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Dishevelled (DVL) proteins, three of which have been iden-
tified in humans, are highly conserved components of ca-
nonical and noncanonical Wnt signaling pathways. These 
multifunctional proteins, originally discovered in the fruit 
fly, through their different domains mediate complex sig-
nal transduction: DIX (dishevelled, axin) and PDZ (postsyn-
aptic density 95, discs large, zonula occludens-1) domains 
serve for canonical beta-catenin signaling, while PDZ 
and DEP (dishevelled, Egl-10, pleckstrin) domains serve 
for non-canonical signaling. In canonical or beta-catenin 
signaling, DVL forms large molecular supercomplexes at 
the plasma membrane consisting of Wnt-Fz-LRP5/6-DVL-
AXIN. This promotes the disassembly of the beta-catenin 
destruction machinery, beta-catenin accumulation, and 
consequent activation of Wnt signaling. Therefore, DVLs 
are considered to be key regulators that rescue cytoplas-
mic beta-catenin from degradation. The potential medi-
cal importance of DVLs is in both human degenerative 
disease and cancer. The overexpression of DVL has been 
shown to potentiate the activation of Wnt signaling and it 
is now apparent that up-regulation of DVLs is involved in 
several types of cancer.
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Wnt proteins initiate three distinct signaling pathways − the 
canonical, non-canonical or planar cell polarity (PCP), and 
Wnt-Ca2+ pathway. The members of the dishevelled (dsh/
DVL) protein family are considered to be critical compo-
nents of Wnt signaling, which are transducing signal into 
three different cellular routes (1-5). The mechanism how 
DVL activates distinct downstream pathways has been 
elucidated recently (6,7), therefore this review attempts 
to synthesize and explain the current knowledge on DVLs 
function in Wnt signaling.

Among three Wnt signaling cascades, the canonical Wnt 
signaling pathway is one of the basic mechanisms of the 
cell signaling, critical for embryonic development and 
adult tissue homeostasis, and is widely conserved in the 
animal kingdom. It is activated by binding of different Wnt 
ligands (19 were identified in humans) to specific recep-
tors (1). Through several cytoplasmic relay components, 
the signal is subsequently transduced to beta-catenin. As 
a consequence, beta-catenin levels raise, and it enters the 
nucleus to activate transcription of Wnt target genes (2). In 
the nucleus, beta-catenin finds a partner, a member of the 
DNA binding transcription factor family LEF/TCF (lymphoid 
enhancer factor/ T cell factor) (2). Target genes for beta-cat-
enin/LEF/TCF encode c-myc, N-myc, c-jun, and cyclin D1, 
explaining why constitutive activation of the Wnt pathway 
can lead to cancer (2,8).

The pathway is inactive when the levels of beta-catenin are 
kept low. This is achieved by beta-catenin’s degradation in 
a multiprotein destructive complex consisting of AXIN, 
APC (adenomatous polyposis coli), CK1 (casein kinase 1), 
and GSK3β (glycogen synthase kinase 3 beta). This results 
in beta-catenin phosphorylation, ubiquitination, and final-
ly its degradation in the proteasome (Figure 1). The com-
ponents of beta-catenin destruction complex represent 
negative regulators of the pathway. The activation of Wnt 
signaling pathway also happens in case APC, AXIN, and 
other components of beta-catenin destruction complex 
are mutated and non functional (2,8-10).

DVL is considered to be a key regulator that rescues cy-
toplasmic beta-catenin from degradation. Binding of Wnt 
signaling molecule to membrane receptors activates DVL 
(2,4). The receptors of the Frizzled (Fz) family are transmem-
brane seven-pass molecules that work in collaboration 
with their co-receptors LRP5 and LRP6 (low density lipo-
protein receptor-related protein 5 and 6) forming a mem-
brane receptors complex. DVL is recruited to the mem-
brane and it comes in direct contact with the Fz receptor 
(11). This interaction is essential for phosphorylation of Fz 
co-receptors LRP5/6 by phosphokinases GSK3β and CK1. 
Phosphorylation activates LRP5/6 co-receptors, which be-
side kinases also bind AXIN by the LRP’s cytoplasmic tail. As 
a consequence, AXIN is recruited to the plasma membrane 

