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INTRODUCTION

Nicotinamide adenine dinucleotide (NAD) is not only the master regulator of energy metabolism
pathways but also an essential substrate for several key enzymes of health and disease states (1, 2).
NAD+/NADH redox coupling is vital for fueling glycolysis, tricarboxylic acid (TCA) cycle and
electron transport chain (ETC) for producing ATP. In addition to that, NAD+ is a substrate
for NAD-dependent deacetylases called sirtuins (SIRTs), poly-ADP-ribose polymerases (PARPs),
monoADP-ribosyltransferases (ARTDs), ADP ribose synthetases (CD38/CD157), and sterile alpha
and toll/interleukin-1 receptor motif-containing protein 1 (SARM1), etc. (1). NAD kinase also
utilizes NAD+ to generate nicotinamide adenine dinucleotide phosphate (NADP+/NADPH)which
is consumed by reactive oxygen species producing enzymes, NADPH oxidases. For maintaining
cellular homeostasis, NAD+ levels are tightly regulated through its salvage pathway where the
by-product of enzymatic reactions, nicotinamide adenine dinucleotide (NAM), is converted back
to NAD+ by the rate limiting enzyme NAM phosphoribosyl transferase (NAMPT) (1, 2). Other
biosynthesis pathways include de novo synthesis from tryptophan (Trp), and from the dietary
uptake of its precursors- nicotinic acid (NA) or nicotinamide riboside (NR) (1, 2).

NAD+ DEPLETION IN AGING AND DISEASE STATES

Maintaining the levels of NAD+ is highly critical for normal cellular function and this is
indicated by the embryonic lethality of homozygous knockout of the NAD+ salvage enzyme
Nampt in mice (3). Various tissue-specific conditional knockout Nampt mice also demonstrated
the importance of maintaining NAD+ levels within an organ (Table 1). During metabolic stress,
chronic inflammatory conditions, and aging NAD+ content has been shown to decline (1, 10, 11).
In healthy humans, plasma NAD+ levels and the levels of its related metabolites such as NADP+

and nicotinic acid adenine dinucleotide (NAAD) have been reported to decline with age (12).
Several studies have shown that with aging, the major NAD+ consuming enzymes such as PARP1
and CD38 are hyperactivated due to age-related increase in DNA damage, inflammation and
oxidative stress leading to impaired NAD+ signaling (1, 11, 13, 14). In mouse models of muscular
dystrophy, increasing levels of NAD+ was shown to improve muscle function, decrease muscle
stem cell senescence, and increase lifespan (15, 16). In aging- related neurodegenerative diseases
replenishment of NAD+ improved health span by reducing neuroinflammation and DNA damage
in mouse brain (17–19). In an animal model of high-fat high-sucrose (HFHS) diet, NAD+

supplementation prevented hepatic steatosis by activating sirtuinmediatedmitochondrial unfolded
protein response (UPRmt) (20). NAD+ boosting was also shown to be beneficial for type 2 diabetes
and diabetic neuropathy in mice (21). A clinical trial showed that NR can improve physical activity
acutely (22) and chronic NR supplementation has been shown to decrease levels of inflammatory
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TABLE 1 | Organ specific knockout models of NAD+ salvage enzyme Nampt and

their phenotypes.

Organ/cell type Phenotype References

Adipose tissue No change in body composition but

reduced food intake in high fat diet fed

mice and improves glucose tolerance

(4)

Hepatocyte 50% reduction in total liver NAD+ levels

and 20% reduction in mitochondrial

NAD+ levels in hepatocytes; had

minimal effect on liver mitochondrial

function as de novo NAD+ synthesis is

increased in the mitochondria as a

compensatory mechanism

(5)

Renal proximal

tubule

Tubular fibrosis characterized by tubular

basement membrane (TBM) thickening

and collagen deposition

(6)

Adult projection

neurons

Weight loss, motor dysfunction, and

death

(7)

Hypothalamic

Agouti-related

protein (AgRP)

neuron

Reduced ATP levels, increased oxidative

stress, and cell death leading to

neuronal degeneration

(8)

Skeletal muscle Mice were smaller in size with muscular

dystrophy-like phenotype causing

premature death. Impaired Ca2+

signaling and mitochondrial dysfunction

were observed

(9)

cytokines in sera of aged humans. NR also enhanced the
levels of NAD+ and its related metabolites in muscle (10). In
contrast, some clinical trials did not observe beneficial effects
of NAD+ boosting in certain disease conditions. For instance,
in obese men, either non-diabetic or insulin resistant, NR
supplementation for a period of 12 weeks did not improve insulin
sensitivity or glucose tolerance (23, 24). Moreover, the research
group did not find any changes in skeletal muscle mitochondrial
function or content in these subjects (25). This suggests that the
beneficial effect of NAD+ supplementationmay be tissue-specific
or may require a long-term and dosage-optimized treatment
regime, or may be in certain conditions it could be only effective
as a preventative measure rather than a therapeutic (26).

