A Novel Nonsense *CDK5RAP2* Mutation in a Somali Child With Primary Microcephaly and Sensorineural Hearing Loss Alistair T. Pagnamenta,¹ Jennie E. Murray,² Grace Yoon,³ Elham Sadighi Akha,¹ Victoria Harrison,⁴ Louise S. Bicknell,² Kaseem Ajilogba,⁵ Helen Stewart,⁴ Usha Kini,⁴ Jenny C. Taylor,¹ David A. Keays,⁶ Andrew P. Jackson,² and Samantha J.L. Knight¹* Manuscript Received: 1 May 2012; Manuscript Accepted: 20 June 2012 Primary microcephaly is a genetically heterogeneous condition characterized by reduced head circumference (-3 SDS or more) and mild-to-moderate learning disability. Here, we describe clinical and molecular investigations of a microcephalic child with sensorineural hearing loss. Although consanguinity was unreported initially, detection of 13.7 Mb of copy neutral loss of heterozygosity (cnLOH) on chromosome 9 implicated the CDK5RAP2 gene. Targeted sequencing identified a homozygous E234X mutation, only the third mutation to be described in CDK5RAP2, the first in an individual of non-Pakistani descent. Sensorineural hearing loss is not generally considered to be consistent with autosomal recessive microcephaly and therefore it seems likely that the deafness in this individual is caused by the co-occurrence of a further gene mutation, independent of CDK5RAP2. Nevertheless, further detailed clinical descriptions of rare CDK5RAP2 patients, including hearing assessments will be needed to resolve fully the phenotypic range associated with mutations in this gene. This study also highlights the utility of SNP-array testing to guide disease gene identification where an autosomal recessive condition is plausible. © 2012 Wiley Periodicals, Inc. **Key words:** *CDK5RAP2*; MCPH3; microcephaly; deafness; SNP array #### INTRODUCTION Mutations in *ASPM* and *WDR62* account for the majority of patients with primary microcephaly [Bond et al., 2002; Nicholas et al., 2010]. Five other causative genes are known but have only been reported in a few individuals (for recent review see [Mahmood #### **How to Cite this Article:** Pagnamenta AT, Murray JE, Yoon G, Akha ES, Harrison V, Bicknell LS, Ajilogba K, Stewart H, Kini U, Taylor JC, Keays DA, Jackson AP, Knight SJL. 2012. A novel nonsense *CDK5RAP2* mutation in a Somali child with primary microcephaly and sensorineural hearing loss. Am J Med Genet Part A 158A:2577-2582. et al., 2011]). A recent study suggests *CEP135* may be responsible for an eighth microcephaly locus on chromosome 4q12 [Hussain et al., 2012]. The fact that the majority of these microcephaly genes were mapped using consanguineous kindreds from Pakistan highlights the importance of the autozygosity mapping strategy in the Grant sponsor: Department of Health's NIHR Biomedical Research Centre Funding Scheme; Grant sponsor: FWF; Grant number: P21092; Grant sponsor: Wellcome Trust; Grant number: 090532/Z/09/Z. Informed consent was obtained from the family and the study was approved by the Scottish Multicentre Research Ethics Committee (04:MRE00/19) and the Wales Research Ethics Committee [08/MRE09/55]. The authors declare no conflicts of interest. *Correspondence to: Samantha J.L. Knight, NIHR Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK. E-mail: sknight@well.ox.ac.uk Article first published online in Wiley Online Library (wileyonlinelibrary.com): 10 August 2012 DOI 10.1002/ajmg.a.35558 ¹NIHR Biomedical Research Centre, Oxford and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK ²MRC Human Genetics Unit at the MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK ³Division of Clinical and Metabolic Genetics; Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada ⁴Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, UK ⁵Department of Paediatric Radiology, Royal Hospital for Sick Children, NHS Lothian, Edinburgh, UK ⁶Research Institute of Molecular Pathology, Vienna, Austria understanding of this rare condition. However, as a consequence, it is unclear what clinical relevance these genes have in other populations. CDK5RAP2 is responsible for one of the rarest forms of primary microcephaly (MCPH3), with only two different mutations published to date, in three independent families originating from northern Pakistan [Bond et al., 2005; Hassan et al., 2007] (Table I). A recent study of primary microcephaly patients from 112 consanguineous Iranian pedigrees did not show any linkage to this locus, indicating that CDK5RAP2 mutations may be rare even in consanguineous families [Darvish et al., 2010]. In common with other microcephaly genes, CDK5RAP2 appears to be involved with centrosomal function: an inversion mutation in mice leads to abnormal spindle poles, spontaneous aneuploidy and neurogenic defects, resulting in microcephaly in some strains [Lizarraga et al., 2010]. There is also evidence that CDK5RAP2 has undergone positive selection and may have been a genetic factor leading to the evolutionary increase in human brain size [Montgomery et al., 2011]. Here, we describe an individual of Somali descent with primary microcephaly and sensorineural hearing loss. Although the family was initially reported to be non-consanguineous, detection of two regions of copy neutral loss of heterozygosity (cnLOH) led to further molecular investigation of the *CDK5RAP2* gene. ## **CLINICAL REPORT** The patient was born to Somali parents at 40 weeks gestation, weighing 2.37 kg (-2.39 SDS) with an occipito-frontal head circumference (OFC) of 30cm (-3.68 SDS) and length of 43 cm(-3.68 SDS). Auditory brainstem response testing at 3 days of life was normal. Although there were no neonatal problems, she experienced significant gastro-oesophageal reflux during the first 4 months and was fed via a gastrostomy (aged 9 months). Early developmental milestones were delayed. A brain MRI performed at 15 months showed microcephaly but no structural abnormalities (Fig. 1A). Development was assessed aged 3 using the Vineland Adaptive Behaviour scale: function was between the 1st and 6th percentiles for various domains of development with communication, motor, and composite adaptive behavior skills on the 1st centile and social and daily living skills on the 6th and 5th centiles, respectively. Moderate-to-severe bilateral sensorineural hearing loss was diagnosed at 3 years, 10 months. Molecular testing of GJB2 and GJB6 was normal. Although language skills progressed following the introduction of hearing aids, at 6 years she communicates largely by gestures. She is described as a happy, sociable child with no reported behavioral problems. At 6 years, growth parameters were: weight 17.6 kg (-1.12 SDS), height 107.5 cm (−1.61 SDS), and OFC 41.5 cm (−8.91 SDS), with a sloping forehead (Fig. 1B). There was mild joint laxity, hypotonia, and decreased muscle bulk. No maternal or environmental causes were identified that may have contributed to the microcephaly or deafness. Given the absence of associated malformations or neurological deficits, a clinical diagnosis of primary microcephaly was made. ASPM was sequenced but no mutations were identified. ## MATERIALS AND METHODS # Genotyping With appropriate ethical approval and consent, DNA from the patient and mother were genotyped using the CytoSNP-12 v2.1 array (Illumina Inc., San Diego, CA). DNA from the patient's father could not be obtained. Data analysis was performed with Nexus v5.1 Discovery Edition (BioDiscovery, Hawthorne, CA) and GenomeStudio V2009.2 (Illumina). # Sequencing All 38 exons and intron—exon boundaries of the *CDK5RAP2* gene were amplified using the FastStart Taq DNA polymerase (Roche, Burgess Hill, UK) and primers from a previous study [Hassan et al., 2007]. PCR products were purified using exonuclease I (NEB, Ipswich, MA) and shrimp alkaline phosphatase (USB, Cleveland, OH). Bidirectional Sanger sequencing was then performed using BigDye chemistry (Applied Biosystems, Foster City, CA) and run on a 3730xl DNA Analyzer (Applied Biosystems). ## **RESULTS** The genome-wide SNP analysis did not reveal any copy number variants (CNVs) in the patient, other than those noted already in the Database of Genomic Variants. However, two large tracts of cnLOH involving chr7p15.2–p21.3 and chr9q33.1–q34.12 (Fig. 1C) were noted of greater than 5 Mb. These were not observed in the mother. Co-occurrence of two independent cnLOH regions led us to consider an unreported consanguineous parental relationship. The coefficient of inbreeding (fraction of the genome showing cnLOH) was estimated to be \sim 1/95, consistent with parents who are second-cousins or second-cousins-once-removed. Subsequent reevaluation of family-history established that parents were indeed second-cousins (Fig. 1D). Of the eight known microcephaly genes, one (*CDK5RAP2*) is situated within the candidate region on chr9q33.1–q34.12. Targeted sequencing of this gene revealed three homozygous coding changes. Two of these were common missense polymorphisms (rs4837768 and rs4836822), whereas the third was a novel nucleotide transversion in exon 8 (c.700G>T, NM_018249.4) that predicts a premature stop at codon 234 (Fig. 1E). The variant was heterozygous in the mother but was not seen in >5,000 Caucasian and African-American samples in the Exome Variant Server (http://evs.gs.washington.edu/EVS/; v.0.0.10). We next considered the possibility that one of the cnLOH loci might harbor a second rare mutation, in a deafness gene. In addition to the large regions of cnLOH on chr7p and chr9q, five other cnLOH loci of intermediate size (2–5 Mb) were identified. These were located at 3p24.3, 4q26, 5q21.1, 16p11.2 (pericentromeric region), and Xq22.3. We searched these seven loci for genes noted in OMIM as being linked with deafness and although we identified four genes (*DFNA5*, *HOXA2*, *COL4A5*, and *PRPS1*), none of these appeared to be a likely candidate based on their inheritance pattern or because the phenotype of our patient did not match. | cousin cousin cousin cousin C=3.7 SDS), 36.5 cm at 10 months [-8.0 SDS), 38.5 cm at 16 months [-7.7 SDS), 41.5 cm at 16 months [-7.7 SDS), 41.5 cm at 16 months [-8.0 SDS]) Northern Pakistan/ VI-2/male Microcephaly present at Mild to moderate age- and sex-related means at 41. The other was -7 SDS below age- and sex-related means at 41. The other was -5 SDS below age- and sex-related means at 44. Mild to moderate, with [Kashmir]/first V-3/female Microcephaly present at Mild to moderate, with [Kashmir]/first V-3/female Microcephaly present at Mild to moderate, with cousins are and sex-related means at 44. Mild to moderate with [Kashmir]/first V-3/female Microcephaly present at Mild to moderate, with [Kashmir]/first V-3/female Microcephaly present at Mild to moderate, with [Kashmir]/first V-3/female Microcephaly present at Mild to moderate, with [Kashmir]/first V-3/female Microcephaly present at Mild to moderate, with age- and ade- and a S1-65 S1. | Refs.