Figure 1. Wnt signaling pathway and its key components. (A) In the absence of Wnt, beta-catenin destruction complex consisting of 
AXIN1, adenomatous polyposis coli (APC), casein kinase 1 (CK1), and glycogen synthase kinase 3 beta (GSK3β) is formed. This results 
in beta-catenin phosphorylation, ubiquitination, and degradation in the proteasome. (B) Binding of Wnt ligands to receptor complex 
consisting of Frizzled (Fz) and low density lipoprotein receptor-related protein 5 and 6 (LRP5/6) results in recruitment of DVL to the 
membrane by binding to Fz and AXIN. This disables the formation of beta-catenin destruction complex, allowing beta-catenin to 
accumulate in the nucleus where it activates Wnt target genes upon binding to lymphoid enhancer factor/ T cell factor (LEF/TCF).
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and it can no longer be a part of beta-catenin destruction 
complex, so the complex cannot be formed. Besides be-
ing able to bind to the co-receptors, AXIN can also bind 
to DVL. In this way DVL inhibits the activity of AXIN in the 
destruction complex (8,12). Wnt signal triggers the recruit-
ment of AXIN either to LRP5/6 or to DVL bound to Fz re-
ceptors. This leads to the beta-catenin accumulation in the 
cytoplasm, its consequent nuclear translocation, activation 
of LEF/TCF transcription factors, and expression of target 
genes (2-4,6,13-15).

WHY IS DISHEVELLED IN THE CENTER OF WNT 
SIGNALING?

Dishevelled (dsh) is a multifunctional phosphoprotein orig-
inally discovered in the fruit fly Drosophila melanogaster. In 
Drosophila, a single dsh gene is expressed and it is required 
for proper development. In contrast, three dsh homologue 
genes (DVL1, DVL2, and DVL3) have been identified in hu-
mans showing a high degree of similarity. DVL1 gene is 
located at 1p36 locus, and its protein is 695 amino acids 
long; DVL2 gene is located at 17p13.1, and its protein is 736 
amino acids long; and DVL3 gene is located at 3q27, and its 
protein is 716 amino acids long (16-18). The experiments in 
knockout mice have indicated that each mammalian DVL 
protein product is able to function cooperatively as well 
as uniquely (14). DVL2 is the most abundant of the three 
members (14). Two isoforms of human DVL1 and two of 
DVL3 are produced by alternative splicing. DVL interacts 
with more than 50 binding proteins in the cytoplasm and 
in the nucleus (16).

All dsh/DVL proteins (ranging from nematodes to hu-
mans) possess three conserved domains: an aminoter-
minal DIX (dishevelled, axin), a central PDZ (postsynaptic 
density 95, discs large, zonula occludens-1), and a car-
boxyl-terminal DEP (dishevelled, Egl-10, pleckstrin) do-
main (19). In addition DVL also contains another two re-
gions harboring positively charged amino acid residues. 
The first is called the basic region and is comprised of 
conserved serine and threonine residues stretching be-

tween the DIX and PDZ domains and the second is the 
proline-rich region, termed SH3 (src homology 3) bind-
ing domain, which is situated downstream of PDZ (16). 
The proposed peptide structure is implicated to mediate 
protein-protein interaction, and thus DVL likely serves as 
an adapter molecule (4,5). Dillman et al (5) have report-
ed that there is a fourth conserved domain in DVL, called 
DSV or dishevelled domain, but its functional importance 
is still unclear (Figure 2).

