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ACTIVITY-DEPENDENT NEUROPROTECTIVE PROTEIN (ADNP)
INTERACTS WITH MICROTUBULES

Neuronal plasticity, key to brain function in health, is impaired in neurodevelopmental,
neuropsychiatric and neurodegenerative diseases. Neuronal plasticity depends on an intact
cytoskeletal system. Here, we focus on recently discovered as well as “classical” cytoskeletal proteins
including activity-dependent neuroprotective protein (ADNP), Tau and microtubule end binding
proteins (EBs), impacting neuroplasticity and neuropathology.

Original structure-function analysis of astrocyte-secreted protein fragments identified
femtomolar-acting neuroprotective peptide moieties VLGGGSALLRSIPA (Brenneman and Gozes,
1996), SALLRSIPA (Brenneman et al., 1998) and NAPVSIPQ (Bassan et al., 1999), with NAPVSIPQ
(NAP) being a fragment of ADNP (Bassan et al., 1999). However, ADNP does not only provide
neuroprotection through the NAP motif, but is essential for brain formation, with complete Adnp
gene knockout in mice resulting in neural tube closure failure and fetal death. Furthermore, NAP
promotes neural tube closure in the face of alcohol intoxication (Chen et al., 2005). Thus, the
mechanism of ADNP protection, potentially through the potent NAP motif, is of interest.

In search for NAP binding partners, we subjected mouse brain protein extracts to affinity
chromatography with NAP as a ligand and identified tubulin as an interacting partner (Divinski
et al., 2004, 2006). These results were coupled to NAP promoting changes in microtubule
structure and protecting against microtubule disassembly induced by nocodazole in vitro (Gozes
and Divinski, 2007) and colchicine in vivo (Jouroukhin et al., 2013). Further data suggested
NAP protection against Zinc intoxication, which was originally linked to microtubule disruption
(Divinski et al., 2004, 2006) and increased specificity to beta III tubulin, or to neuronal cells
(Divinski et al., 2006; Holtser-Cochav et al., 2006). Parallel studies identified reduced axonal
transport (Amram et al., 2016), increased tau hyperphosphorylation and tau depositions as
a consequence of Adnp haploinsufficiency (Vulih-Shultzman et al., 2007). However, direct
interaction of NAP with pure tubulin was not confirmed (Yenjerla et al., 2010). Thus, the discovery
of (1) the requirement for the SIP motif on NAPVSIPQ and related peptides for neuroprotection
(Wilkemeyer et al., 2003), (2) the SxIP microtubule end binding protein 1 (EB1) interacting motif
as a microtubule tip localization signal (Honnappa et al., 2009; Jiang et al., 2012), and (3) EB3 as
essential for dendritic spine formation(Jaworski et al., 2009), directed research toward ADNP-NAP-
EB1/3 interactions. EB1/3 proteins are the master regulators of the microtubule plus-end tracking
proteins (+TIPs), which accumulate at the growing ends of microtubules, showing a “comet”
pattern at microtubule tips (Lansbergen and Akhmanova, 2006).
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THE IDENTIFICATION OF THE NAP/ADNP
EB-DIRECT INTERACTION AND EB
REQUIREMENT FOR NAP ACTIVITY

To establish a direct connection between ADNP and the EB
family of proteins, specific immunoprecipitation experiments
were carried out, showing direct interactions and enhancement
of EB3-ADNP as well as other microtubule plus-end protein
interactions by NAP (Oz et al., 2014). Further affinity
chromatography with NAPVSIPQ and recombinant EB proteins
(Oz et al., 2014) showed direct interaction with NAP and
identified displacement with NAPVSKIPQ (SxIP=SKIP), but not
with NAPVAAAAQ. These studies were further elaborated to
show direct interactions in COS-7 cells expressing fluorescent
EB3 and subject to fluorescent-NAP. Finally, silencing of
EB1 and EB3, but not of EB2, abolished NAP protection
in the neuronal model pheochromocytoma (PC12) against
Zinc intoxication (Oz et al., 2014), and NAP increased
PSD-95 expression in dendritic spines, which was inhibited
by EB3 silencing (Oz et al., 2014). Together, these studies
implicate ADNP/NAP in synaptic plasticity, involving EB
proteins (Jaworski et al., 2009; Oz et al., 2014). While these
results explained the previously observed NAP interaction
with microtubules, bringing into focus the SIP motif (Gozes
et al., 2016; Quraishe et al., 2016) and suggesting an amplifier
effect at the microtubule tip, the molecular mechanism of
increased Tau hyperphosphorylation, as a consequence of
ADNP deficiency and protection by NAP against tauopathy
(Vulih-Shultzman et al., 2007; Matsuoka et al., 2008; Shiryaev
et al., 2009; Jouroukhin et al., 2013), still required further
investigations.

