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The regulation of apoptosis in kidney development:
implications for nephron number and pattern?
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Apoptosis is essential to remodel developing structures and eliminate superfluous cells in
a controlled manner during normal development, and continues to be an important compo-
nent of tissue remodeling and regeneration during an organism’s lifespan, or as a response
to injury. This mini review will discuss recent studies that have provided insights into the
roles of apoptosis in the determination of nephron number and pattern, during normal
and abnormal kidney development. The regulation of congenital nephron endowment has
implications for risk of chronic kidney disease in later life, whereas abnormalities in nephron
pattern are associated with congenital anomalies of the kidney and urinary tract (the leading
cause of renal disease in children). Tight regulation of apoptosis is required in normal renal
morphogenesis, although many questions remain regarding the regulation of apoptosis by
genetic, epigenetic, and environmental factors, in addition to the functional requirement
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Apoptosis is a process used by multicellular organisms to dispose
of unwanted cells in a controlled manner that minimizes damage
and disruption to neighboring cells [reviewed in Ref. (1)]. In the
context of development, apoptosis is an essential component in the
establishment of tissue architecture, and serves to both remodel
developing structures to their mature form and ablate superfluous
cells [reviewed in Ref. (2)]. Moreover, apoptosis plays a crucial
role in tissue remodeling and regeneration that occurs constitu-
tively, or in response to insult or injury, throughout the lifespan of
vertebrates. Thus, dysfunctions in apoptosis can manifest as devel-
opmental abnormalities, and in adult pathologies such as cancer
or degenerative disease.

In the genitourinary tract, the most obvious examples of a
requirement for apoptosis during development include the regres-
sion of the pronephros and the selective loss of portions of the
mesonephros in females during kidney development (3, 4). In
addition to these examples, studies have implicated apoptosis more
generally in determining nephron number and pattern. Since the
mammalian kidney is unable to compensate for nephron loss due
to renal injury by the de novo generation of nephrons, the number
of nephrons generated at birth in any one individual is thought
to be an important determinant of adult kidney health (5, 6).
In keeping with this concept, reduced nephron number has been
associated with hypertension and chronic kidney disease in human
beings (7, 8). Moreover, the function of the mammalian kidney is
critically dependent on the complex structural arrangement of
multiple cell types in the nephron (or nephron pattern) within
the kidney itself. This review will discuss recent studies that have
provided insights into the roles of apoptosis in the determination
of nephron number and pattern during normal and abnormal
kidney development.

of different components of the apoptotic pathway.

Keywords: kidney development, apoptosis, nephron number, nephron pattern, cystic kidney disease

THE MECHANICS OF APOPTOSIS

Cells undergoing apoptosis are characterized by a series of dis-
tinct morphological events (cell shrinkage and retraction from
neighboring cells, blebbing of the plasma membrane, and cellu-
lar fragmentation into apoptotic bodies) that ultimately result in
these cells being rapidly engulfed by phagocytes (9). These events
are accompanied by subcellular changes, such as nuclear conden-
sation and DNA fragmentation in apoptotic cells. Together, these
morphological changes are thought to distinguish specific cells for
removal in a controlled fashion, without the activation of inflam-
matory cells (in contrast to cell death attributed to necrosis). A
wide variety of normal and pathological stimuli have been identi-
fied that trigger apoptosis, and are thought to do so through two
pathways: the intrinsic and the extrinsic pathways.

Activation of the intrinsic pathway is regulated via complex
interactions between the pro- and anti-apoptotic members of the
B-cell lymphoma 2 (Bcl2) family of proteins, and it is thought that
it is the balance between these factors that determines whether a
cell will undergo apoptosis (Figure 1A) [reviewed in Ref. (10)].
The proapoptotic Bcl2 family proteins are divided into effec-
tor proteins (Bax, Bak), which are required for mitochondrial
outer membrane permeabilization, and the BH3-only proteins,
which either interact with the anti-apoptotic Bcl2 members, or
the effector proteins. The anti-apoptotic Bcl2 family members
inhibit apoptosis by binding proapoptotic Bcl2 family members
and activated Bax or Bak. Mitochondrial outer membrane per-
meabilization leads to the release of proapoptotic proteins from
the mitochondrial intermembrane space, and is the crucial event
that drives subsequent activation of caspases via a protein complex
termed the apoptosome. The eventual outcome is activation of the
executioner caspases, 3 and 7, and subsequent apoptosis.
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FIGURE 1 | Diagram of intrinsic and extrinsic pathways of apoptosis.