The N-terminal DIX domain extends in humans for 85 ami-
no acids for DVL1, 83 for DVL2, and 82 for DVL3, and is also 
present in the AXIN protein, which seems to be a scaffold-
ing factor for Wnt signaling (15,16). DIX domain is necessary 
but not sufficient for the DVL-AXIN interaction and some 
other sequences located near to the DIX domain may be 
requisite. The domains do not interact directly with each 
other (4). As mentioned previously, DVL can bind AXIN and 
inhibit its activity (3), thus dissociating the axin-assembled 
beta-catenin destruction complex by displacing AXIN, or 
by recruiting another protein called FRAT (frequently rear-
ranged in advanced T-cell lymphomas). Phosphorylated 
DVL has a high affinity for FRAT, and this binding also in-
duces the disintegration of beta-catenin destruction com-
plex and the activation of the pathway (20). Possibly the 
interaction of DVL1 with FRAT will cause a conformational 
change of the degradation complex that phosphorylates 
beta-catenin.

The central PDZ domain is 73 amino acids long in all three 
human homologs and it provides a docking site for protein 
kinases, phosphatases, and adaptor proteins. The proteins 
that bind to the PDZ domain are best known for their roles 
in submembranous receptor assembly, where they inte-
grate signaling molecules into larger complexes with sub-
sequent signal transduction (4). The direct interaction of 
PDZ domain with the Fz through the conserved C-termi-
nal cytoplasmic Fz sequence is essential in transduction of 
the signal from Fz to the downstream components of the 
Wnt pathway. It is known that Fz-Dvl and Dvl-Axin protein 
interactions are relatively weak but dynamic (11).

Figure 2. Dishevelled protein structure with conserved domains and regions: DIX (dishevelled, axin) domain, DSV (dishevelled) 
domain, the basic region, PDZ (postsynaptic density 95, discs large, zonula occludens-1) domain, proline-rich region, and DEP (di-
shevelled, Egl-10, pleckstrin) domain.
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DEP domain located between PDZ domain and C-termi-
nal region of DVL protein consists of 75 amino acids in all 
three human homologs. The same polypeptide motif can 
also be found in signaling factors such as the regulator of 
G-protein signaling (RGS) protein family, which harbors 
conserved, catalytic RGS domains as well as DEP domains 
in their N termini (1). It has been shown that DEP domain 
enables protein-protein interaction between DVL and 
DAAM1 (dishevelled associated activator of morphogene-
sis 1), a formin-homology protein involved in actin polym-
erization. By mediation of basic residues in DEP domain, 
DVL binds to membrane lipids during planar epithelial po-
larization (21).

Considering its hub position in Wnt signaling (4), it is not 
surprising that domains of DVL proteins contain binding 
sites for a large number of different proteins, including sev-
eral kinases. Simply speaking speaking, DVL proteins use 
different domains through which they mediate complex 
signal transduction: DIX and PDZ domains are crucial for 
cannonical beta-catenin signaling, while PDZ and DEP do-
mains are critical for PCP signaling by mediation of the cy-
toplasmic-to-membrane translocation (1). Recent studies 
(22) have given more weight to the claim that DIX domain 
can also be included in non-canonical PCP signaling and 
DEP domain can affect beta-catenin signaling (22,23). The 
cellular pool of available DVL is limited, meaning that ac-
tivation of one pathway makes DVL unavailable in other 
locations to activate the other pathways. This means that 
activation of the canonical Wnt pathway could down-reg-
ulate non-canonical Wnt signaling, and vice versa (24).

Dishevelled nuclear shuttling

The subcellular localization of DVL is proposed to be caus-
ative of the choice of different Wnt pathway routes. Litera-
ture data suggest that there are two cellular pools of DVL: 
one translocates to the nucleus to mediate the canonical 
signaling while the other remains in the cytoplasm or goes 
to the plasma membrane and mediates both canonical 
and non-canonical signaling (1,3,4). Its nuclear localization, 
which is required for the canonical Wnt beta-catenin sig-
naling, also suggests that the involvement of DVL in Wnt 
signaling is more complex than previously thought. Regu-
lation of protein shuttling into and out of the nucleus is 
influenced by the activity of nuclear localization signals 
(NLS) and nuclear export signals (NES) (25). Wnt signal-
ing utilizes DIX and PDZ domains of DVL to induce the 

