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Treatment of HCV genotype 1b (GT1b)-infected Japanese patients with paritaprevir (NS3/4A inhibitor boosted with ritonavir)
and ombitasvir (NS5A inhibitor) in studies M12-536 and GIFT-I demonstrated high sustained virologic response (SVR) rates.
The virologic failure rate was 3% (13/436) across the two studies. Analyses were conducted to evaluate the impact of baseline
resistance-associated variants (RAVs) on treatment outcome and the emergence and persistence of RAVs in patients experienc-
ing virologic failure. Baseline paritaprevir resistance-conferring variants in NS3 were infrequent, while Y93H in NS5A was the
most prevalent ombitasvir resistance-conferring variant at baseline. A comparison of baseline prevalence of polymorphisms in
Japanese and western patients showed that Q80L and S122G in NS3 and L28M, R30Q, and Y93H in NS5A were significantly more
prevalent in Japanese patients. In the GIFT-I study, the prevalence of Y93H in NS5A varied between 13% and 21% depending on
the deep-sequencing detection threshold. Among patients with Y93H comprising <1%, 1 to 40%, or >40% of their preexisting
viral population, the 24-week SVR (SVR24) rates were >99% (276/277), 93% (38/41), and 76% (25/33), respectively, indicating
that the prevalence of Y93H within a patient’s viral population is a good predictor of treatment response. The predominant
RAVs at the time of virologic failure were D168A/V in NS3 and Y93H alone or in combination with other variants in NS5A.
While levels of NS3 RAVs declined over time, NS5A RAVs persisted through posttreatment week 48. Results from these analyses
are informative in understanding the resistance profile of an ombitasvir- plus paritaprevir/ritonavir-based regimen in Japanese
GT1b-infected patients.

Hepatitis C virus (HCV) is an enveloped, single-stranded, pos-
itive-sense RNA virus in the Flaviviridae family that infects

approximately 170 million people worldwide (1, 2). It is estimated
that 2 million people in Japan are infected with HCV (3). Globally,
7 distinct HCV genotypes (GT) and 67 subtypes have been char-
acterized (4). In Japan, approximately 70% of HCV infections are
GT1b, and 25 to 30% are GT2a or GT2b (3). In contrast to the
United States and many parts of Europe, in Japan very few HCV-
infected patients (�1% of GT1-infected patients) are infected
with GT1a (5).

Epidemiological and phylogenetic studies suggest that HCV
began to infect large numbers of Japanese in the 1920s, southern
Europeans in the 1940s, and North Americans in the 1960s and
1970s (6). Longitudinal studies have indicated that 1.44 � 10�3

nucleotide changes occur per site per year over the whole HCV
genome (7, 8). This rapid sequence drift has led to the formation
of separate strains or isolates with up to 10% nucleotide sequence
variability within HCV subtypes (9). The prevalence of sequence
polymorphisms within the same HCV subtype may differ across
geographic regions depending on the timing and spread of the
original infection (10). Such sequence differences may impact
treatment outcomes with direct-acting antiviral regimens. Under-
standing the impact of preexisting polymorphisms on treatment
outcome and identification of treatment-emergent resistance-as-
sociated variants (RAVs) in patients failing treatment with direct-
acting antiviral therapy is important for the assessment of initial
treatment and retreatment options.

Paritaprevir (NS3/4A protease inhibitor identified by AbbVie
and Enanta and boosted with ritonavir; termed paritaprevir/r)
and ombitasvir (NS5A inhibitor) have potent in vitro antiviral
activity against multiple HCV genotypes, including 1a, 1b, 2a, 2b,

3a, 4a, 4d, and 6a (11, 12). The efficacy and safety of this interferon
(IFN)- and ribavirin (RBV)-free 2-direct-acting-antiviral (2D)
regimen has been evaluated in the phase 2 study M12-536 and the
phase 3 study GIFT-I in Japan (13, 14). Both studies have demon-
strated high sustained virological response (SVR) rates in treat-
ment-naive and -experienced GT1b-infected patients (M12-536,
88.9% to 100%; GIFT-I, 90.5% to 98.1%) (13, 14).

Comparable efficacy results have been reported with ledipasvir
plus sofosbuvir (15) and daclatasvir plus asunaprevir (16) regi-
mens in Japanese HCV GT1b-infected patients. However, with
the daclastavir-plus-asunaprevir regimen, the presence of NS5A
variant L31M or Y93H at baseline (detected by population se-
quencing at a prevalence of 4% or 14%, respectively) was associ-
ated with an SVR rate of 25% or 43%, respectively (17, 18). NS5A
variants L31M and Y93H also confer high levels of resistance to
ledipasvir. In a Japanese phase 3 clinical trial, the 12-week SVR
(SVR12) rates remained high with ledipasvir-plus-sofosbuvir-
based regimens in patients with baseline variants in NS5A (15, 17).
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However, in phase 3 western studies with ledipasvir-plus-sofos-
buvir-based regimens, the presence of NS5A variants conferring
�100-fold resistance at baseline was associated with a lower SVR
rate in treatment-experienced but not treatment-naive patients
(19). Understanding the impact of baseline RAVs on treatment
outcome is important, especially for compounds targeting HCV
NS5A.