Described here | Mutation based on NM_018249.4 [predicted effect on protein] | Ethnicity/level of parental consanguinity | Patient ID/gender | Degree of microcephaly | Learning
disability
Mild | Miscellaneous
Sensorineural hearing | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------|-------------------------------------------|-------------------|----------------------------------|------------------------------------|----------------------------------------| | 10 months [—8.0 SDS], 38.5 cm at 16 months [—7.7 SDS], 41.5 cm at 6 years [—8.9 SDS] Northern Pakistan/ VI-2/male Microcephaly present at Mild (WISC-R age- and sex-related means NI-2/female Microcephaly present at Mild (WISC-R tull-scale ID of 89 ^b) Northern Pakistan/ Two female Both had congenital Moderate full-scale ID of 89 ^b) Northern Pakistan/ Two female Both had congenital Moderate full-scale ID of 89 ^b) Northern Pakistan view in the sex-related means at 419. The other was —5 SDS below age- and sex-related means at 419. The other was —5 SDS below age- and sex-related means at 419. The other was —5 SDS below age- and sex-related means at 419. The other was —5 SDS below age- and sex-related means at 419. The other was —5 SDS below age- and sex-related means at 419. The other was —5 SDS below age- and sex-related means at 419. The other was —5 SDS below age- and sex-related means at 419. The other was —5 SDS below age- and sex-related means at 419. The other was —5 SDS below age- and sex-related means at 419. The other was —5 SDS below age- and sex-related means at 419. The other was —5 SDS below age- and sex-related means at 419. The other was —5 SDS below age- and sex-related means at 419. The other was —5 SDS below age- and sex-related means at 419. The other was —5 SDS below age- and sex-related means at 419. The other was —5 SDS below age- and sex-related means at 419. The other was —5 SDS below age- and sex-related means at 419. The other was —5 SDS below age- and sex-related means at 419. The other was —5 SDS below age- and sex-related means at 419. The other was —5 SDS below age- and sex-related means at 419. The other was —5 SDS below age- and sex-related means at 419. The other was —5 SDS below age- and sex-related means at 419. The other was —5 SDS below age- and sex-related means at 419. The other was —5 SDS below age- and sex-related means at 419. The other was —5 SDS below age- and sex-related means at 419. The other was —5 SDS below age- and sex-related means | | | cousin | | (-3.7 SDS), 36.5 cm at | | loss. Passed hearing test | | 38.5 cm at 16 months [-7.7 SDS], 41.5 cm at 6 years [-8.9 SDS] Northern Pakistan/ VI-2/male Microcephaly present at 8 yl-3/female birth; 6–8 SDS below Moderate 9 age- and sex-related means 10.5 Northern Pakistan/ Two female Both had congenital Moderate 10.6 first cousin² cousins [no IDs microcephaly with late given] patient was -5 SDS below age- and sex-related means 1) 10.6 Morthern Pakistan V-2/female Microcephaly present at 4½ Northern Pakistan V-2/female Microcephaly present at 4½ Northern Pakistan V-2/female Microcephaly present at 119. The other was -5 SDS below age- and sex-related means at 4½ Northern Pakistan V-2/female Microcephaly present at 116 renage of cousins² N-4/male age- and sex- related means at 4½ N-3/female Microcephaly present at 116 sall in the range of cousins² N-4/male age- and | | | | | 10 months (-8.0 SDS), | | at birth so postnatal | | Pedigree 1 has Northern Pakistan/ VI-2/male Microcephaly present at Gyears [-8.9 SDS] Pedigree 2 has C.4005- Northern Pakistan/ VI-8/female Scar-related means Pedigree 2 has C.4005- Northern Pakistan/ of four new amino of four new amino acids and then a series and then a series and then a termination codon) C.246T>A (p.Y82X) Anothern Pakistan/ VI-2/female Sort had congenital Moderate full-scale IO of 88b) NI-8/female Sort had congenital Moderate full-scale IO of 88b) NI-8/female Sort had congenital Moderate full-scale IO of 88b) NI-8/female Sort had congenital Moderate full-scale IO of 89b) Authorn new amino acceptor—addition agiven) patient was -2 SIS below age- and sex-related means at 41b. The other was -5 SIS below age- and sex-related means at 44b. C.246T>A (p.Y82X) Northern Pakistan V-2/female Microcephaly present at Mild to moderate, with lease and sex-lated means at 44b. C.246T>A (p.Y82X) Northern Pakistan V-2/female Sort had been and at 41b. The other was -5 SIS below age- and sex-lated means at 44b. SIS Moderate full-scale IO of 80b. 80 | | | | | 38.5 cm at 16 months | | onset. No family history | | By Grace (-8.9 SDS) Northern Pakistan/ VI-2/male Microcephaly present at Mild moderate All-scale IQ of 86 ^b) NI-2/female Mild (WISC-R full-scale IQ of 88 ^b) NI-8/female