stabilization of cytosolic beta-catenin. When DVL is in 
the nucleus, it interacts with phosphorylated c-jun 

and nuclear beta-catenin and mediates the formation of a 
functional complex consisting of DVL-c-jun-beta-catenin-
TCF. Through TCFs sequence-specific DNA binding domain 
(HMG box), newly formed complex binds on the promot-
er of Wnt target genes and regulates gene transcriptional 
activity. Formation of this quaternary functional complex 
was proposed by Gan et al (26) and it may suggest the 
transcriptional function of DVL in the nucleus. How DVL’s 
voyage to the nucleus is regulated remains not completely 
clear (4,27). In contrast, DVL in the cytoplasm moves to the 
plasma membrane where it forms large molecular super-
complexes (ie, signalosomes) consisting of Wnt-Fz-LRP5/6-
DVL-AXIN necessary for the transmission of signals from 
the receptor to downstream effectors (22,28). Beside beta-
catenin and DVL, many components of the canonical sig-
naling pathway such as APC, AXIN1, and GSK3β appear to 
traffic between the cytoplasm and the nucleus (27).

Regulation of DVL activity

To understand the function of DVL’s domains and regions 
several studies have been reported in experimental mod-
els (2,3). In spite of a multitude of protein interactions, DVL 
has no known enzymatic activity. Positive regulation of 
DVL activity is achieved by phosphorylation of the protein 
(4). Upon binding of Wnt molecule to receptors, extensive 
phosphorylation of DVL is induced. Kinases and other fac-
tors involved in this hyperphosphorylation event include 
casein kinase 1 (CK1), casein kinase 2 (CK2), PAR1, and 
β-arrestin (29,30). The phospho-residues are located along 
the DVL protein, including the conserved domains.

Negative regulation of DVL activity is accomplished 
through polyubiquitination by DVL-interacting proteins 
such as KLHL12, NEDL1, Dapper1, Prickle1, and inversin. 
Protein phosphatase 2A (PP2A) is also involved in the reg-
ulation of DVL activity. It can have a positive or negative 
influence, depending on which regulatory subunit realiz-
es the binding to DVL (1,4,7,8). Even deubiquitination of 
DVL by deubiquitinating enzyme (DUB) Usp14 is required 
for Wnt signaling (7) and these events can switch DVL be-
tween canonical and non-canonical pathways (8).

DVL and development

Insights into the mechanisms of Wnt action have emerged 
from several fields of research: genetics in Drosophila and 
Caenorhabditis elegans; biochemistry in cell culture; and 
ectopic gene expression in Xenopus embryos. Wnt signal-
ing is essential for mammalian embryogenesis (9,31) as 
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well. Many Wnt genes in the mouse have been mutated, 
leading to specific developmental defects. The Wnt path-
way acts as a regulator of cell patterning, proliferation, dif-
ferentiation, cell-to-cell communication, adhesion and mi-
gration, cell survival, and apoptosis. It is required for normal 
development of some organs and organic systems, in par-
ticular the central nervous system through synaptic rear-
rangements (32). The Wnt pathway regulates the normal 
development of the neural plate, neural tube, brain, spinal 
cord, and sensory and motor neurons (9,33,34). In addition 
to neural tissues, Wnt pathway is critical for vascular and 
cardiac systems development and also modulates osteo-
blast physiology (35,36).