The objective of these analyses was to provide a comprehensive
evaluation of viral resistance in HCV GT1b-infected patients in
the Japanese studies M12-536 and GIFT-I. The impact of baseline
variants on treatment outcome was evaluated, and the presence of
treatment-emergent RAVs in the patients who experienced viro-
logic failure in the two studies was assessed. In addition, the prev-
alence of baseline polymorphisms at resistance-associated amino
acid positions in NS3 and NS5A was compared between Japanese
and western patients.

MATERIALS AND METHODS
Patients and study design. The phase 2 and 3 study designs, randomiza-
tion procedures, and efficacy and safety analyses were previously de-
scribed (13, 14). Briefly, in M12-536 (ClinicalTrials.gov identifier
NCT01672983), 73 noncirrhotic HCV GT1b-infected patients were ran-
domized in a 1:1:1:1 ratio to receive once-daily (QD) ombitasvir at 25 mg
plus paritaprevir/r at 100/100 mg or 150/100 mg for 12 or 24 weeks. In the
phase 3 GIFT-I study (ClinicalTrials.gov identifier NCT02023099), HCV
GT1b-infected patients received a once-daily fixed-dose combination of
ombitasvir/paritaprevir/r (25 mg/150 mg/100 mg) (termed the 2D regi-
men) for 12 weeks. Noncirrhotic patients were randomized in a 2:1 ratio
to receive a double-blind 2D regimen (arm A; n � 215) or double-blind
placebo (arm B; n � 106), and patients with compensated cirrhosis en-
rolled in arm C (n � 42) received open-label 2D. Patients receiving pla-
cebo in arm B subsequently received an open-label 2D regimen for 12
weeks. At the time of these analyses, all patients in arms A, B, and C had
reached posttreatment week 24 or prematurely discontinued the study.

Available GT1b samples, predominantly those obtained from pa-
tients in the United States and Europe enrolled in the clinical studies
AVIATOR, SAPPHIRE-I, SAPPHIRE-II, PEARL-I, PEARL-II,
PEARL-III, and TURQUOISE-II, were utilized for baseline sequence
analyses of the western patient population (20–27).

All patients provided written informed consent before enrolling in the
studies. The studies were performed in accordance with good clinical
practice guidelines and the principles of the Declaration of Helsinki, and
the study protocols were approved by the relevant institutional review
boards and regulatory agencies.

Sample processing. The GT1b-specific primers for reverse transcrip-
tion-PCR (RT-PCR), nested PCR, and sequencing were designed based
on the alignments of GT1b sequences in the European HCV database (28)
in conserved regions flanking the gene of interest, with nucleotide degen-
eracies incorporated at positions where significant variability existed
among the HCV sequences for the subtype. HCV RNA was purified from
550 �l of each plasma sample using an Abbott m2000 instrument (Abbott
Molecular, Des Plaines, IL) and eluted in a final volume of 70 �l. The
target genes, NS3/4A and NS5A, were amplified from 20 �l of HCV RNA
by RT-PCR using the Superscript III one-step RT-PCR system with plat-
inum Taq high fidelity (Invitrogen, Carlsbad, CA) followed by nested PCR
using primers appropriate for GT1b sequences. Only samples with an
HCV RNA level of �1,000 IU/ml were amplified in order to reduce the
chance of oversampling bias. For patients who experienced virologic fail-
ure, the sample closest in time after virologic failure was utilized. For
samples with an HCV RNA level of �50,000 IU/ml, RT-PCR was carried
out in triplicate and the products were pooled prior to their use as a
template for nested PCR. Population and (in some cases) clonal sequenc-
ing of NS3/4A and NS5A was conducted on the nested PCR products
using gene-specific primers (25). At least two sequencing reads were per-

formed in each direction across each target, providing a minimum of four
sequencing reads.