(A) In the intrinsic pathway, the proapoptotic BH3-only family members
activate Bax or Bak, leading to mitochrondrial outer membrane
permeabilization, which drives formation of the apoptosome, activation of the
executioner caspases, 3 and 7, and subsequent apoptosis. The proapoptotic
BH3-only proteins are inhibited via interactions with the anti-apoptotic Bcl-2

family of proteins. (B) In the extrinsic pathway, ligands such as Fas, tumor
necrosis factor (TNF), or tumor necrosis factorrelated apoptosis-inducing
(TRAIL) ligand bind to death receptors. This results in the recruitment of
Fas-associated death domain protein (FADD) and activation of caspase 8.
Caspase 8 directly activates caspase 3 and 7. The two pathways interact via
caspase 8-mediated cleavage of Bid.

In contrast, the extrinsic apoptotic pathway is initiated when a
death receptor (Fas, tumor necrosis factor receptors) is bound
by its ligand (Figure 1B) [reviewed in Ref. (10)]. This results
in the subsequent recruitment of adaptor proteins such as Fas-
associated death domain protein and procaspase 8. Activated
caspase 8 directly cleaves and activates the executioner caspases,
3 and 7. The intrinsic and extrinsic pathways also interact via cas-
pase 8-mediated cleavage of Bid, which leads to mitochondrial
outer membrane permeabilization. In vertebrates, most apoptotic
stimuli are thought to require mitochondrial outer membrane
permeabilization for caspase activation and apoptosis. The relative

contribution of the extrinsic versus intrinsic pathways of apoptosis
during normal kidney development remains unclear.

APOPTOSIS IN THE ESTABLISHMENT OF NEPHRON NUMBER
How is nephron number determined? The mature mammalian
kidney arises from reciprocal interactions between two tissues
derived from the intermediate mesoderm: the ureteric bud and
the metanephric mesenchyme (11). A series of inductive signals
between these two tissues result in the iterative branching of the
ureteric bud (which will subsequently become the collecting sys-
tem of the kidney), and the formation of a “cap” of nephron
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progenitors (which are fated to become nephrons) around each
ureteric bud tip (Figure 2). These nephron progenitors possess
the ability to proliferate and self-renew throughout development,
to generate an appropriate number of nephrons, and to differen-
tiate into the multiple cell types required to form a functioning
nephron (12, 13). The process of new nephron formation con-
tinues until around 36 weeks of gestation in human beings, and
then terminates, via mechanisms that are largely unknown. Inter-
estingly, the number of nephrons that are created appears to be
limited by the number of nephron progenitors generated dur-
ing kidney development. Thus, ablation of a subset of nephron
progenitors results in decreased ureteric bud branching and adult
nephron endowment (14). The converse is also true, in which
mutations that affect ureteric bud branching result in impaired
adult nephron endowment (15-21).

Taken together, these findings suggest that mechanisms that
regulate apoptosis of the metanephric mesenchyme (from which
nephron progenitors are derived), and of the progenitors them-
selves, would have a significant impact on congenital nephron
endowment. Conceptually, those mechanisms could be considered
broadly into two categories: (1) apoptosis resulting from paracrine
or autocrine signals to eliminate unwanted cells; or (2) apoptosis
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Mesenchymal
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Transition Renal vesicle
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FIGURE 2 | Diagram of kidney development. Kidney development begins
with the outgrowth of the ureteric bud (red) from the Wolffian duct into the
metanephric mesenchyme (light blue). In response to signals from the
ureteric bud, the metanephric mesenchyme condenses around the ureteric
bud tip, becoming specified as nephron progenitors (dark blue). Nephron
progenitors give rise to multiple cell types of the nephron, including
podocytes, proximal tubules, loops of Henle, and distal tubules. The ureteric
bud branches in response to signals from the metanephric mesenchyme to
form the collecting system of the kidney.

as the result of a default intrinsic pathway from which some cells
are rescued by survival signals. Classic studies using embryonic
kidney explants demonstrated that isolated metanephric mes-
enchyme undergoes apoptosis in the absence of inducing signals
from the ureteric bud (22). Subsequent work to characterize the
growth factors that promote survival of the metanephric mes-
enchyme or nephron progenitors in vitro have identified several
candidates including transforming growth factor-p2 (TGF-p2),
TGFa, leukemia inhibitory factor (LIF), epidermal growth fac-
tor (EGF), fibroblast growth factor 2 (FGF2), FGF9, FGF20, and
bone morphogenetic protein 7 (BMP7) (23-27). More recently,
in vivo transgenic mouse studies showed that Fgf9 and Fgf20 are
critical for maintaining nephron progenitor survival; furthermore,
FGF20 mutations in human beings were shown to be associated
with severe renal dysplasia (28). The extent to which some or all
of these factors act endogenously to promote nephron progenitor
survival remains to be determined.

