and (2) iEK1008–
kappa = 10–2, rho = 10–2, and epsilon = 10–2. These parameter
values were used for all results when benchmarking CARAMeL
against previous approaches based on E. coli and M. tb drug inter-
action datasets (Table S7).

To simulate cell-specific flux data, we applied population FBA
(61), an approach that models metabolic heterogeneity within a
cell population using proteomics data. For the purposes of this
study, we defined a population of 1,000 E. coli cells to simulate
using the default parameters for population FBA. For the repro-
ducibility analysis (related to Figure S8), we ran population FBA
for 1,000 cells and subsequently used the simulated flux data to
generate cell-specific drug interaction outcome predictions a to-
tal of 30 times. To retrieve uniform sampling of the cell-specific
flux solution space (related to Figure S9), we applied optGpSam-
pler (64) to generate 100 flux solution samples for 10 unique
cells derived from a population FBA simulation. See the popu-
lationFBA.mlx file in the GitHub repository for this study (https:
//github.com/sriram-lab/CARAMeL) for details on the exact im-
plementation of population FBA and optGpSampler. Of note, the
flux data for all conditions (i.e. drug, media, and single-cell) used
to define joint profiles was generated from a single run of the
condition-appropriate CBM method (i.e. iMAT, FBA, and popula-
tion FBA). The exact flux data that was used to generate all re-
sults is stored as a data file in the GitHub repository associated
with this study (https://github.com/sriram-lab/CARAMeL).

Data processing to determine joint profiles
Flux profiles were used to define joint profiles for each drug combi-
nation, which were comprised of four pieces of information: sigma
scores, delta scores, cumulative entropy, and treatment time inter-
val (Figure S2). Sigma and delta scores were representative of the

https://github.com/sriram-lab/CARAMeL
https://github.com/sriram-lab/CARAMeL
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combined and unique effect of drugs involved in a combination,
respectively. Of note, joint profiles for the original omics-based ap-
proaches were only defined by sigma and delta scores (36–38). For
CARAMeL, the general procedure for determining sigma and delta
scores was retained from the original literature, with the input
data (flux profiles) being the only difference. Both score types were
determined after flux profiles were binarized based on differential
flux activity (either positive or negative) in comparison to baseline,
mathematically defined below:

vi,positive =
⎧⎨
⎩

1 vi,treatment

vi,baseline
> 2

0 otherwise
, v ∈ Rm, (2)

vi,negative =
⎧⎨
⎩

1 vi,treatment

vi,baseline
< −2

0 otherwise
, v ∈ Rm , (3)

where v = reaction flux and m = total number of GEM reactions.
Sigma scores were mathematically defined for both simultaneous
and sequential interactions using the following equation:

σi = 2
n

n∑
j=1

vi, j, v ∈ Rm×n, (4)

where σ = sigma score, v = binarized flux profile, m = total number
of GEM reactions, and n = total number of conditions in a combi-
nation. Delta scores were separately defined for simultaneous and
sequential interactions based on Eqs. 5 and 6, respectively as

δi,simul tan eous =

⎧⎪⎨
⎪⎩

1
n∑

j=1
vi, j = 1

0 otherwise
, v ∈ Rm×n , (5)

δi,sequential = tnvi,n −
n−1∑
j−1

t jvi, j, t ∈ Rn, v ∈ Rm×n, (6)

where δ = delta score, t = treatment time interval, v = binarized
flux profile, m = total number of GEM reactions, and n = total num-
ber of conditions in a combination. Cumulative entropy features
were determined by processing nonbinarized flux profiles in two
steps. First, metabolic entropy for each condition was mathemat-
ically defined by the following equation

Hj = ln
(
σ 2

j

)
, (7)

where Hj = metabolic entropy due to condition j and σ 2
j = variance

in the nonbinarized flux profile for condition j. Of note, this formu-
lation was adapted from Zhu et al. (15), who quantified entropy of
the bacterial stress response to antibiotics. Next, the mean and
sum in entropy for all conditions involved in an interaction were
used to define two distinct entropy features. Finally, the time fea-
ture was defined as the time interval between the first and last
treatment for a combination. For simultaneous interactions, the
time feature was set to zero.

ML model development using RF
All CARAMeL models were built in MATLAB (Mathworks, Inc.) us-
ing the regression-based RF algorithm (92). Briefly, RF is an en-
semble method comprised of decision trees that learn to associate
feature information to a target variable. For the regression-based
approach, the RF model returns the mean prediction from all de-
cision trees. To develop CARAMeL models, joint profiles served as
feature information while drug IS were used as the target variable.
IS were quantified using the Loewe additivity model (93), which is
based on drug concentrations (refer to the original sources of drug
interaction datasets for further details in score calculation). Both
joint profiles and interactions scores for drug combinations of in-
terest were used as model inputs during training, while only joint

profiles were provided as input during model testing. Default val-
ues for all other model parameters were used during both training
and testing.

