
RESEARCH ARTICLE

Dodecylphosphocholine Micelles Induce

Amyloid Formation of the PrP(110-136)

Peptide via an α-Helical Metastable

Conformation
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Abstract

A peptide encompassing the conserved hydrophobic region and the first β-strand of the

prion protein (PrP(110–136)) shown to interact with the surface of dodecylphosphocholine

micelles adopts an α-helical conformation that is localized below the head-group layer. This

surface-bound peptide has a half-life of one day, and readily initiates the formation of amy-

loid fibrils. The presence of the latter was confirmed using birefringence microscopy upon

Congo red binding and thioflavin T-binding induced fluorescence. The observation of this

metastable α-helical conformer provides a unique snapshot of the early steps of the inter-

conversion pathway. These findings together with the body of evidence from the prion litera-

ture allowed us to propose a mechanism for the conversion of PrPC to amyloid material.

Introduction

Transmissible spongiform encephalopathy (TSE) diseases, also known as prion diseases, are

associated with the presence of amyloid deposits in brain tissues resulting from the misfolding

of the prion protein. The transmissibility of prion diseases is a unique feature of this class of

neurodegenerative diseases, and it is mediated by a misfolded intermediate of the prion pro-

tein. Prion diseases, including Creutzfeldt-Jakob disease (CJD) and Gerstmann-Sträusler-

Scheinker syndrome (GSS) are classified in three categories: sporadic (with no known environ-

mental sources), familial (associated with mutations of the prion protein) and transmitted

(from known environmental sources)[1].

The prion protein is a cell surface glycoprotein anchored to the membrane via a glycosyl-

phosphatidylinositol anchor. The mature protein in humans contains 208 amino acids. The N-

terminal half of the protein is unstructured in solution and contains eight octa-repeat regions

and a highly conserved region (residues 112–128) referred to as the conserved hydrophobic

region (CHR). The other half of the polypeptide is a folded globular domain composed of a

short β-sheet and three α-helices in which the last two helices are linked via a disulfide bridge.

Glycosylation sites are located on helix two and three at residues Asn181 and Asn197.
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A detailed mechanism describing the conformational change from the normal cellular form

PrPC, which is mainly α-helical, to the β-rich conformation, denoted PrPSc, has yet to be devel-

oped but elements of the puzzle have been identified. One of them is the involvement of the

conserved hydrophobic region in the conversion process. Antibodies targeting PrP(90–120)

bind with higher affinity for PrPC compared to PrPSc. This suggests that the solvent exposed

CHR in PrPC is participating in the β-structure of the amyloid scaffold[2]. In addition, deletion

of this region prevents formation and propagation of PrPSc [3–5]. Aggregated synthetic pep-

tides of this region are known to cause neurotoxicity[6]. The hydrophobic character of the

CHR and the localization of PrPC on the cell surface have directed investigations toward mem-

brane interactions as possible mediators of PrPSc formation. Mutations that enhance the

hydrophobic character of the CHR domain (such as G114V and A117V associated with the

GSS syndrome, or the artificial mutations KH-> II [K110I/H111I] and 3AV [A113V/A115V/

A118V]) accelerate the onset of neurodegeneration when expressed in transgenic mice[7, 8].

Interactions between the prion protein, the above mutants, and membrane mimetics, such as

bicelles[9], and dodecylphosphocholine (DPC) micelles[10], have been shown to produce

amyloid fibrils. A detailed structural study of huPrP(110–136) showed the high propensity of

this domain to adopt a curved α-helical conformation that is asymmetrically inserted in the

detergent micelles[11]. This study suggested that the relative position of the helix within the

micelle resulted from a salt bridge between the positively charged guanidine group of the ter-

minal arginine (R136) and the negatively charged phosphate moiety of the detergent head-

group. Finally, a peculiar observation was made. At high peptide-to-micelle ratios, huPrP

(110–136) was bound to the micelle surface and it was localized at the hydrophobic-headgroup

interface. Here we report that this observation led to the discovery of a key intermediate in the

pathway to the conversion of PrPC to amyloid.