NAD+ BOOSTING IN CARDIOPROTECTION

Ischemia, ischemia reperfusion (IR) injury, or myocardial
infarction has been shown to result in reduced NAD+ levels in
the heart (27). Friedreich’s ataxia cardiomyopathy mouse model
has been shown to be associated with increased mitochondrial
protein acetylation along with a decrease in mitochondrial
Sirt3 deacetylase transcript levels as well as altered expression
of NAD+ biosynthesis enzymes. The authors demonstrated
that NAD+ boosting by NR normalized cardiac efficiency by
activating mitochondrial Sirt3 function and thereby reducing
mitochondrial protein acetylation (28). Moreover, a mouse
cardiac hypertrophy model showed that NAD+ treatment can
inhibit pro-hypertrophic pathway and activate anti-hypertrophic
LKB1-AMPK pathway by Sirt3-dependent deacetylation of LKB1

(29). Mouse models of dilated cardiomyopathy and cardiac
hypertrophy showed 30% decline in NAD+ levels in the heart.
Expression of NAD+ salvage enzyme NAMPT was decreased
and, an increase in NMRK2 enzyme that converts nicotinamide
riboside (NR) to nicotinamide mononucleotide (NMN) was
noted. This was consistent with results obtained from failing
human hearts. NR administration prevented heart failure in
mice with dilated cardiomyopathy and partially improved cardiac
function in transverse aortic constriction (TAC) mouse model by
enhancing NAD+ metabolome and cardiac citrate metabolism
(30). A genetic model of mitochondrial complex I dysfunction
(Ndufs4; cKO) was shown to be more susceptible to heart failure
which was accompanied with increased NADH/NAD+ ratio
and protein hyperacetylation (31). Administration of NMN or
overexpressing NAMPT normalized NADH/NAD+ ratio and
reduced protein acetylation; and thus prevented heart failure in
the Ndufs4 cKO and chronic pressure overload models (31).

Clinical trials with various NAD+ precursors such as Trp,
NA, or NR showed that increasing NAD+ levels is associated
with reduced risk of developing CVD, lowers blood pressure and
improves hypocholesteremia, enhances cardiac mitochondrial
function and decreases aortic stiffness (32) (Figure 1). For
example, in a long term safety and efficacy study, niacin treatment
showed lower cholesterol levels and decreased occurrence of
non-fatal myocardial re-infarction which led to 11% decrease in
mortality compared to placebo (33). Another study showed that
elevated plasma tryptophan level is associated with decreased
CVD incidence (34). A systematic review reported that niacin
treatment increased levels of serum high-density lipoprotein
(HDL) levels (35). Moreover, a randomized controlled trial
showed that NR administration for 6 weeks led to reduction
in blood pressure and aortic stiffness in middle-aged and older
adults (36). A recent study reported that diastolic heart failure in
humans is associated with depleted NAD+ content (37). Using
three murine models of heart failure, (i) aging, (ii) hypertension,
and (iii) ZSF1 obese rats, the study showed that NAM treatment
prevented diastolic dysfunction by improving cardiometabolic
function and bioenergetics (Figure 1). Moreover, they performed
a long-term population-based analysis which suggested that
supplementation of NA or its equivalent is capable of reducing
blood pressure and, thereby it was associated with lower risks of
cardiac mortality (37).

Since PARP1 hyperactivation has been implicated as a cause
of NAD+ depletion in various pathologies, pharmacological
inhibitors of PARP1 have been tested in pre-clinical models.
An in vitro study showed that PARP1 inhibition protects
tachypacing-induced and gamma-irradiation-induced
cardiomyocyte dysfunction in HL1 and rat atrial cardiomyocytes
(38). In a mouse TAC model of heart failure, PARP1 inhibition
improved cardiac contractile function (39). Moreover, in murine
models of chronic heart failure and ischemia/reperfusion (I/R)
injury, PARP inhibition has been found to be protective (40, 41).
Using a genetic model of mouse preeclampsia, a study reported
that deletion of NAD+ consuming enzyme CD38 gene leads
to reduced blood pressure in this model. CD38 inhibitors
are also available which could be tested in CVD models (42).
However, such inhibitors may not be highly selective; and as
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FIGURE 1 | Schematic representing function of NAD+ boosting in multiple aspects of cardiovascular diseases. CVD, cardiovascular disease; BP, blood pressure;

HDL, high density lipoprotein.

these enzymes are involved in various pathways and tissue
functions, their global inhibition may pose unwanted side effects
for human application.