Sequence analyses. Analyses for (i) prevalence of polymorphisms in
Japanese and western GT1b sequences at resistance-associated amino acid
positions in NS3 and NS5A by population sequencing, and a comparison
using Fisher’s exact test, and for (ii) analysis of treatment-emergent RAVs
by population or clonal sequencing were performed using SAS, version
9.3 (SAS Institute, Inc., Cary, NC), under the UNIX operating system.
Based on in vitro studies with HCV subgenomic replicons and phase 2
clinical studies of western HCV-infected patients, the following were
identified as signature resistance-associated amino acid positions in HCV
GT1b in baseline sequence analysis: 56, 155, 156, and 168 in NS3 for
paritaprevir and 28, 29, 30, 31, 32, 58, and 93 in NS5A for ombitasvir (11,
12). Although variants at amino acid residues 54, 55, 80, and 122 in NS3 or
54, 62, and 92 in NS5A previously had not been associated with resistance
to paritaprevir or ombitasvir in GT1b, these positions were included in the
baseline sequence analysis due to the potential impact of variants at these
positions on other NS3 protease or NS5A inhibitors (29, 30). Variants
were identified based on comparison of baseline sequences to the refer-
ence sequence 1b-Con1 (GenBank accession number AJ238799). RAVs
by clonal sequencing were defined as variants observed in 2 or more clones
(out of at least 80 clones) from a sample obtained at a postbaseline time
point relative to the reference sequence. Amino acid variants present prior
to treatment in NS3 or NS5A that are not known to confer resistance to
any inhibitor are referred to as baseline polymorphisms. Amino acid vari-
ants present at the baseline that are known to be associated with resistance
to at least one member of the protease inhibitor or NS5A inhibitor class
are referred to as baseline variants. Variants known to confer resistance to
paritaprevir or ombitasvir are referred to as RAVs.

Deep-sequencing analysis. The deep sequencing of baseline samples
from the GIFT-I study was conducted by DDL Diagnostic Laboratory
(Rijswijk, Netherlands). PCR amplicons from baseline samples were pu-
rified using Ampure XP beads (Beckman Coulter Genomics) and quanti-
fied using the Quant-iT PicoGreen double-stranded DNA (dsDNA) kit
(Life Technologies). The DNA then was fragmented and tagged using the
Nextera XT sample preparation kit (Illumina, San Diego, CA) according
to the manufacturer’s instructions. Index primers were added by limited-
cycle PCR using the Nextera XT Index kit (Illumina, San Diego, CA), and
samples were normalized using beads with maximum binding capacity
according to the Nextera XT sample preparation kit instructions. Multi-
plexed paired-end sequencing was conducted on the Illumina MiSeq plat-
form using an MiSeq v2 sequencing kit with 300 cycles (Illumina). De-
multiplexed FASTQ files then were mapped against the HCV 1b-Con1
(GenBank accession number AJ238799) reference sequence using CLC
Genomics Workbench software (CLCBio, Denmark). Sequences were
trimmed to remove nucleotides with a quality score (Q) lower than 30. An
average of 94.3% of the reads had a Q of �30, and the average read length
was 140 nucleotides. The minimum coverage was 5,000 sequencing reads.
An amino acid variant report relative to the prototypic GT1b-Con1 ref-
erence sequence was generated with the Athena pipeline proprietary soft-
ware (DDL Diagnostic Laboratory). The threshold for detection of amino
acid polymorphisms by deep sequencing was set at 1%.

Antiviral activity against a panel of NS3 or NS5A variants. The meth-
ods describing the measurement of the effects of individual amino acid
variants on the activity of an inhibitor in HCV replicon cell culture assays
were described previously (11, 12). NS3 and NS5A variants each were
introduced into the GT1b-Con1 subgenomic replicon plasmid using the
Change-IT multiple-mutation site-directed mutagenesis kit (Affymetrix,
Santa Clara, CA). In a transient assay, the replicon RNA containing the
variant was transfected via electroporation into an Huh-7 cell line (31,
32). The luciferase activity in the cells was measured using a Victor II
luminometer (Perkin-Elmer, Waltham, MA). The 50% effective concen-
trations (EC50s) of paritaprevir and ombitasvir, which were synthesized at
AbbVie (33), were calculated using a nonlinear regression curve fit to the
4-parameter logistic equation in GraphPad Prism 4 software.
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RESULTS
Analysis of polymorphisms in NS3/4A and NS5A at baseline by
population sequencing. The baseline amino acid variants de-
tected by population sequencing at positions associated with re-
sistance to NS3/4A or NS5A inhibitors in GT1b sequences from
Japanese and western patients are shown in Table 1.

Polymorphisms in NS3 at one of the amino acid positions 54,
55, 56, 80, 122, 155, 156, and 168 were detected in 62.0% (263/
424) and 48.8% (181/371) of the Japanese and western patients,
respectively. Variants conferring resistance to paritaprevir at
amino acid position 155, 156, or 168 were rare (1.2%) in both
populations. Polymorphisms at amino acid positions 56, 80, and
122 in NS3 were highly prevalent. While Y56F was observed at
similar frequencies across both populations, polymorphisms at
amino acid positions 80 and 122 were approximately 2-fold more
prevalent in Japanese patients. Q80L and S122G were the predom-
inant polymorphisms at the respective amino acid positions, and
both were detected at a significantly higher prevalence in Japanese
patients than in western patients (Q80L, P � 0.008; S122G, P �
0.001).