Both had congenital Moderate full-scale IQ of 89 ^b) Sex-related means NI-8/female Both had congenital Moderate full-scale IQ of 89 ^b) Solution of the cousing fontanels. One patient was -7 SDS below age- and sex-related means at 11y. The other was -5 SDS below age- and sex-related means at 49 ^c Northern Pakistan V-2/female Microcephaly present at Mild to moderate, with (Kashmir)/first V-3/female Microcephaly present at Mild to moderate, with cousins and sex-and | | | | | (-7.7 SDS), 41.5 cm at | | reported. Significant reflux | | Northern Pakistan/ VI-2/male Microcephaly present at Mild age- and sex-related means VI-7/female birth; 6–8 SDS below Moderate age- and sex-related means VI-7/female birth; 6–8 SDS below Mild (WISC-R full-scale ID of 86 ^b) VI-8/female Both had congenital Moderate full-scale ID of 89 ^b) D5- Northern Pakistan/ Two female Both had congenital Moderate closing fontanels. One patient was –7 SDS below age- and sex-related means at 11y. The other was –5 SDS below age- and sex-related means at 4½ Mild to moderate, with (Kashmir)/first V-2/female Microcephaly present at Mild to moderate, with (Kashmir)/first V-3/female birth; 4–7 SDS below age- and 51–65 suppose the cousins age- and sex- age- age- age- age- age- age- age | | | | | 6 years (-8.9 SDS) | | during the first 4 months | | Northern Pakistan/ VI-2/male Microcephaly present at Mild ase- and sex-related means VI-3/female birth; 6–8 SDS below Moderate age- and sex-related means VI-7/female Sort had congenital Mild (WISC-R full-scale ID of 89 ^b) Northern Pakistan/ Two female Both had congenital Moderate closing fontanels. One patient was —7 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The | | | | | | | of life leading to | | Northern Pakistan/ VI-2/male Microcephaly present at Mild age- and sex-related means VI-3/female birth; 6–8 SDS below Moderate age- and sex-related means VI-7/female Wild (WISC-R full-scale IQ of 86 ^b) VI-8/female Both had congenital Mild (WISC-R full-scale IQ of 89 ^b) DS- Northern Pakistan/ Two female Both had congenital Moderate ^c Ice first cousin ^a cousins (no IDs microcephaly with late closing fontanels. One patient was –7 SDS below age- and sex-related means at 11y. The other was –5 SDS below age- and sex-related means at 41y. The other was –5 SDS below age- and sex-related means at 41y mild to moderate, with (Kashmir) first V-3/female Microcephaly present at Mild to moderate, with cousins ^a V-4/male age- and SE-BS below 51-65 | | | | | | | gastrostomy, later | | Northern Pakistan/ VI-2/male Microcephaly present at Mild age- and sex-related means NI-3/female birth; 6–8 SDS below Moderate age- and sex-related means NI-7/female Sex-related means NI-7/female Mild [WISC-R full-scale IQ of 86 ^b] NI-8/female Both had congenital Moderate long of 89 ^b] Northern Pakistan/ Two female Both had congenital Moderate long for microcephaly with late closing fontanels. One patient was –7 SDS below age- and sex-related means Northern Pakistan V-2/female Microcephaly present at Mild to moderate, with [Kashmir]/first V-3/female birth; 4–7 SDS below 51–65 Cousins V-4/male age- and SDS below 51–65 | | | | | | | advanced to | | Northern Pakistan/ VI-2/male Microcephaly present at Mild mild mild ge- and sex-related means VI-3/female birth; 6–8 SDS below Moderate age- and sex-related means VI-7/female Microcephaly with late first cousins (no IDs microcephaly with late age- and sex-related means DS- Northern Pakistan/ Two female Both had congenital Moderate [0 of 89 ^b] age- and sex-related means ADS- Northern Pakistan/ Two female Both had congenital Moderate [0 of 89 ^b] age- and sex-related means ADS- Northern Pakistan/ SIS below age- and sex-related means at 49 ^c related means at 49 ^c at 11y. The other was –5 Northern Pakistan V-2/female Microcephaly present at Mild to moderate, with (Kashmir)/first V-3/female Microcephaly present at 40 ^c birth; 4–7 SDS below 51–65 Cousins A-4/male age- and 51–65 | | | | | | | gastro-jejunostomy | | first cousin Wederate age- and sex-related means WI-2/female WI-2/female WI-Scale IQ of 86 ^b) WI-8/female WI-Scale IQ of 89 ^b) Wild [WISC-R full-scale IQ of 89 ^b) Woderate ^c Do patient was —7 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex- related means at 4y ^c Northern Pakistan V-2/female Wicrocephaly present at Wild to moderate, with [Kashmir] / first V-4/male given Wicrocephaly present at IQs all in the range of cousins ^a V-4/male SEX-related means All 13 All 13 All 13 All 14 All 14 All 15 | 3ond et al. [2005] | Pedigree 1 has | Northern Pakistan/ | VI-2/male | Microcephaly present at | Mild | l | | age- and sex-related means VI-7/female VI-8/female VI-8/female VI-8/female VI-8/female VI-8/female VI-8/female VI-8/female VI-8/female Both had congenital Moderate ^c Full-scale IQ of 8g ^b) Mild (WISC-R full-scale IQ of 8g ^b) Moderate ^c It ousins fon IDs microcephaly with late closing fontanels. One patient was -7 SDS below age- and sex-related means at 11y. The other was -5 SDS below age- and sex- related means at 4y ^c Northern Pakistan V-2/female Microcephaly present at Mid to moderate, with (Kashmir)/first V-3/female Necousins N-4/male SI-65 | (Clinical details