NAD+ PRECURSORS AND CONCERNS
ASSOCIATED WITH THEIR HIGH DOSE
ADMINISTRATION

Although several studies have successfully demonstrated the
beneficial effects of NAD+ boosting, the dosage and precursors
used need to be carefully evaluated for human application.
Studies conducted have tested Trp, NA, NAM, NAM-mono
nucleotide (NMN) and NR as NAD+ precursors. As Trp is
also involved in other biosynthetic pathways, it seems to be
less efficient in elevating NAD+ levels in disease conditions
(1). NA has lipid lowering effects in blood but at doses higher
than 50 mg/day it can cause flushing (43, 44). On the other
hand, high doses of NAM have been reported to inhibit
SIRT1 (45). NA and NAM have also been shown to affect the
cellular methyl pool which is critical for maintaining DNA and
protein methylation states. NAM accepts methyl groups from
S-adenosylmethionine (SAMe) by the action of nicotinamide
N-methyltransferase (NNMT) and generates methylated NAM
(MeNAM) and homocysteine. Under physiologic conditions,
methylation of NAM is regulated as the Km value of NNMT for
NAM is much higher compared to plasma levels of NAM. Thus,
high doses of NAM treatment will lead to NNMT activation
which may result in depletion of the methyl pool. Consistent
with this, NAM has been reported to cause liver toxicity at high
doses (46, 47). For example, one study reported that male rats
treated with 1 or 4 grams of NAM for 8 weeks had altered hepatic
DNA methylation and homocysteine metabolism; along with
increased oxidative damage and insulin resistance compared to

untreated rats (48). Another research study showed that healthy
rats treated with nicotinamide (500 mg/kg) had an increase in
the parameters of hepatic and renal toxicity (46). Moreover,
NAM treatment in pregnant rats led to decreased placental and
fetal DNA methylation which suggests that high doses of NAM
treatment may modify epigenetic profile in offspring (49).

Sterile alpha and TIR motif-containing protein 1 (SARM1),
an NADase enzyme, when activated causes axonal degeneration.
Accumulation of NMN due to loss of NMNAT2, an enzyme
that converts NMN to NAD+, or an increase in NMN/NAD+

ratio, has been shown to activate SARM1 which leads to axonal
death. This raises safety concerns for pharmacological use of
NMN in humans, although pharmacokinetics study of NMN
administration at 100, 250, and 500mg in humans did not show
any deleterious effects after 5 h of intervention (50–52). NMN
treatment in mice at a high dose (2,860 mg/kg, twice daily) for
7 days led to elevated alanine aminotransferase indicating liver
toxicity. Moreover, NMN treatment at 1,340 mg/day twice daily
in beagle dogs showed an increase in body weight; and elevated
serum creatinine and uric acid levels indicating compromised
kidney function compared to controls (53).

Pharmacokinetics studies and several clinical trials have
reported that NR is effective in enhancing NAD+ metabolome
and that it is orally available and well-tolerated in humans (10, 36,
54, 55). In a randomized double-blinded placebo-controlled trial,
unlike NAM treatment, long term NR administration (56 days)
at 10, 300 and 1,000 mg/day doses did not affect levels of plasma
homocysteine (55). A rodent study showed that rats treated
with 300 mg/kg NR for 21 days displayed a non-significant
decrease in incremental swimming performance test compared
to non-treated rats (56). However, in aged humans, a double-
blinded crossover study showed that NR treatment can acutely
enhance physical performance (22). Another study showed that
NR supplementation at 1 g/day dosage for 21 days seemed
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to maintain mitochondrial bioenergetics and elevate NAD+

metabolome in muscle despite downregulation of mitochondrial
pathways. NR supplementation also led to a decrease in age-
associated inflammation in these subjects (10). Here, exercise
performance or physical activity was not evaluated which would
be essential information to determine the outcome of the
study accurately.

CONCLUSION

Overall, the findings discussed in this article suggest that NAD+

boosting is a promising therapeutic strategy for cardiovascular
diseases. However, the choice of NAD+ precursor, their
appropriate dosing and long-term effects in humans need to
be critically evaluated and investigated. Long-term effect of
these precursors could be tested in animal models at various
doses to determine impact on molecular parameters such
as DNA methylation, homocysteine metabolism and SARM1
activation. Exercise performance or physical activity should also
be evaluated. In non-medicated, metabolically healthy obese
individuals, NAD+ boosting for 12 weeks did not improve
glucose tolerance even though in pre-clinical models of Type
2 diabetes, NAD+ precursor supplementation has been shown

to be effective. This may suggest that a therapeutic benefit
may only be achieved in conditions with metabolic dysfunction
and a preventative benefit may require even longer or repeated
treatment periods. Thus, such aspects need to be carefully
considered for designing clinical trials.
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