Polymorphisms in NS5A at one of the amino acid positions 28,
29, 30, 31, 32, 54, 58, 62, and 93 were detected in 67.1% (289/431)
and 60.9% (238/391) of the Japanese and western patients, respec-
tively. Polymorphisms at amino acid positions 28 and 30 were
detected at a higher prevalence in Japanese patients, while the
prevalence of polymorphisms at amino acid positions 31, 54, 58,
62, and 92 was similar across both populations. Q54H, P58S,
Q62E, and A92T were the predominant polymorphisms at their

respective amino acid positions in both populations. L28M and
R30Q were the predominant variants at the respective amino acid
positions, and both were detected at a significantly higher preva-
lence in Japanese patients than in western patients (L28M, P �
0.001; R30Q, P � 0.008). Y93H, which confers 77-fold resistance
to ombitasvir (12), was observed in Japanese patients at a higher
prevalence than in western patients (12.3% versus 7.4%; P �
0.020).

None of the Japanese or western patients had resistance-con-
ferring baseline variants in both NS3 and NS5A by population
sequencing.

Impact of baseline variants on SVR24 in Japanese patients.
The impact of baseline variants on treatment outcome in studies
M12-536 and GIFT-I was evaluated by comparing the 24-week
SVR rates (SVR24) in patients with baseline variants at each amino
acid position (54, 55, 56, 80, 122, or 168 in NS3 and 28, 30, 31, 54,
58, 62, 92, or 93 in NS5A) to the SVR24 rates in patients with the
wild-type amino acid at the corresponding position.

Baseline sequence analysis in M12-536 utilized data from pop-
ulation sequencing. The SVR24 rates in patients with variants at
baseline in NS3 or NS5A were similar to SVR24 rates in patients
with the wild-type amino acid at each of the corresponding posi-
tions (Table 2). Four patients had Y93H at baseline without any
additional variants at resistance-associated amino acid positions
within NS5A, and all achieved SVR24.

Baseline sequence analysis in GIFT-I (noncirrhotic and cir-
rhotic patient populations) utilized both population and deep-
sequencing data (Tables 3 and 4). The threshold for the detection
of amino acid variants by deep sequencing was set at 1%. Com-
parison of prevalence by population and deep sequencing indi-
cated that the detection limit by population sequencing was ap-
proximately 15%. The impact of baseline variants on treatment
outcome by deep sequencing was evaluated based on the preva-
lence of variants (1 to 15% or �15% for all variants; 1 to �5%, 5
to �15%, 15 to �40%, and �40% for Y93H) within a patient’s
viral population at each amino acid position.

TABLE 1 Prevalence of baseline polymorphisms in NS3 and NS5A in
GT1b-infected patients by population sequencing

Target and baseline polymorphism

Prevalence (%; n/N)a in:

Japanese
patients

Western
patients

NS3
T54S 3.3 (14/424) 1.6 (6/371)
V55A/I 0.2 (1/424) 1.0 (4/371)
Y56F 36.1 (153/424) 33.4 (124/371)
Q80H/I/K/M/R 2.1 (9/424) 0.3 (1/371)
Q80L 10.6 (45/424) 5.1 (19/371)
S122A/C/D/I/N/R/T/V/Y 10.9 (46/424) 10.8 (40/371)
S122G 26.2 (111/424) 5.1 (19/371)
A156T/V 0.5 (2/371)
D168E 1.2 (5/424) 0.3 (1/371)

NS5A
L28I/V 0.7 (3/431)
L28 M 8.8 (38/431) 1.3 (5/391)
R30G/H/L 0.7 (3/431) 0.5 (2/391)
R30Q 12.8 (55/431) 7.2 (28/391)
L31F/I/M 2.8 (12/431) 5.1 (20/391)
Q54A/C/D/E/H/K/L/N/P/R/S/V/Y 43.9 (189/431) 45.3 (177/391)
P58A/L/Q/R/S/T 7.4 (32/431) 7.4 (29/391)
Q62A/C/D/E/H/K/L/M/N/P/R/S/Y 9.7 (42/431) 10.0 (39/391)
A92E/K/M/S/T/V 7.4 (32/431) 4.9 (19/391)
Y93C/H/S 12.5 (54/431) 7.7 (30/391)

a Data are percentages of subjects with variants at the corresponding amino acid
position. n, number of subjects with baseline variant; N, total number of samples
sequenced.

TABLE 2 Impact of baseline variants in NS3 and NS5A by population
sequencing on treatment outcome in M12-536 noncirrhotic patients

Target and baseline variant

SVR24 rate (%; n/N) witha:

Variant Wild type

NS3
Y56F 96 (24/25) 100 (45/45)
Q80H/I/K/L/M 88 (7/8) 100 (62/62)
S122G/N/T 100 (19/19) 98 (50/51)

NS5A
L28 M 80 (4/5) 100 (66/66)
R30Q 88 (7/8) 100 (63/63)
L31 M 100 (3/3) 99 (67/68)
Q54H/L/N/Y 100 (36/36) 97 (34/35)
P58A/L/Q/S/T 100 (7/7) 98 (63/64)
Q62A/E 100 (5/5) 98 (65/66)
A92T 100 (5/5) 98 (65/66)
Y93H 100 (4/4) 99 (66/67)

a Patients not achieving SVR due to nonvirologic reasons, e.g., early discontinuations,
missing SVR time point, etc., are excluded from the analysis. Only patients with
available sequences (N) are included in the analysis. Therefore, N is less than the
number of patients enrolled in the study and differs by target.
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Among both noncirrhotic and cirrhotic patients in GIFT-I,
SVR24 rates in the presence or absence of NS3 variants were sim-
ilar. All patients with D168E at baseline achieved SVR24.