Material and Methods

Sample preparation and NMR spectroscopy

The preparation of 13C, 15N huPrP(110–136) NMR sample in DPC micelles and the details of

NMR data collection, processing and analysis have been described elsewhere[11]. For this

study a total of 28 liters of doubly labelled (13C,15N) and 25 liters of 15N-labelled of bacterial

cultures were needed to obtain about 20 mg of purified 13C,15N-huPrP(110–136) and about

12 mg of 15N-huPrP(110–136). Each NMR samples contained 2.8 mg of labelled peptide

(2mM) and 2.5 mg of DPC (14 mM) in 0.5 mL of 10 mM NaPi pH 7.5. Data acquisition of cor-

relation experiments using Non-Uniformed Sampling schemes[12–14] was attempted without

significant increase in signal intensity or the detection of new correlations. All spectra were ref-

erenced relative to DSS and were processed using NMRPipe[15] and analysed with NMRview

[16]. Prediction of F and C backbone torsion angles and the order parameter (S2) from alpha

carbon chemical shift was carried out using the web-based version of TALOS+[17, 18] from

the National Institute of Health NMR server (http://spin.niddk.nih.gov/bax/nmrserver).

Preparation and Congo Red staining of amyloid fibrils

The protocol used for Congo red staining was based on Prusiner[19] and Lührs[9]. The aggre-

gated material (white solid) collected from NMR samples containing 1mM of labelled 13C-15N-

or 15N-huPrP(110–136) and 5.6 mg/mL (14 mM) of DPC was used for these experiments. The

aggregates were resuspended by agitation and then mixed with an equal volume of 50 μM

Congo red (Sigma-Aldrich, Saint-Louis, MO) staining solution and 10 mM sodium phosphate

pH 7.5. The mixture was incubated with agitation at room temperature for 10 minutes before

separation of the solid fraction by centrifugation. The precipitate was red while the supernatant
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was colourless. The pellet was washed three times with an equal amount of buffer (10 mM

sodium phosphate, pH 7.5) to remove non-specific staining. Stained aggregates were transferred

to microscopy slides, previously rinsed with ultrapure water. A cover glass was then placed over

and sealed on the edges with nail polish to prevent drying of the sample.

Microscopy

Analysis and photographs were obtained using a Zeiss Axiophot microscope equipped with an

Axiocam camera (Zeiss, Thornwood, NY) and two polarizers (Chroma Technology Corp, Bel-

lows Falls, VT). Birefringence was observed by placing the sample between two orthogonally

positioned polarizers. Rotating the sample by 45o was carried out to show that the light was

refracted in different direction depending of the amyloid fibril orientation. Photographs were

taken after calibration of the microscope with black and white reference.

Binding of Thioflavin T

Aggregated NMR samples and sample components (detergent, peptide and buffer) were tested

for thioflavin T (ThT) binding fluorescence, in order to confirm the presence of amyloid-like

material[20, 21]. Samples of 2.8 mg/ml (7 mM) and 28 mg/ml (70 mM) of DPC micelles, and

1mg/ml huPrP(110–136) in 10 mM sodium phosphate pH 7.6 were tested. Sufficient amounts

of these samples were added to a 50 μM solution of ThT (Sigma-Aldrich, Saint-Louis, MO) to

obtain a final concentration of 40 μM, and incubated for 20 min at room temperature. The

emission spectrum of ThT was recorded using a SpectraMax i3 Multi-Mode Microplate Detec-

tion Platform running SoftMax Pro v6.3 software (Molecular Devices, Sunnyvale, CA). The

excitation wavelength used was 440 nm and the emission spectrum was recorded from 465 to

505 nm.

Results

The initial intent of this study was to characterize the conformation of huPrP(110–136) interact-

ing at the surface of DPC micelles (red signals in Fig 1) observed in our previous report[11]. The

spread of resonances for this surface species indicated that the conformation was structured. The

NMR data collection was impeded by a significant loss of signal resulting from the precipitation

of the peptide. Only a single 3D data set (HNCACB or CBCACONH) could be recorded during

the lifetime of a sample. Several attempts were made to collect various 3D-HNCA 3D-HNCOCA

in order to obtain a complete set of data for a complete assignment, each time burning 2.8 mg of

labeled peptide. Nevertheless, we could obtain unambiguous backbone assignments for 17 out of

the 26 residues. Considering that the peptide is very soluble in water, the presence of a white pre-

cipitate readily suggested the formation of amyloid-type material. Also, a 2D-HSQC spectrum

recorded after recording a three-dimensional experiment (~48h) showed that the surface-bound

species had practically disappeared while most of the signal intensities of the inserted peptide

seemed less affected. A determination of the half-life of the sample by measuring a time course

of signal decay (Fig 2) showed that after only 24h, nearly 80% of the signal intensity of the surface

species has disappeared, while the micelle-inserted peptide retained an average of 70% of its sig-

nal intensity. Most of the signal loss was observed on the first day.