for | c.246T>A [p.Y82X] | first cousin ^a | VI-3/female | birth; 6-8 SDS below | Moderate | Profound congenital | | Sex-related means VI-2/female VI-8/female VI-8/female VI-8/female VI-8/female VI-8/female VI-8/female VI-8/female VI-8/female VI-8/female Siven | Pedigree 1 given by | | | | age- and | | sensorineural deafness | | VI-7/female VI-8/female VI-8/female VI-8/female VI-8/female VI-8/female VI-8/female VI-8/female VI-8/female VI-8/female Both had congenital Mila (WISC-R full-scale IQ of 86 ^b) All scale IQ of 89 ^b) Full-scale IQ of 89 ^b) All scale 80 sca | Moynihan et al. | | | | sex-related means | | and infrequent tonic/ | | VI-2/female VI-8/female VI-8/female VI-8/female VI-8/female VI-8/female VI-8/female VI-8/female VI-8/female Both had congenital Mila (WISC-R full-scale IQ of 86 ^b) Mila (WISC-R full-scale IQ of 89 ^b) Full-scale IQ of 89 ^b) Siven patient was —7 SDS below age-and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 11y. The other was —5 SDS below age- and sex-related means Alychale Northern Pakistan V-2/female Microcephaly present at Mild to moderate, with (Kashmir)/first V-4/male age- and 51—65 | [5000]] | | | | | | clonic fits | | VI-8/female VI-8/female VI-8/female VI-8/female VI-8/female VI-8/female Both had congenital Mild (WISC-R full-scale IQ of 86 ^b) Mild (WISC-R full-scale IQ of 89 ^b) Full-scale IQ of 89 ^b) Cousins (no IDs microcephaly with late age-and sex-related means at 11y. The other was —5 SDS below age- and sex-related means at 49 ^c Northern Pakistan V-2/female Northern Pakistan V-2/female Northern Pakistan V-3/female Northern Pakistan V-3/female Northern Pakistan V-4/male SDS below age- and sex-related means at 49 ^c Northern Pakistan V-2/female Northern Pakistan V-4/male SDS below age- and sex-related means at 49 ^c Northern Pakistan V-4/male SDS below age- and sex-related means at 49 ^c SDS below age- and sex-related means at 49 ^c SDS below age- and sex-related means at 49 ^c SDS below age- and sex-related means at 49 ^c SDS below age- and sex-related means at 49 ^c SDS below age- and sex-related means at 49 ^c SDS below age- and sex-related means at 49 ^c SDS below age- and sex-related means at 49 ^c SDS below age- and sex-related means at 49 ^c SDS below age- and sex-related means at 49 ^c SDS below age- and sex-related means at 49 ^c SDS below age- and sex-related means at 49 ^c SDS below age- and sex-related means at 49 ^c SDS below age- and sex-related means at 49 ^c SDS below age- and sex-related means at 49 ^c SDS below age- and sex-related means at 49 ^c SDS below age- and sex-related means at 40 ^c SDS below age- and sex-related means at 40 ^c SDS below age- and sex-related means at 40 ^c SDS below age- and sex-related means at 40 ^c SDS below age- and sex-related means at 40 ^c SDS below age- and sex-related means at 40 ^c SDS below age- and sex-related means at 40 ^c SDS below age- and sex-related means at 40 ^c SDS below age- and sex-related means at 40 ^c SDS below age- and sex-related means at 40 ^c SDS below age- and sex-related means at 40 ^c SDS below age- and sex-related means at 40 ^c SDS below age- and sex-related means at 40 ^c SDS below age- | | | | VI-7/female | | Mild (WISC-R | 1 | | VI-8/female VI-8/female VI-8/female VI-8/female Both had congenital Full-scale IQ of 89 ^b] Solven Solven Solven Solven Solven Age-and sex-related means At 11y. The other was —5 SDS below age- and sex-related means Telated means at 4y ^c Solven Northern Pakistan V-2/female Kashmir] /first V-3/female Solven Northern Pakistan V-2/female Solven Solven Ait 11y. The other was —5 Solven Solven Age-and Solven Solven Mild to moderate, with Solven Solven Solven Solven Solven Ay ^c Solven Sol | | | | | | full-scale IQ of 86 ^b] | | | full-scale IQ of 89 ^b) 15. Northern Pakistan/ Two female Both had congenital Moderate ^c 16. first cousin ^a cousins (no IDs microcephaly with late 27. Substituting the late patient was -7 SDS below 28. Substituting the late patient was -7 SDS below 38. Substituting the late patient was -5 SDS below age- and sex-related means at 49 ^c 17. Substituting the late price with late process and sex-related means at 49 ^c 18. Northern Pakistan V-2/female Microcephaly present at Mild to moderate, with late late age- and sex-related means at 49 ^c 18. Northern Pakistan V-2/female Microcephaly present at Mild to moderate, with late late age- and sex-related means at 49 ^c 19. Substituting the range of ser-related means at 49 ^c 19. Substituting the range of ser-related means at 49 ^c 19. Substituting the range of ser-related means at 49 ^c 19. Substituting the range of ser-related means at 49 ^c 19. Substituting the range of ser-related means at 49 ^c 19. Substituting the range of ser-related means at 49 ^c 19. Substituting the range of ser-related means at 49 ^c 19. Substituting the range of ser-related means at 49 ^c 19. Substituting the range of ser-related means at 49 ^c 19. Substituting the range of ser-related means at 49 ^c 19. Substituting the range of ser-related means at 49 ^c 19. Substituting the range of ser-related means at 49 ^c 19. Substituting the range of ser-related means at 49 ^c 19. Substituting the range of ser-related