In keeping with the idea that the metanephric mesenchyme is
programed to undergo apoptosis is the observation that an inabil-
ity to respond to inducing and/or survival signals also results
in apoptosis. Thus, conditional deletion of both Fgfrl1/Fgfr2 in
the metanephric mesenchyme causes marked apoptosis in the
metanephric mesenchyme early in kidney development (19).
Another example is that of the transcription factor, Wilms tumor-
1 (Wtl), which is one of several transcription factors thought
to be critical in specification of nephron progenitors from the
metanephric mesenchyme. Wtl null mice have an intrinsic defect
in the metanephric mesenchyme that results in abnormal forma-
tion of this tissue, which subsequently undergoes rapid apoptosis
(29). Finally, impairment of the cell—cell interactions between the
metanephric mesenchyme and the ureteric bud can result in sub-
sequent apoptosis of the mesenchyme, as seen in alpha8-integrin
null mice (30).

Recent studies have also implicated epigenetic mechanisms
(defined as heritable changes in gene activity that are not caused
by changes in DNA sequence) in regulating apoptosis in nephron
progenitors. microRNAs (miRNAs) are endogenous, small non-
coding RNAs that bind to specific mRNA targets to block trans-
lation and/or promote mRNA degradation. Conditional targeting
of dicer, an enzyme required for processing of mature miRNAs,
in mouse nephron progenitors, led to premature depletion of
nephron progenitors due to excessive apoptosis, likely from upreg-
ulation of the proapoptotic protein, Bim (31). In addition to
genetic and epigenetic factors, there is also emerging data sug-
gesting that there are environmental influences that impact apop-
tosis of the metanephric mesenchyme. Thus, disruption of the G
protein-coupled bradykinin B2 receptor gene (Bdkrb2) in com-
bination with gestational high salt results in increased apoptosis
of the metanephric mesenchyme (32). Together, these data sug-
gest that multiple factors (epigenetic, genetic, and environmental)
converge to regulate apoptosis in nephron progenitors, with con-
sequent effects on congenital nephron endowment, and thus, the
risk of chronic kidney disease in human beings.

NEPHRON PATTERN AND CELL DEATH
Apart from its role in the determination of nephron number,
apoptosis is tightly regulated in kidney development to eliminate
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unwanted cells as nephrons and the surrounding tissues are pat-
terned to form the complex three-dimensional architecture of the
kidney. Experimental surveys of apoptosis in the normal develop-
ing kidney have identified a distinct developmental time course for
apoptosis in two main areas of the developing kidney: the nephro-
genic zone (where new developing nephrons are produced) and
the medullary papilla (which gives rise to the calyces, renal pelvis,
and renal papilla) (33-35). Interestingly, the cell death rate was
highest in the nephrogenic zone of embryonic rat kidneys, concur-
rent with high rates of cell proliferation, and declined postnatally,
suggesting tight regulation of both proliferation and cell survival
in this compartment during the process of nephron formation
(33). In contrast, the cell death rate in the rat medullary papilla
peaked at around postnatal day 6-7, with a subsequent decline
(33). In terms of location, most of the apoptotic cells detected in
the nephrogenic zone were in the stromal mesenchyme surround-
ing nephron progenitors and developing nephrons, with fewer
apoptotic nephron progenitors (33). In the developing collecting
system, apoptosis is infrequently detected in the ureteric bud and is
prominent in the medullary papillary region (33). This suggests a
potential role for apoptosis in remodeling the first 3—5 generations
of the branched ureteric bud/developing collecting duct system.
Other suggested roles for medullary apoptosis include elimination
of interstitial cells as a mechanism for making room for new blood
vessel ingrowth (36).

During nephron formation, nephron progenitors undergo a
mesenchymal to epithelial transition to form the renal vesicle,
which subsequently differentiates into the comma-shaped body,
followed by the S-shaped body, and then the mature nephron
(11). Survival signals are equally important in this process, which
establishes proximal—distal pattern of the developing nephron.
One example is that loss of FGF8 signaling in the metanephric
mesenchyme results in progressive loss of the progenitor popula-
tion, along with a failure to form S-shaped bodies (37). Interest-
ingly, mice that are hypomorphic for FGF8 do develop S-shaped
bodies; however, the nephrons that form are truncated due to
apoptosis (37).