In an attempt to complete the assignment, we have recorded triple resonance experiments

using the non-uniform sampling approach (NUS), with the hope of gaining a higher overall

signal-to-noise ratio per unit time and detect unobserved correlations. Two experiments,

3D-HNCO and 3D-CBCACONH, were recorded with the NUS protocol from the manufac-

turer library sequences with a sparse sampling of 25, 35 and 50% of the total data points in the

indirect dimension. After reconstruction and processing, no new inter-residue correlations
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were observed. Using chemical shifts arguments, and proximity of a given amide pair reso-

nance on the HSQC between the two species; we could deduce four more assignments.

Conformation and localization of the surface-bound peptide

With a 24 hours sample half-life, a high-resolution structure of the surface-bound peptide

could not be determined. A rapid inspection of the secondary chemical shifts suggested that

NOE measurements would only waste more labeled peptide without providing geometrically

significant distance constraints. Therefore a model was produced that took into accounts the

secondary chemical shifts of 13Cα (Fig 3A), and a prediction of the backbone torsion angles

(F,C) and an associated order parameter (S2) with the available assignments using TALOS+

(Fig 3B). Overall, the surface-bound peptide displays secondary shifts that are almost as large

(average Δδ13Cα = 1.5 ppm) as those measured for the corresponding residues in the sequence

of the micelle-inserted α–helical peptide (average Δδ13Cα = 3.0 ppm) at the C-termini half of

Fig 1. Two-dimensional NMR spectrum of micelle-bound huPrP(110–136). The resonance assigned 2D 1H-15N HSQC spectrum at 600 MHz of 2 mM
13C,15N-huPrP(110–136) in 10 mM sodium phosphate pH 7.6 with 14 mM DPC recorded at 37˚C. The black and red contours correspond to the micelle-

inserted and the surface-bound species, respectively.

doi:10.1371/journal.pone.0168021.g001
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the peptide, while residues of the palindromic sequence (113-AGAAAAGA-120) show some-

what smaller values. These clearly suggest that the peptide adopts an α–helical conformation

with a looser fold upon binding to the micelle surface. This is also supported by the order

parameter (S2) predicted by TALOS+. The order parameter predicted for residues of the sur-

face-bound peptide that are less exposed to the paramagnetic agent have an average S2 of 0.85,

while residues that are more exposed or in the polar layer order parameter falls within 0.65–

0.75. In comparison, residues in the hydrophobic core of the micelle-inserted peptide have

higher values of S2 of 0.88. The significance of this looser fold may simply be that the confor-

mation is made of helical domains with flexible links between them. Predictions of S2 values

coupled with the near-zero secondary shifts for Val-122 and the lack of a 13Cα signal for V-121

suggests a random coil conformation that is dynamic.

Unfortunately, the short lifetime of samples prevented a more complete and rigorous char-

acterization of the peptide motions. This observation of transition from random coil in solu-

tion to an α–helical conformation at the membrane surface has been well characterized in

other amyloidogenic peptide such as α-synuclein[22–24]. To illustrate the NMR data, a model

of the surface-bound peptide was generated manually using Chimera[25] by using the Δδ13Cα
data and the predicted backbone torsion angles (F,C) (Fig 4). The peptide was also manually

positioned on the micelle based on the PRE data from our previous study[11] using the α–heli-

cal micelle-inserted peptide model as a depth gauge.

Fig 2. Decrease of the 1H-15N Signal intensity of the two conformers in the presence of DPC micelles as a function of time. Signal curves that could

not be assigned unambiguously where labeled Unassigned.

doi:10.1371/journal.pone.0168021.g002
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Fig 3. Analysis of the alpha carbon chemical shifts of the micelle-bound peptide (A) Carbon alpha secondary chemical shift indicates that

the surface population rapidly adopts a flexible alpha-helical conformation prior to aggregating and forming amyloid-like material.Δδ13Cα on the

left y-axis and the order parameter S2 in the right y-axis are displayed as a function of the amino acid sequence for the micelle-inserted population

and the surface population in black and red, respectively. Residues that could not be sequentially assigned unambiguously but are positioned in

regards to their close proximity in amide chemical shifts are displayed in light red to further show that the alpha helical conformation is observed all

over the peptide sequence. (B) The backbone dihedral angleΦ andΨ (and their standard deviation) generated by TALOS+ are displayed as a

function of the amino-acid sequence for the micelle-inserted (left) and the surface population (right).

doi:10.1371/journal.pone.0168021.g003

Fig 4. Localisation of the surface-bound peptide to dodecylphosphocholine micelles. The surface-bound population (a and b) lies at the hydrophobic-

headgroup interface of the micelle. The depth of the model in the micelle was determined with PRE titration data (c) to manually position both conformers in a