means at 49 ^c 19. Substituting the range of ser-related means at 49 ^c 19. Substituting the range of ser-related means at 40 ^c 19. Substituting the range of ser-related means at 40 ^c 19. Substituting the range of ser-related means at 40 ^c 19. Substituting the range of ser-related means at 40 ^c 19. Substituting the range of ser-related means at 40 ^c 19. Substituting the range of ser-related means at 40 ^c 19. Substituting the range of ser-related means at 40 ^c 19. Substituting the range of ser-related means at 40 ^c 19. Substituting the range of se | | | | VI-8/female | | Mild (WISC-R | Developed acute | | ice first cousin ^a cousins (no IDs microcephaly with late given) on | | | | | | full-scale IQ of 89 ^b] | lymphoblastic leukemia | | ice first cousin ^a cousins (no IDs microcephaly with late bn given) given) closing fontanels. One patient was –7 SDS below age-and sex-related means at 11y. The other was –5 SDS below age- and sex-related means related means at 4y ^c Northern Pakistan V-2/female Microcephaly present at Mild to moderate, with (Kashmir)/first V-3/female birth; 4–7 SDS below [0,s all in the range of cousins ^a V-4/male age- and 51–65 | | Pedigree 2 has c.4005- | Northern Pakistan/ | Two female | Both had congenital | Moderate ^c | Low birth weight: 1.9 kg at | | closing fontanels. One patient was —? SDS below age-and sex-related means 1) Northern Pakistan V-2/female Microcephaly present at (Kashmir)/first V-3/female birth; 4—? SDS below (IQs all in the range of cousins ^a V-4/male age- and 51—65 | | 15A>6 (novel splice | first cousin ^a | cousins (no IDs | microcephaly with late | | term. Subsequent growth | | patient was —? SDS below age-and sex-related means at 11y. The other was —5 SDS below age- and sex- related means at 4y ^c Northern Pakistan V-2/female Microcephaly present at Mild to moderate, with [Kashmir]/first V-3/female birth; 4—? SDS below IQs all in the range of cousins ^a V-4/male age- and 51—65 | | acceptor—addition | | given] | closing fontanels. One | | normal. No deafness, fits | | age-and sex-related means at 11y. The other was —5 SDS below age- and sex- related means at 4y ^c Northern Pakistan V-2/female Microcephaly present at Mild to moderate, with (Kashmir)/first V-3/female birth; 4—7 SDS below [Qs all in the range of cousins ^a V-4/male age- and 51—65 | | of four new amino | | | patient was -7 SDS below | | or spasticity in either | | at 11y. The other was —5 SDS below age- and sex- related means at 4y ^c Northern Pakistan V-2/female Microcephaly present at [Kashmir]/first V-3/female birth; 4—7 SDS below cousins ^a V-4/male age- and | | acids and then a | | | age-and sex-related means | | individual ^c | | SDS below age- and sex- related means at $4y^c$ Northern Pakistan V-2/female Microcephaly present at [Kashmir]/first V-3/female birth; 4—7 SDS below cousins ^a V-4/male age- and | | termination codon) | | | at 11y. The other was -5 | | | | Northern Pakistan V-2/female Microcephaly present at (Kashmir)/first V-3/female birth; 4—7 SDS below cousins ^a V-4/male age- and | | | | | SDS below age- and sex- | | | | Northern Pakistan V-2/female Microcephaly present at (Kashmir)/first V-3/female birth; 4—7 SDS below cousins ^a V-4/male age- and | | | | | related means at 4y ^c | | | | /first V-3/female birth; 4—7 SDS below V-4/male age- and | Hassan et al. [2007] | c.246T>A [p.Y82X] | Northern Pakistan | V-2/female | Microcephaly present at | Mild to moderate, with | l | | V-4/male age- and | | | (Kashmir)/first | V-3/female | birth; 4-7 SDS below | IQs all in the range of | | | | | | cousins ^a | V-4/male | age- and | 51–65 | | WISC-R, Weschsler Intelligence Scale for Children-Revised; SDS, standard deviations; OFC, occipito-frontal head circumference. For the patient described here, it appears that the microcephaly shows some degree of progression; the other published patients on the progression of th FIG. 1. A: Sagittal T1SE MRI images of patient at 15 months (on left) compared to a normal age- and gender-matched child (on right), demonstrating cranio-facial disproportion characteristic of microcephaly. B: Photographs taken at age 6 years, shown with parental consent, indicating microcephaly and sloping forehead. C: SNP-array data for chromosome 9 showing a 13.7 Mb region of copy-neutral loss of heterozygosity at chr9:120,050,463—133,809,775 (GRCh19/hg37). In combination with a second region of cnLOH (chr7:9,870,471—27,658,801), the coefficient of inbreeding was estimated to be ~1/95. D: Simplified pedigree showing that the parents of the patient are second-cousins. Black shading indicates primary microcephaly and hearing loss. The patient is the fifth child in a sibship of six. We note that the male—male link in this consanguineous loop means that the homozygous region on Xq22.3 is unlikely to have come from these great-grandparents. E: Sanger sequencing identified a homozygous chr9:123,292,381C>A mutation, inherited from the heterozygous mother. Electropherogram shows sequence on the negative (i.e., coding) strand so mutation appears as G>T and predicts a Glu → STOP codon. DNA from the father and the patient's siblings was not available. # **DISCUSSION** To date, only