Evidence that apoptosis is regulated during renal branching
morphogenesis is provided by studies in which dysregulated apop-
tosis is associated with defective collecting duct development. For
example, increased branched ureteric bud cell proliferation and
subsequent medullary collecting duct cell apoptosis was observed
in Glypican 37/~ (Gpc3) mice, which exhibit cystic degeneration
of the medullary collecting duct system (38, 39). The defect is
thought to be caused by an altered cellular response to growth
factors, such as FGFs (39—41). Moreover, apoptosis is a prominent
feature of dilated collecting ducts in experimental models of fetal
and neonatal urinary tract obstruction (42, 43). Together, these
data suggest a relationship between collecting duct apoptosis and
two frequent features of renal dysplasia — cystogenesis and urinary
tract dilatation.

THE APOPTOTIC MACHINERY IN THE KIDNEY

Despite the evidence that apoptosis plays a critical role in multiple
facets of kidney development, there have been few studies that
implicate specific members of the apoptotic pathway in renal mor-
phogenesis. This is thought to be due to functional redundancy

among the molecules in the apoptotic pathway, in addition to other
levels of compensation for the loss of any one single component.
Thus, overall suppression of apoptosis via pharmaceutical means
to inhibit caspase-9 or caspase-3 activity leads to decreased ureteric
branching and nephron formation in embryonic kidney explants
(44, 45). However, mice that lack caspase-3 display normal cell
death and normal kidney development (46).

One notable exception to this is the prosurvival protein, B-
cell lymphoma 2 (bcl2), which is expressed in the ureteric bud
and metanephric mesenchyme (47). Bcl2-null mice demonstrate
increased apoptosis in the metanephric mesenchyme, resulting in
fewer nephrons, mild renal hypoplasia, and cystogenesis (48—50).
As noted above, in broad terms, the determination of whether a
cell undergoes apoptosis or survives is dependent on the pairing
between Bcl-2 family members that promote cell death and those
that promote survival. The proapoptotic protein, Bim, binds to
many of the Bcl-2 prosurvival proteins, and is thought to release
Bax or Bak proteins from their interaction with Bcl-2 to promote
apoptosis (51). Interestingly, the loss of a single Bim allele in Bcl-
2 null mice is sufficient to rescue the cystic phenotype of Bcl-2
null mice, suggesting that gene dosage of Bim is critical during
nephrogenesis (52). While Bim is expressed in the metanephric
mesenchyme, Bim null mice do not demonstrate an overt renal
structural defect [these mice die at several months of age due
to an immune complex glomerulonephritis (53)]. Together, these
data suggest that the balance of activity between the prosurvival
protein, Bcl-2, and the proapoptotic protein, Bim, regulates sub-
sequent apoptosis of the metanephric mesenchyme via the mito-
chondrial instrinsic apoptotic pathway. An alternative hypothesis
for the requirement for Bcl-2 has also been proposed, in which
Bcl-2 interacts with paxillin and focal adhesion kinase (FAK) to
bypass the need for integrin-mediated survival signals, allowing
cells to migrate as needed for nephrogenesis (54, 55). The relative
functional contribution of other Bcl-2 family proapoptotic and
prosurvival proteins to nephron progenitor survival or nephron
patterning remains unknown.

Apart from components of the “apoptotic machinery,” there are
also proteins that are known to regulate apoptosis. One example
is the transcription factor and tumor suppressor gene, p53, which
activates the expression of proapoptotic factors, such as Bax (56).
Mice that are null for p53 exhibit defects in terminal nephron
differentiation, and on a C57Bl6 background, a spectrum of con-
genital anomalies of the kidney and urinary tract (57, 58). While
these studies have clearly implicated p53 in renal development, the
relative role of p53 in the regulation of apoptosis, cell cycle, and/or
DNA repair in nephrogenesis remains to be determined.

CONCLUSION

Apoptosis is tightly regulated in space and time during kidney
development, and dysregulation of apoptosis is clearly associated
with changes in nephron number and pattern. However, many
questions remain unanswered, including how do genetic, epige-
netic, and environmental factors interact to regulate apoptosis?
what is the role of other members of the Bcl-2 family of proteins
or other components of the apoptotic cascade in kidney develop-
ment? what are the relative contributions of the intrinsic versus
extrinsic pathways in apoptosis? An improved understanding of

Frontiers in Pediatrics | Pediatric Nephrology

November 2014 | Volume 2 | Article 128 | 4


http://www.frontiersin.org/Pediatric_Nephrology
http://www.frontiersin.org/Pediatric_Nephrology/archive

Ho

Apoptosis in renal development

these processes would contribute to our understanding of conge-
nial anomalies of the kidney and urinary tract, the leading cause of
pediatric chronic kidney disease. Moreover, the study of nephron
progenitor survival has implications for novel therapies, given
recent research efforts to develop methods to reliably propagate
and differentiate nephron progenitors in culture, and potentially
manipulate progenitors in vivo.
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