NS5A variants at amino acid position 28, 30, 54, 58, 62, or 92
also had no impact on treatment outcome in the GIFT-I study.
Four patients with L31F and 1 patient each with Y93F or Y93S all
achieved SVR24. The patient not achieving SVR24 with L31M at
baseline also had a preexisting Y93H variant.

In GIFT-I, the prevalence of Y93H in NS5A at baseline by deep
sequencing was 13% at a detection threshold of 15% and 21% at a
detection threshold of 1%. In this study, the SVR24 rate in patients
with detectable Y93H at baseline (�1% by deep sequencing) was
85% (63/74), compared with �99% (276/277) in patients without
detectable Y93H. In noncirrhotic patients, when Y93H was de-
tected at a prevalence of �40% versus �40% within a patient’s
viral population, the SVR24 rates were 94% (34/36) and 78% (21/
27), respectively. In the cirrhotic patients, the SVR24 rates were
80% (4/5) and 67% (4/6) when Y93H was present at a prevalence
of �40% versus �40%, respectively. Therefore, Y93H at a preva-
lence of �40% within a patient’s viral population appears to have
the highest impact on response, with 76% (25/33) of the patients
in this subset achieving SVR24.

Of the patients who had Y93H at baseline in M12-536 by pop-

ulation sequencing and in GIFT-I at a prevalence of �15% (equiv-
alent to the detection limit by population sequencing), 59% (29/
49) also had one or more additional variants at amino acid
positions 28, 30, 31, 54, 58, 62, and/or 92 at a prevalence of �15%.
The presence of multiple variants at baseline had no additional
impact on treatment outcome, as the SVR24 rate in patients with
Y93H alone was 80% (16/20), whereas it was 83% (24/29) in pa-
tients with multiple variants (Table 5).

Treatment-emergent RAVs in Japanese patients experienc-
ing virologic failure. Of the 73 GT1b-infected patients in M12-
536, 1 patient receiving ombitasvir and the higher dose of 150/100
mg of paritaprevir/r for 12 weeks experienced virologic failure. In
GIFT-I, 12 GT1b-infected patients experienced virologic failure, 9
out of 321 noncirrhotic patients and 3 out of 42 patients with
cirrhosis. One of the 9 noncirrhotic patients experienced virologic
failure in the posttreatment week 24 window. RAVs detected in
the 13 patients at baseline, time of failure, and follow-up time
points are shown in Table 6, and the activity of paritaprevir or
ombitasvir against these RAVs in the GT1b-Con1 replicon is
shown in Table 7.

Variants conferring resistance to paritaprevir in NS3 were not
detected at baseline in any of the 13 patients experiencing viro-
logic failure. At the time of failure, 8 patients had D168V, 2 had

TABLE 3 Impact of baseline variants on treatment outcome in GIFT-I

Target and variant

SVR24 rate (%; n/N)a for:

Noncirrhotic patients Cirrhotic patients

Detection threshold by deep sequencing

Variant
detected by
population
sequencing

Detection threshold by deep sequencing Variant detected
by population
sequencing1 to 15% �15% �1% (wild-type) 1 to 15% �15% �1% (wild-type)

NS3
T54S 100 (12/12) 97 (294/303) 100 (13/13) 100 (1/1) 92 (36/39) 100 (1/1)
V55I 100 (1/1) 97 (305/314) 100 (1/1)
Y56F 100 (3/3) 97 (115/118) 97 (188/194) 97 (113/116) 100 (3/3) 92 (11/12) 92 (23/25) 91 (10/11)
Q80 H/K/L/M/N/R 89 (8/9) 95 (38/40) 98 (260/266) 95 (37/39) 100 (4/4) 100 (5/5) 90 (28/31) 100 (4/4)
S122 A/C/G/N/T/V 98 (40/41) 98 (114/116) 96 (152/158) 97 (112/116) 100 (6/6) 84 (16/19) 100 (15/15) 83 (15/18)
D168E 100 (4/4) 100 (3/3) 97 (299/308) 100 (3/3) 100 (1/1) 92 (36/39) 100 (1/1)