Dsh gene family has a significant role in the broad spec-
trum of developmental processes (3,37). Dsh alleles were 
first discovered in Drosophila mutants whose marginal 
wing bristles were “deranged and sparse” (38), and hence 
the name dishevelled. The allelic locus was rediscovered 
later on when it was shown that dsh was an important seg-
ment polarity gene in the early Drosophila embryo. Dros-
ophila gene dsh was cloned in 1994 (39,40) and the first 
Xenopus homologue dvl in 1995 (41). The three murine 
homologues were cloned soon after (42-44), followed by 
cloning of three human DVL genes (3,17,18,43). The func-
tion of dvl homologues seems to have diverged among 
the vertebrates. The evolution of dvl homologues with 
their functional specificities is supported by the findings 
that in Xenopus, dvl1 and dvl2 homologues, but not dvl3, 
are necessary to mediate the Wnt-dependent signals that 
control neural crest specification. On the other hand, in ro-
dents Dvl2 and Dvl3 are involved in neural crest develop-
ment, but not Dvl1 (5). The lack of Dvl3 in mice affects the 
formation of the neural tube, heart, and inner ear (37). It is 
noteworthy that defects of these organs are much more 
severe when the mice are deficient in more than one Dvl 
family member. The role of Dvl1 and Dvl2 in somite seg-
regation has also been investigated revealing that lack of 
these genes causes skeletal malformations in mice (45). 
Since the protein expression patterns during mouse devel-
opment overlap, it seems that there are several develop-
mental processes in which all three Dvls are functionally 
redundant. It is still not clear whether Dvl´s role in develop-
mental processes is regulated through the canonical path-
way, noncanonical pathway, or both (37).

In human developmental disorders, DVLs are reported only 
as candidate genes involved in certain syndromes, for in-
stance the Schwartz-Jampel syndrome mapped to chro-
mosome 1p36-p34 (17) and Charcot-Marie-Tooth disease 

type 2A mapped to 1p36-1p35 (17). It is also speculated 
that DVL1 may have a role as a neural differentiation factor, 
which makes it a candidate gene for neuroblastomatous 
transformation. Bedell et al (46) suggested that DVL gene 
may play a role in the pathogenesis of the 1p36 deletion 
syndrome.

DVL and cancer

The potential medical importance of Wnt signaling path-
way has long been recognized in both human degener-
ative diseases and cancer. Many tumor types show high 
levels of beta-catenin and it is known that beta-catenin’s 
translocations to the nucleus indicate its acquisition of 
oncogenic activity. The mutations attributed to APC, axin, 
and beta-catenin, which encode components of the beta-
catenin destruction complex are very common in a variety 
of investigated tumors (2,8). The constitutive activation of 
the Wnt pathway can lead to cancer (10) and beta-catenin 
can be proclaimed an oncogene. Since DVL protein is 
known as the central mediator of Wnt signaling, its inclu-
sion in tumor formation has been under intensive inves-
tigation. DVLs are overexpressed in various tumor types, 
including lung cancer, prostate cancer, breast cancer, cer-
vical squamous cell carcinoma, and gliomas (47-51). How-
ever, the importance of individual DVLs in tumor prognosis 
is in general poorly defined.

The functional consequences of the DVL family protein ex-
pression in tumor etiology are still not clear and the data 
reported are controversial. The majority of reports (49,50) 
indicate DVL overexpression and amplification, but there 
are also reports (50) on gross deletions of DVL loci. In pri-
mary lung cancer DVL3 is overexpressed in non small cell 
lung cancer, implying that these events upstream of beta-
catenin are critical for activation of Wnt signaling (50). Sur-
prisingly, overexpression of DVL1 or DVL2 was not detect-
ed. DVL3 mRNA is significantly higher in pleural effusions 
from patients with adenocarcinoma, suggesting that it 
might be used as a marker of pleural micrometastasis (49).

DVL family proteins are overexpressed in primary lung can-
cers (52) and the expression levels of DVLs were signifi-
cantly higher in adenocarcinomas than in squamous cell 
carcinomas (48,53). The positive expression rates of DVLs 
are higher in stages III and IV tumors. Nodal metastases 
show higher expression levels of DVL1 and DVL3 than 
primary growths. However, the correlation with tumor 
prognosis has also not been established yet. Our inves-
tigations of DVL1 and DVL3 protein levels showed 
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overexpression in brain metastasis of lung cancers (54) 
(Figure 3). Although reports indicate DVLs location in the 
nucleus to be only occasional (53), our study on brain me-
tastases showed nuclear staining of both DVL1 and DVL3 
proteins (54).