DPC micelle by using a color-coded depth gauge, where dark blue represents the centre of the micelle. Note that for clarity, the inserted peptide, which must

be present for the surface-bound species to bind, is not displayed in panels ‘a’ and ‘b’.

doi:10.1371/journal.pone.0168021.g004
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Excess of huPrP110-136 is turned over to amyloid in presence of DPC

micelles

The white precipitate in NMR samples was tested for the presence of amyloid fibrils. Micro-

scopic observation under cross-polarized light of the collected peptide aggregates after Congo

red staining was birefringent (Fig 5A), revealing similar physicochemical properties as

reported for the amyloid produced from full length PrP protein interacting with phospholipids

bicelles[9] and the amyloid depositions in TSE-infected brains[1].

Birefringence could be observed in different area revealed by the orientation of the crossed

polarizers. Three microscopic observations were obtained from three different sample prepa-

rations in order to confirm the presence of amyloid material. Considering that optical micros-

copy observations of birefringence can be difficult to obtain, and that it may not be sufficient

Fig 5. Surface-bound peptide forms amyloid (A) Congo red staining and (B) thioflavin T binding induced fluorescence of huPrP(110–136) aggregates.

The aggregated material generated in NMR samples shows birefringence under cross-polarized light, indicative of amyloid-like material. Thioflavin T is a dye

that becomes fluorescent upon binding to amyloid material.

doi:10.1371/journal.pone.0168021.g005
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to ascertain the presence of amyloid aggregates with this approach[26], we obtained further

confirmation with the measurement of the extrinsic fluorescence of thioflavin T (Th-T) upon

binding to amyloid fibrils[26, 27]. The emission spectrum (Fig 5B) clearly shows that amyloid

fibrils were formed in the presence of DPC micelle under the same sample conditions used for

NMR spectroscopy. Also, the average emission over 465–505 nm correlates to the amount of

material used in the preparation of the NMR sample. The average intensities of 44X105 RU for

the sample containing 2 mM peptide nearly doubled to 77X105 RU for the 4 mM NMR sample,

indicating that all the excess peptide (i.e. not inserted into the micelle but bound to the surface)

was converted into amyloid material. In contrast, following excitation at 440 nm, no emission

was recorded for the free peptide or DPC micelles as a result of a lack of binding of the dye.

Discussion

The NMR spectrum in Fig 1 shows that, at high peptide-to-detergent ratio, the water-soluble

huPrP(110–136) peptide can interact in two different ways with DPC micelles. HuPrP(110–

136) inserts into the detergent micelles while adopting a stable α-helical conformation, or it is

localized at the headgroup-hydrophobic core interface of an occupied micelle (Fig 4) in a

metastable helical conformation prior to the formation of amyloid fibrils.

The micelle-huPrP(110–136) interactions can be explained in the following terms. Back-

bone amides and carbonyls interactions with the bulk water are easily disrupted in favour of

intra-peptide hydrogen bonds during helix formation. This conformation must be stabilised

by the micelle environment since all side-chains between residues 111 and 132 are non polar.

If the peptide is allowed to fully insert in the micelle, it becomes trapped into a very stable α-

helical conformation. In fact, NMR samples made for structural studies of this species were sta-

ble for more than a year[11]. In high peptide-to-micelle ratio situation, the peptide readily

populates the inside of the micelle with the inserted α-helical conformation, while the excess

stays at the headgroup-hydrophobic-core interface. In this environment, hydrophobic and

hydrogen bond interactions are available to stabilise this looser conformation. It is noteworthy

that Supattapone has reported that various classes of host-encoded cofactor molecules such as

phosphaditylethanolamine and RNA molecules are required to form and maintain the specific

conformation of infectious prions[28]. Indeed, analysis of the Cα chemical shift, and its associ-

ated predicted order parameters, indicates that the conformation is made of two α-helical

domains with a more flexible α-helical segment within the palindromic sequence

(113-AGAAAAGA-120), and a well-folded helix at the C-terminal (residues 123–136). This

conformational behaviour at the micelle surface shares striking similarities with α-synuclein at

the surface of SDS-micelles[22, 24]. Upon interaction with detergent micelles, the intrinsically

disordered α-synuclein folds into two helices where the lowest values of 13Cα secondary shifts

are correlated with the flexible residues in the linker between the N- and C-helices segments

[24] from a generalised order parameter determined from backbone relaxation measurements.