ML model performance assessment
Model performance was evaluated based on two metrics: (1) the
Spearman correlation between actual and predicted IS and (2) the
AUROC for classifying interactions as synergistic or antagonistic.
Of note, model predictions for TB regimens used in clinical trials
were negative transformed before being compared to clinical out-
comes. Since these clinical trials reported percentage of patients
that were cured, we would expect to see a negative correlation be-
tween IS and clinical efficacy, with synergistic regimens (negative
IS) performing better than antagonistic regimens. The sign for the
scores were hence flipped to maintain a positive correlation in-
dicating good model performance. Classification of simultaneous
drug interactions was based on score threshold values reported in
the original literature for a dataset. For both sequential interac-
tions and the CARAMeL model trained on all interaction data for
E. coli, IS were first scaled by the maximum absolute value (Eq. 4).
Interaction values below −0.1 and above 0.1 were then used to
classify interactions as synergistic and antagonistic, respectively.
For the 10-fold CV analysis conducted for sequential interactions,
the interaction data was randomly partitioned into ten subsets of
similar size (N ∼ 63). CARAMeL was then applied to predict each
subset at a time, where the given subset was left out of the model
training (i.e. the remaining 90% of the data was used to train the
model). All model predictions were then compared to the sequen-
tial data as a whole to calculate the overall Spearman correlation
and AUROC values.

CARAMeL top feature extraction
Top features were determined based on their ranked importance
in generating accurate predictions. To calculate feature impor-
tance, each feature was first left out of model training and testing.
The mean squared error (MSE) between predicted and true IS was
then calculated for each model. Finally, feature importance was
measured as the increase in MSE for a model lacking a feature
compared to the model trained on all features. After ranking fea-
tures according to decreasing importance, the first set of features
amounting to a cumulative importance of 0.95 (corresponding to
95% variance explained) were selected for downstream model in-
terpretation and analysis. To determine overall importance, we
trained a CARAMeL model using all interaction data available
for E. coli. Broadly, this included three sets of simultaneous com-
binations (36, 37) (pairwise, three-way, and media-specific treat-
ments) and three sets of sequential interactions (53, 56, 57) (dif-
fering based on elapsed treatment time). To account for differing
units of measurement between datasets, we scaled IS according
to the following formula:

xscalled = x
max |x| , (8)

where x is a vector of IS for a given dataset. This scaling con-
strained all IS to range between ± 1 while retaining the sign con-
sensus for classifying interactions based on their score (negative
IS → synergy, positive IS → antagonism). In total, we trained our
model on 966 drug interactions and attained highly accurate pre-
dictions (R = 0.45, P < 10–16) for both synergistic (IS < −0.1, AU-
ROC = 0.67) and antagonistic (IS > 0.1, AUROC = 0.71) interactions
based on a 10-fold CV.
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PCA and k-means clustering to determine cell
subpopulations
PCA was applied onto three datasets pertaining to single-cell re-
sults: (1) the sampled enzyme levels (352 proteins × 1,000 cells), (2)
the simulated metabolic reaction fluxes (2,583 reactions × 1,000
cells), and (3) the CARAMeL predictions for simultaneous drug in-
teractions (528 drug pairs × 1,000 cells). PCA results were then
visualized onto the 2D space defined by the first two principal
components (PCs) for all three PCA applications. The cell subpop-
ulations reported in the main text were determined via k-means
clustering (k = 2) of the PCA data for drug interactions. The sil-
houette value (i.e. measure for evaluating cluster assignment) for
each cell was subsequently calculated to determine the presence
of any “outlier” cells (i.e. cluster-3, silhouette value < 0.5).

Statistical analysis
A one-way analysis of variance (ANOVA) test was used to com-
pare both the entropy mean and entropy sum of drug interactions
grouped by their classification (synergy, neutral, and antagonism).
A multiple comparison test based on Tukey’s honestly significant
difference (HSD) was subsequently performed to identify statis-
tically significant pairwise differences using a P-value threshold
of 0.05. A two-sample Student’s t test with unequal variance was
used to define which reactions distinguished between synergis-
tic and antagonistic interactions based on differential flux activ-
ity. Lastly, a hypergeometric test was conducted to determine sig-
nificantly enriched metabolic pathways based on GEM reactions
associated with top CARAMeL predictors. For this test, the total
number of reactions annotated in iJO1366 corresponded with the
population size. Of note, the P-values determined from t tests
and hypergeometric tests were adjusted using the Benjamini–
Hochberg approach (94).
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