NS5A
L28I/M/V/R 100 (4/4) 97 (30/31) 97 (268/276) 97 (30/31) 100 (4/4) 92 (33/36) 100 (4/4)
R30K/L/Q/R 100 (7/7) 98 (42/43) 97 (253/261) 98 (43/44) 100 (1/1) 100 (4/4) 91 (32/35) 100 (4/4)
L31I/F/M/V 100 (5/5) 100 (7/7) 97 (290/299) 100 (5/5) 50 (1/2) 95 (36/38) 50 (1/2)
Q54A/C/E/H/N/L/S/T/V/Y 94 (30/32) 98 (124/127) 97 (148/152) 98 (125/128) 100 (4/4) 95 (20/21) 87 (13/15) 95 (20/21)
P58A/L/Q/S/T/R 85 (11/13) 100 (22/22) 97 (269/276) 100 (23/23) 100 (2/2) 100 (2/2) 99 (33/36) 100 (2/2)
Q62A/C/D/E/H/K/M/N/P/L/S/R 92 (11/12) 100 (32/32) 97 (259/267) 97 (32/33) 100 (2/2) 92 (35/38) 100 (2/2)
A92E/S/T/V 100 (14/14) 94 (17/18) 97 (271/279) 95 (20/21) 67 (2/3) 100 (4/4) 94 (31/33) 80 (4/5)
Y93F 100 (1/1)
Y93S 100 (1/1) 100 (1/1)

a Patients not achieving SVR due to nonvirologic reasons, e.g., early discontinuations, missing SVR time point, etc., are excluded from the analysis. Only patients with available
sequences (N) are included in the analysis. Therefore, N is less than the number of patients enrolled in the study and differs by target.

TABLE 4 Impact of Y93H in NS5A at baseline on treatment outcome in GIFT-I

Y93H type

SVR24 rate (%; n/N)a

Detection threshold by deep sequencing
Detection by
population sequencing1 to �5% 5 to �15% 15 to 40% �40% �1% (wild type)

Noncirrhotic 94 (16/17) 100 (8/8) 91 (10/11) 78 (21/27) 100b (247/248) 82 (32/39)
Cirrhotic 100 (3/3) 0 (0/1) 100 (1/1) 67 (4/6) 100 (29/29) 71 (5/7)
a Patients not achieving SVR due to nonvirologic reasons, e.g., early discontinuations, missing SVR time point, etc., are excluded from the analysis. Only patients with available
sequences (N) are included in the analysis. Therefore, N is less than the number of patients enrolled in the study.
b Includes 2 patients with Y93F or Y93S at baseline.
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Y56H � D168A, and 3 had Y56H � D168V. NS3 RAVs persisted
in 46.1% (6/13) of the patients through at least posttreatment
week 24 and in 17% (2/12) of the patients through posttreatment
week 48 by clonal sequencing analysis. In the GT1b replicon, NS3
variants D168A and D168V conferred 27- and 159-fold resistance
to paritaprevir, respectively, and the addition of Y56H to one of
these variants increased resistance by an additional 15- to 26-fold.

In NS5A, Y93H alone or in combination with L31M, P58S,
A92E, or L28M � R30Q was detected in 10 patients at baseline. At
the time of failure, 1 patient had L31F � A92E, 5 had Y93H, and 7
had Y93H in combination with L28M, R30Q, L31M/V, and/or
P58S. In patients with available data, RAVs in NS5A remained
detectable through posttreatment week 48. In the HCV GT1b rep-
licon, NS5A variants L31F and Y93H confer 10- and 77-fold resis-
tance, respectively, to ombitasvir. Variant L28M, R30Q, L31M, or
A92E did not confer resistance, but double variants of A92E in
combination with L31F or of L28M, R30Q, L31M/V, or P58S in
combination with Y93H conferred an additional 2- to 160-fold
resistance to ombitasvir.

HCV GT1b replicons containing amino acid variants in NS3
had replication efficiencies varying between � 0.5% and 157%,
and variants in NS5A had replication efficiencies varying between
11% and 127% relative to that of the wild-type replicon. In clinical
studies, NS3 RAVs, including those with high replication efficien-
cies, did not persist through posttreatment week 48, while NS5A
RAVs, including those with low in vitro replication efficiencies,
persisted through posttreatment week 48. The lack of correlation
between replication efficiencies observed in vitro and the persis-
tence of RAVs in patients treated with paritaprevir and ombitasvir
who experienced virologic failure indicates that there are limita-
tions in the use of the replicon assay for assessing in vivo viral
fitness.

DISCUSSION

Phase 2 study M12-536 and phase 3 study GIFT-I assessed the 2D
regimen containing paritaprevir/r and ombitasvir in Japanese

HCV GT1b-infected patients. High SVR rates were observed with
an overall virologic failure rate of 3% (13/436) (13, 14).