Also, a Gly-Ala-Val motif is present in α-synuclein at the junction of the two helical domains

and has been proposed to be required for fibril formation[29]. This motif straddles the end of

the N-terminal helix and includes the valine in the helix linker (119-GAV-121). But, in com-

parison with α-synuclein, the surface-bound species of huPrP(110–136) is transitory. This sur-

face-bound species is a metastable intermediate that has two possible fates. The peptide first

inserts into the micelle and then, if the micelle is already populated with an inserted peptide, it

converts to β-sheets to form amyloid fibrils with other surface peptide molecules. It is notewor-

thy that while the inserted peptide is very stable, the process of fibril formation involving the

surface-bound conformation can drive the inserted α-helix out of the micelle, converting a

part of that population to β-amyloid (Fig 2). The amount of the inserted α-helix decreases
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until the surface-bound population has been expended. This indicates that the surface helix is

a very reactive species that drives the formation of the products, β-amyloid fibrils.

PrP(110–136) peptide vs full length prion protein

The membrane interactions observed with huPrP(110–136) involve the conserved hydropho-

bic region and arginine-136 via a probable salt-bridge with the detergent phosphocholine

headgroup[11]. The lack of micelle interactions under similar conditions (pH 7.6) with a

shorter peptide, huPrP(110–129), supported the requirement for this salt-bridge. The mem-

brane interactions observed with huPrP(110–136) are not favoured with the full-length wild-

type prion protein. The small two-strand β-sheet involving residues 129-ML-130 in the peptide

acts as a safety catch to hinder two interactions: the formation of the salt-bridge (R136), and

the membrane interaction of the CHR. Factors that can loosen or release the safety catch, thus

lowering this barrier, could allow membrane interaction leading to a reactive intermediate that

would readily convert and participate in the formation of amyloid fibrils. A series of the GPI-

anchored prion protein models was generated to illustrate the proposed mechanism of interac-

tion with the membrane surface that is based on our observations (Fig 6).

This mechanism provides an explanation for the observed pathological effects of mutations

(KH-> II [K110I/H111I] and 3AV [A113V/A115V/A118V])[7]. The proposed concept of the

safety catch is further supported by NMR studies of DPC micelles interactions with wild type

mouse-PrP(90–231), and mutants[10]. The wild type showed no chemical shifts changes

(Δδ13Cα) in the presence of DPC micelles while the KH->II and 3AV mutants interacted

strongly leading to precipitation of the samples, thus preventing complete characterisation of

the interactions. Mutation A117V, associated with the Gerstmann-Straüssler-Scheinker syn-

drome, produced a number of chemical shift changes (Δδ13Cα) upon addition of DPC micelles.

Conclusion

The interaction between DPC micelles and huPrP(110–136) resulted in the insertion of the

peptide into the detergent micelle with an α-helical conformation. Once the core of the micelle

is occupied, excess peptide could then interact with the micelle surface resulting in the forma-

tion of a metastable intermediate. The half-life of this species was sufficiently long to model

the peptide-micelle interaction, thus giving a snap-shot at the onset of the conversion pathway

of huPrP(110–136) to amyloid. These observations indicates that the normal membrane-

anchored prion protein can undergo a drastic conformational change leading to the formation

of amyloid plaques provided that appropriate conditions are encountered. While the peptide is

unhindered, we are proposing that the full-length protein is held back by a simple safety catch

that prevents the interactions observed here. Therefore, conditions suitable for the formation

of a metastable intermediate can be the increased hydrophobicity through mutations in the

palindromic region, low pH and electrostatic interactions, both have been observed in in vitro
studies[9, 28]. Here, we have opened a door that has been kept shut, therefore shedding light

in the mechanism of conversion. We trust that the observation of the metastable conformer

Fig 6. A model of huPrP(90–230) [1QLX.pdb] at the surface of a DMPC bilayer[30] attached with a GPI

anchor. (A) The normal huPrP(90–230) at the membrane surface. Residues 110–136 are coloured in

magenta. The β-sheet is held by three H-bonds between 129-MLG-131 and 161-VYY-163 that acts as a

safety catch (coloured in light blue). (B) Membrane interactions can take place if mutations known to increase

hydrophobicity of the CHR are present. These would loosen or break the β-sheet allowing the segment 110–

136 to interact with the surface, including the formation of a salt-bridge between R136 and the phospholipid

headgroup. (C) Once this metastable conformer is formed, it readily interacts with other such conformers to

form amyloid fibrils.

doi:10.1371/journal.pone.0168021.g006
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can be a starting point to molecular dynamic studies that will venture farther into this

unknown conversion pathway.
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