two disease-causing mutations in *CDK5RAP2* have been described, both in consanguineous families; a Y82X mutation [Bond et al., 2005; Hassan et al., 2007] and a IVS26-15A>G splicing mutation [Bond et al., 2005] (Table I). All three published families are from Northern Pakistan. Therefore, our report of a Somali child with primary microcephaly and a novel E234X mutation confirms *CDK5RAP2* as a disease gene with clinical relevance outside the Pakistani population. Common features of patients with *CDK5RAP2* mutations include microcephaly from birth (-4 to -8 SDS), with mild-to-moderate learning disability (Table I). All have a short sloping forehead but otherwise there do not appear to be any other dysmorphic features or associated malformations in common. Notably, our patient has significant bilateral sensorineural hearing loss. This manifestation is not generally considered to be consistent with autosomal recessive microcephaly and therefore it is highly possible that the deafness may be caused by a further gene mutation, independent of CDK5RAP2. We speculated that such a mutation, in a consanguineous family like this, might be recessive, caused by an additional homozygous mutation. However, when we scanned the seven cnLOH regions for phenotypes entered in OMIM, we identified only one autosomal recessive hearing loss phenotype (OMIM #612290: microtia, hearing impairment, and cleft palate caused by HOXA2 mutations), which did not match the phenotype of our patient. There were two deafness genes on Xq22.3; COL4A5 which is implicated in Alport syndrome with variable sensorineural hearing loss [Barker et al., 1990] and PRPS1 which is mutated in non-syndromic X-linked deafness-1 [Liu et al., 2010]. However, since all five siblings of the proband (two males and three females) and her parents are clinically normal, we believe that both genes are PAGNAMENTA ET AL. 2581 unlikely candidates for the progressive sensorineural hearing loss noted in the proband. We also identified an autosomal dominant non-syndromic sensorineural deafness phenotype (OMIM #600994 caused by DFNA5 mutations) and we have not ruled out the possibility of a de novo mutation in this or other dominant deafness genes in our patient. Other explanations for the deafness include the existence of a novel recessive deafness gene located in one of the cnLOH regions. Alternatively, there is a possibility of compound heterozygous mutations elsewhere in the genome which would not have been detected by our autozygosity mapping approach. Interestingly, a recent study unexpectedly detected multiple disease alleles at the DFNB3 locus within a single consanguineous pedigree [Lezirovitz et al., 2008]. The increasing use of exome sequence data now allows filtering for genetic variants that are compatible for multiple disease mechanisms and a recent study used this method to resolve a complex case of Miller syndrome to be a combination of two different genetic disorders [Ng et al., 2010]. The hearing loss present in individual VI:3 published previously [Moynihan et al., 2000] prompted us to also consider the possibility that *CDK5RAP2* mutations might have variable expressivity and that this might extend to include sensorineural hearing loss. However, in the case described previously, the deafness was congenital, whereas our patient passed a hearing test at birth, suggesting different etiologies. Nevertheless, we cannot rule out a link based on these cases alone and therefore further detailed clinical descriptions of rare *CDK5RAP2* patients, including hearing assessments, will be needed to help resolve the full phenotypic range associated with mutations in this gene. In a recent array-CGH study, 22% of subjects with brain malformations carried rare CNVs, many of which are likely to have etiological relevance [Kariminejad et al., 2011]. In our study, insufficient DNA was available for standard array-CGH. The decision to test the patient using a SNP-array (requiring significantly less DNA) instead proved fortuitous and highlights the advantage of SNP-arrays over array-CGH platforms in helping to guide targeted sequencing efforts, especially in cases where a condition is suspected to be recessive and parental consanguinity is a possibility. Whilst both platforms can detect pathogenic CNVs, only the SNP platform can detect all forms of cnLOH [Bruno et al., 2011], inform subsequent targeted sequencing strategies and if needed, confirm family relationships through SNP genotypes. In this way, SNP-array testing can also act as an invaluable prescreening and supportive tool when embarking on expensive whole genome and exome sequencing studies. However, it should be cautioned that using genomic data to infer family relationships can be a sensitive issue [Schaaf et al., 2011] and appropriate genetic counseling should be provided prior to testing. In summary, we identified a novel *CDK5RAP2* mutation, the first in a patient of non-Pakistani descent. Our study confirms *CDK5RAP2* is a rare primary microcephaly disease gene and emphasizes that when no consanguinity is reported but is suspected, SNP-array testing can reveal cnLOH that may infer distant relationships between