Baseline sequence analysis of the NS3 and NS5A genes was
conducted to evaluate geographic differences in the distribution
of polymorphisms at amino acid positions that are important for
the activity of NS3 protease or NS5A inhibitors. The pattern gen-
erally was similar for both Japanese and western patient popula-
tions. However, there were some differences in the geographic
distribution of specific NS3 and NS5A polymorphisms. Q80L and
S122G in NS3 and L28M, R30Q, and Y93H in NS5A were detected
in a significantly higher proportion of Japanese patients than west-
ern patients (predominantly from the United States and Europe).
Similar differences by geographic region were observed previously
in the baseline HCV GT1 sequence analysis in the AVIATOR
study, where all GT1a sequences encoding M28V in NS5A were
from the United States, while GT1b sequences encoding C316N
and S556G in NS5B were predominant in Europe (25). Geo-
graphic differences in the prevalence of Q80K in NS3 in GT1a are
well documented, with higher prevalence in the United States than
in Europe (34). A longitudinal phylogenetic analysis (by geo-
graphic region and time of sample collection) of HCV GT1a se-
quences by McCloskey et al. indicated that the majority of the NS3
Q80K-carrying sequences (96%) have descended from a single
substitution event that occurred over 50 years ago in the United
States, perhaps accounting for the higher prevalence of the variant
in this region (10). As HCV infection was prevalent in Japan be-
fore North America and Europe, viral evolution and transmission
may have been confined to a restricted geographic region for a
period of time, leading to regionally specific sequence variability.
However, longitudinal phylogenetic analysis of sequences will be
required to understand these differences.

Baseline paritaprevir resistance-conferring variants in NS3
were rarely observed in Japanese or western patients. L31F and
Y93H/S in NS5A were the only variants that conferred resistance
to ombitasvir, and they were detected in 0.5% and 12.5% of the

TABLE 5 Impact of baseline Y93H alone or in combination with other variants in NS5A on treatment outcome

Variant(s)a

SVR24 rate (%; n/N)b by study group

M12-536

GIFT-I

TotalNoncirrhotic Cirrhotic

Y93H 100 (4/4) 73 (8/11) 80 (4/5) 80 (16/20)
R30Q, Y93H 100 (1/1)
L31M, Y93H (0/1)
Q54C/H/L/R/Y, Y93H 91 (10/11) 100 (1/1)
P58L/S, Y93H 100 (2/2)
Q62D/H, Y93H 100 (2/2)
A92V, Y93H 100 (1/1)
L28M, R30Q, Y93H (0/1)
R30Q, Q54H/Y, Y93H 100 (1/1)
Q54H, P58Q, Y93H 100 (1/1)
Q54H/Y, Q62A/E/L, Y93H 67 (2/3)
Q54H/Y, A92E/M/T/V, Y93H 50 (1/2)
L28M, R30Q, P58S, Q62H, Y93H 100 (1/1)
L28M, R30L, Q54H, P58L, A92V, Y93H 100 (1/1)
Y93H/S in combination with other variants 83 (24/29)
a List includes variants detected from patient isolates; variants may not all be linked. Variants detected by population sequencing in study M12-536 and those detected by deep
sequencing (detection threshold of �15%) in the GIFT-I study are reported.
b Patients not achieving SVR due to nonvirologic reasons, e.g., early discontinuations, missing SVR time point, etc., are excluded from the analysis. Only patients with available
sequences (N) are included in the analysis. Therefore, N is less than the number of patients enrolled in the study and differs by target.
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Japanese patients, respectively, by population sequencing. The
baseline prevalence of NS3 and NS5A polymorphisms also has
been presented by Manns et al. from a non-Japanese multina-
tional clinical trial of asunaprevir and daclatasvir conducted in 18
countries, including the Asian countries South Korea and Taiwan,
with a data set size of �600 patients (29). In this study, D168E in
NS3 was detected in 0.6% of the patients and L31F/I/M/V and
Y93H/S in NS5A were detected in 4.5% and 8.0% of the patients,
respectively, by population sequencing, similar to our observa-
tions in the western patient population (29). Baseline analysis in
the GIFT-I study also was conducted by deep sequencing. Resis-
tance-conferring variants in NS3 were not detected using a detec-
tion threshold of 1%, while L31F and Y93H in NS5A were detected
at a prevalence of 1% and 21%, respectively. Comparison of pop-
ulation and deep-sequencing data indicated that the detection
limit of population sequencing was approximately 15%.

Polymorphisms in NS3 and NS5A, with the exception of Y93H
in NS5A, had no impact on treatment outcome in studies M12-
536 and GIFT-I. In study M12-536, the prevalence of Y93H in
NS5A at baseline was 5.6% by population sequencing, and all 4
patients with this variant at baseline achieved SVR24. In GIFT-I,
the SVR24 rate in patients with Y93H present in �1% of their viral
population was 85% (63/74), whereas the SVR24 rate was �99% in
patients without Y93H (�1% by deep sequencing). The most in-
formative data subset for the prediction of treatment outcome was

a detection threshold of 40% for Y93H. In the GIFT-I study, 9% of
the noncirrhotic and cirrhotic patients met this criteria, and the
SVR24 rate in this subset was 76% (25/33) compared to an SVR24

rate of �98% (314/318) in patients with �40% prevalence of
Y93H (including those with wild-type Y93). Although the pres-
ence of Y93H was associated with a lower SVR24 rate, the majority
of the patients with this variant at baseline achieved SVR24, sug-
gesting that factors other than the presence of Y93H in NS5A
impact treatment outcome. Population sequencing-based tests
(detection threshold of �15 to 20%) as well as more quantitative
tests to evaluate the presence of Y93H in NS5A at baseline are
available to clinicians in Japan. The results from this study may be
informative for physicians making decisions regarding treatment
in GT1b-infected patients who have Y93H in NS5A at baseline.