TAU REGULATES THE LOCALIZATION
AND FUNCTION OF EB1 AND EB3 IN
DEVELOPING NEURONAL CELLS AND
ANTAGONIZES EB TRACKING AT
MICROTUBULE ENDS THROUGH A
PHOSPHORYLATION-DEPENDENT
MECHANISM

Tau and EBs were shown to partially co-localize at extending
neurites of N1E-115 neuroblastoma cells and axons of primary
hippocampal neurons, confirmed by immunoprecipitation and
by tau/EB1 direct in vitro pull-down assays (Sayas et al., 2015).
Fluorescence recovery after photobleaching assays performed
in neuroblastoma cells corroborated tau modulation of EB3
cellular mobility (Sayas et al., 2015). Another excellent report
shows that Tau and EBs form a complex via the C-
terminal region of EBs and the microtubule-binding sites of
Tau and further show that these two domains are required
for the inhibitory activity of Tau on EB localization to
microtubule ends. Additionally, their results show that the
phosphomimetic mutation S262E within Tau microtubule-
binding sites impairs EB/Tau interaction and prevents the
inhibitory effect of Tau on EB comets (Ramirez-Rios et al., 2016).

The question then arose if there is an EBs/Tau-ADNP/NAP
connection.

ADNP/NAP DRAMATICALLY INCREASE
MICROTUBULE END-BINDING
PROTEIN-TAU INTERACTION: A NOVEL
AVENUE FOR PROTECTION AGAINST
TAUOPATHY

We have recently demonstrated that NAP augmented EB1
and EB3 comet density, amounts, length and speed in the
N1E-115 neuroblastoma neuronal model. NAP enhanced EB3
homodimer formation, while decreasing EB1-EB3 heterodimer
content and driving EB1- and EB3-Tau interactions (dramatic
20-fold increases), leading to recruitment of EB1/EB3 and Tau
to microtubules under zinc intoxication, which has previously
been shown to be linked to Tau hyperphosphorylation (Ivashko-
Pachima et al., 2017). As indicated above, our previous results
showed that while NAP protected neuronal-like cells against
oxidative stress, it did not protect NIH3T3 fibroblasts (Divinski
et al., 2004). Indeed, NAP did not protect NIH3T3 cells against
zinc intoxication, unless these cells were transfected with Tau.
Interestingly, othermicrotubule-associated proteins (MAPs)may
replace Tau; thus, EB-Tau (MAPs) interaction is identified
as a novel target for endogenous ADNP neuroprotection
(Ivashko-Pachima et al., 2017). Importantly, as indicated,
phosphorylation of S262 impaired EB/Tau interactions and
our previous data have directly shown that NAP inhibits tau
hyperphosphorylation at the S262 site (Jouroukhin et al., 2013)
in multiple tauopathy models (Magen et al., 2014), with this
phosphorylation site being linked to impaired axonal transport
and neurodegeneration (Iijima-Ando et al., 2012), partially
solving the NAP/ADNP protective activity against tauopathy
(Figure 1). Future studies encompassing the impact of the NAP-
EBs-Tau interaction on Tau aggregation (Gozes et al., 2014a,b),
mitochondrial function (Esteves et al., 2014) and autophagy
(Sragovich et al., 2017) are planned and will contribute to
clarify the relevance of this protein complex in neuroprotection
in the context of tauopathies and other neurodegenerative
diseases.

THE ADNP SYNDROME

The ADNP syndrome (Helsmoortel et al., 2014), a recently
described autism spectrum disorder syndrome driven by
heterozygous, mostly protein truncating, de novo mutations in
ADNP (Gozes et al., 2015, 2017a,b), is a subject of our future
studies. These studies are aimed at connecting protein structure
to function, with the human condition being characterized with
intellectual disability, global developmental delays (including
motor delays) and facial dimorphisms. Interestingly, ∼80% of
the ADNP children can be identified by premature deciduous
tooth eruption, a unique early diagnostic marker. Teething
and bone/brain formation converge on mechanisms linked to
ubiquitin impacted by the cytoskeleton, paving the path to future
research. From a clinical perspective, Coronis Neurosciences
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FIGURE 1 | The illustration shows the mechanism of NAP/ADNP neuroprotection against tauopathy in the disease state. In the healthy state, ADNP enhances axonal

transport and synaptic plasticity. ADNP has two adjacent SIP motifs, one within the NAP sequence and one upstream (Bassan et al., 1999; Zamostiano et al., 2001).

A NAP—related peptide SKIP (encompassing the SxIP motif), enhances axonal transport in Adnp haploinsufficient mice, probably through the same mechanism

(Amram et al., 2016). In tissue culture cells, NAP also enhances dendritic spine formation (synaptic plasticity) through an EB3-depedent mechanism (Oz et al., 2014).

(www.coronisns.com) is developing NAP (CP201) (Magen and
Gozes, 2013, 2014) for the ADNP syndrome.
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