parents and guide disease gene identification. ### **ACKNOWLEDGMENTS** This work was supported by the NIHR Biomedical Research Centre Oxford, with funding from the Department of Health's NIHR Biomedical Research Centres funding scheme. The views expressed in this publication are those of the authors and not necessarily those of the Department of Health. The work was also supported by the FWF (P21092) and the Wellcome Trust (090532/Z/09/Z). We would also like to thank the family for their participation in this study and Dr. Wasim Ahmad for sharing the primer sequences and PCR conditions used. ## **REFERENCES** - Barker DF, Hostikka SL, Zhou J, Chow LT, Oliphant AR, Gerken SC, Gregory MC, Skolnick MH, Atkin CL, Tryggvason K. 1990. Identification of mutations in the *COL4A5* collagen gene in Alport syndrome. Science 248:1224–1227. - Bond J, Roberts E, Mochida GH, Hampshire DJ, Scott S, Askham JM, Springell K, Mahadevan M, Crow YJ, Markham AF, Walsh CA, Woods CG. 2002. *ASPM* is a major determinant of cerebral cortical size. Nat Genet 32:316–320. - Bond J, Roberts E, Springell K, Lizarraga SB, Scott S, Higgins J, Hampshire DJ, Morrison EE, Leal GF, Silva EO, Costa SM, Baralle D, Raponi M, Karbani G, Rashid Y, Jafri H, Bennett C, Corry P, Walsh CA, Woods CG. 2005. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat Genet 37:353–355. - Bruno DL, White SM, Ganesamoorthy D, Burgess T, Butler K, Corrie S, Francis D, Hills L, Prabhakara K, Ngo C, Norris F, Oertel R, Pertile MD, Stark Z, Amor DJ, Slater HR. 2011. Pathogenic aberrations revealed exclusively by single nucleotide polymorphism (SNP) genotyping data in 5000 samples tested by molecular karyotyping. J Med Genet 48:831–839 - Darvish H, Esmaeeli-Nieh S, Monajemi GB, Mohseni M, Ghasemi-Firouzabadi S, Abedini SS, Bahman I, Jamali P, Azimi S, Mojahedi F, Dehghan A, Shafeghati Y, Jankhah A, Falah M, Soltani Banavandi MJ, Ghani-Kakhi M, Garshasbi M, Rakhshani F, Naghavi A, Tzschach A, Neitzel H, Ropers HH, Kuss AW, Behjati F, Kahrizi K, Najmabadi H. 2010. A clinical and molecular genetic study of 112 Iranian families with primary microcephaly. J Med Genet 47:823–828. - Hassan MJ, Khurshid M, Azeem Z, John P, Ali G, Chishti MS, Ahmad W. 2007. Previously described sequence variant in *CDK5RAP2* gene in a Pakistani family with autosomal recessive primary microcephaly. BMC Med Genet 8:58. - Heney D, Mueller R, Turner G, Karbani G, Cadranel J, Lewis IJ, Bailey CC, 1992. Familial microcephaly with normal intelligence in a patient with acute lymphoblastic leukemia. Cancer 69:962–965. - Hussain MS, Baig SM, Neumann S, Nurnberg G, Farooq M, Ahmad I, Alef T, Hennies HC, Technau M, Altmuller J, Frommolt P, Thiele H, Noegel AA, Nurnberg P. 2012. A truncating mutation of *CEP135* causes primary microcephaly and disturbed centrosomal function. Am J Hum Genet 90:871–878. - Kariminejad R, Lind-Thomsen A, Tumer Z, Erdogan F, Ropers HH, Tommerup N, Ullmann R, Moller RS. 2011. High frequency of rare copy number variants affecting functionally related genes in patients with structural brain malformations. Hum Mutat 32:1427–1435. - Lezirovitz K, Pardono E, de Mello Auricchio MT, de Carvalho E, Silva FL, Lopes JJ, Abreu-Silva RS, Romanos J, Batissoco AC, Mingroni-Netto RC. 2008. Unexpected genetic heterogeneity in a large consanguineous Brazilian pedigree presenting deafness. Eur J Hum Genet 16:89–96. - Liu X, Han D, Li J, Han B, Ouyang X, Cheng J, Li X, Jin Z, Wang Y, Bitner-Glindzicz M, Kong X, Xu H, Kantardzhieva A, Eavey RD, Seidman CE, Seidman JG, Du LL, Chen ZY, Dai P, Teng M, Yan D, Yuan H. 2010. Loss-of-function mutations in the *PRPS1* gene cause a type of non-syndromic X-linked sensorineural deafness, DFN2. Am J Hum Genet 86:65–71. - Lizarraga SB, Margossian SP, Harris MH, Campagna DR, Han AP, Blevins S, Mudbhary R, Barker JE, Walsh CA, Fleming MD. 2010. Cdk5rap2 regulates centrosome function and chromosome segregation in neuronal progenitors. Development 137:1907–1917. - Mahmood S, Ahmad W, Hassan MJ. 2011. Autosomal recessive primary microcephaly (MCPH): Clinical manifestations, genetic heterogeneity and mutation continuum. Orphanet J Rare Dis 6:39. - Montgomery SH, Capellini I, Venditti C, Barton RA, Mundy NI. 2011. Adaptive evolution of four microcephaly genes and the evolution of brain size in anthropoid primates. Mol Biol Evol 28:625–638. - Moynihan L, Jackson AP, Roberts E, Karbani G, Lewis I, Corry P, Turner G, Mueller RF, Lench NJ, Woods CG. 2000. A third novel locus for primary autosomal recessive microcephaly maps to chromosome 9q34. Am J Hum Genet 66:724–727. - Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA, Shendure J, Bamshad MJ. 2010. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42:30–35. - Nicholas AK, Khurshid M, Desir J, Carvalho OP, Cox JJ, Thornton G, Kausar R, Ansar M, Ahmad W, Verloes A, Passemard S, Misson JP, Lindsay S, Gergely F, Dobyns WB, Roberts E, Abramowicz M, Woods CG. 2010. *WDR62* is associated with the spindle pole and is mutated in human microcephaly. Nat Genet 42:1010–1014. - Schaaf CP, Scott DA, Wiszniewska J, Beaudet AL. 2011. Identification of incestuous parental relationships by SNP-based DNA microarrays. Lancet 377:555–556.