Among the 13 virologic failures in the phase 2 and 3 studies,
RAVs in NS3 as well as NS5A were observed in all 13 patients after
failure. D168A/V alone or in combination with Y56H in NS3 and
L31F plus A92E or Y93H alone or in combination with L28M,
R30Q, L31M/V, and/or P58S in NS5A were detected at the time of
failure. Treatment-emergent RAVs in NS3 declined over time,
whereas RAVs in NS5A remained detectable through posttreat-
ment week 48.

A limitation of this study is that the results are pertinent only to
the use of the 2D regimen in Japanese HCV GT1b-infected pa-
tients. In the United States, Europe, and other countries world-

TABLE 6 RAVs in NS3 and NS5A in patients who experienced virologic failure in M12-536 and GIFT-Ii

Study arma, VF type, time
point

RAVs at each time point

NS3 NS5A

Baseline Time of VF PTW24 PTW48 Baseline Time of VF PTW24 PTW48

M12-536
2, relapse, PTW2b,d Nonef D168V Noneg None L28M � R30Q L28M � R30Q �

Y93H
L28M � R30Q �

Y93H
L28M � R30Q,

Y93H/Y

GIFT-I
A, breakthrough, W6b,d Noneh Y56H � D168V Noneg None Y93Hh Y93H Y93H Y93H
A, relapse, PTW2c,e Noneh Y56H � D168V Noneg None Y93H/Y Y93H Y93H Y93H
A, relapse, PTW4b,d Noneh D168V D168D/Vg None Noneh Y93H Y93H Y93H
A, relapse, PTW2c,e Noneh D168D/V Noneg Noneg Y93H Y93H Y93H Y93H
A, relapse, PTW12c,e Noneh D168V Noneg None Y93H/Y, P58Sh P58S � Y93H P58S � Y93H P58S � Y93H
A, relapse, PTW8c,e Noneh D168Vg Noneg None Y93H/Y R30Q � Y93H R30Q � Y93H R30Q � Y93H
A, relapse, PTW24c,e Noneh D168V D168V D168V A92A/M/T/V,

Y93H/Y
Y93H Y93H Y93H

B, breakthrough, W12b,e Noneh Y56H � D168V Y56F/H/L/Y,
D168D/Vg

None Y93H P58S � Y93H P58P/S, Y93H Y93H

B, relapse, PTW2b,d Noneh Y56H � D168A D168A/Dg None L28M � R30Q,
Y93H/Y

L28M � R30Q �
Y93H

L28M � R30Q �
Y93H

L28M � R30Q
� Y93H

C, relapse, PTW8b,e Noneh D168D/V Noneg None L31M, Y93H/Y L31M � Y93H L31M � Y93H L31M � Y93H
C, breakthrough, W10b,e Noneh Y56H/Y, D168A D168D/H/L/V D168D/V Y93H L31V � Y93H L31V � Y93H L31V � Y93H
C, relapse, PTW8b,e Noneh D168V D168D/V NA A92A/E, Y93Hh L31F � A92E L31F � A92E NA

a Study M12-536, arm 2 (null and partial responders), received paritaprevir//r (150/100 mg) and ombitasvir (25 mg) QD for 12 weeks; study GIFT-I, arms A and B (noncirrhotics)
and arm C (cirrhotics), received paritaprevir/r (150/100 mg) and ombitasvir (25 mg) QD for 12 weeks.
b Treatment experienced with an IFN-containing regimen with or without RBV.
c Treatment naïve.
d IL28B genotype CT.
e IL28B genotype CC.
f Resistance-associated variants were not detected.
g Results by clonal sequencing.
h Results by deep sequencing.
i NA, sample not available; PTW, posttreatment week; W, week; VF, virologic failure; �, linked variants; /, mixture of variants.
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wide, where a greater proportion of people are infected with GT1a
than that observed in Japan, the 2D regimen in combination with
dasabuvir (a nonnucleoside NS5B inhibitor), with or without
RBV, is approved for the treatment of HCV GT1-infected cir-
rhotic and noncirrhotic patients (20–27). Therefore, the impact of
RAVs on treatment outcome described in this study of the 2D
regimen is not applicable to the western patient population.

In summary, Japanese GT1b-infected patients treated with
paritaprevir/r and ombitasvir achieved high SVR rates. Certain
NS3 and NS5A polymorphisms were detected at a higher preva-
lence in the Japanese population than in the western population.
The impact of baseline RAVs on treatment outcome was limited to
Y93H in NS5A; however, a majority of patients with this variant
achieved SVR.
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