Breast cancers show aberrant expression of the DVL1 gene 
(47). Amplification and up-regulation of DVL1 gene are in-
volved in breast carcinogenesis, especially in the accelera-
tion of tumor growth. The involvement of DVL in invasive 
ductal carcinoma of the breast was also reported by Prasad 
et al (55). Mizutani et al (56) got similar results in prostate 
cancer. Their sample of 20 primary prostate cancer showed 
significant overexpression of DVL1 (65%). Correlation be-
tween DVL1 expression and beta-catenin expression was 
also confirmed. DVL2 is overexpressed in human high-
grade gliomas, suggesting a role for active Wnt signaling in 
regulating the biology of these tumors (57). DVL1 is over-
expressed in over two thirds of primary cervical squamous 
cell cancers when compared to corresponding non-can-
cerous uterine squamous cell tissues (58). Subsequently, 
amplification and increased expression of DVL genes may 
play an important role in the development of a portion of 
human cancers through derangement of the Wnt signal-
ing pathway.

DVL is very much involved in invasion and metastasis of tu-
mors – the so called epithelial-to-mesenchymal transition 
(EMT). The occurrence of EMT during tumor progression 
resembles the developmental scenario and sheds light on 
important mechanisms governing metastasis, where non-
invasive tumor cells acquire motility and ultimately dis-

seminate to places distant from the primary site. Wnt 
signaling pathway has a particularly tight link with 

EMT. Moreover, the stabilization and nuclear accumula-
tion of beta-catenin can induce EMT (59,60) by activating 
the transcriptional repressors Snail and Slug that suppress 
E-cadherin expression thus inducing EMT (61). Moreover 
LEF1 when overexpressed leads to enhanced tumor inva-
siveness and induces EMT (62-64). Subsequently DVLs too 
are involved in tumor metastasis (60,65).

Conclusion and future perspectives

Ever since the first discovery of the Dsh allele in Drosophi-
la mutants, dishevelled genes and proteins have been as-
signed the central role in the mediation of Wnt signaling. 
The Wnt signal utilizes DIX and PDZ or PDZ and DEP do-
mains of DVL proteins to channel signal into canonical or 
non-canonical downstream pathways.

Recent data suggest that in the canonical pathway DVL 
is responsible for the disassembly of the beta-catenin de-
struction complex and recruitment of AXIN to the mem-
brane, where DVL forms large molecular supercomplexes. 
DVL is considered to be a key regulator that rescues cyto-
plasmic beta-catenin from degradation.

DVL activity is dynamically regulated by phosphorylation, 
ubiquitination, and degradation and it seems to be de-
pendable on the cellular context as well. Constitutive ac-
tivation of the Wnt pathway can lead to cancer. The mu-
tations attributed to APC, axin, and beta-catenin, which 
encode components of the beta-catenin destruction com-
plex are very common in a variety of tumors.

Therefore, molecular components of Wnt pathway (like be-
ta-catenin for instance) are relevant biomarkers helpful in 

Figure 3. (A) Brain metastasis immunohistochemically stained for detection of dishevelled 3 (DVL3) protein (monoclonal mouse 
anti-human DVL3, Santa Cruz Biotehnology, Dallas, TX, USA), showing membranous staining. (B) Glioblastoma sample immunohis-
tochemically stained for detection of dishevelled 1 (DVL1) protein (monoclonal mouse anti-human DVL1, Santa Cruz Biotehnology). 
(C) Control staining.
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better diagnosis and treatment. DVLs are overexpressed in 
various tumor types, including lung cancer, prostate can-
cer, breast cancer, cervical squamous cell carcinoma, and 
gliomas. However, the importance of individual DVLs in tu-
mor prognosis still needs elucidation. The approaches to 
decrease DVL expression, as well as agents blocking select-
ed specific DVL interactions, may be of particular interest 
as potential targets for therapeutic interventions.
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