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Chapter 3
Pulmonary Manifestations 
of Predominantly Antibody Deficiencies

Amene Saghazadeh and Nima Rezaei

3.1  �Introduction

Predominantly antibody deficiencies (PADs) are the most frequent forms of primary 
immunodeficiency diseases (PIDs). These conditions are resulted from a primary 
defect in B-cells. Though to a lesser extent, they are caused by a defect in T-cells or 
other immune cell populations known to contribute to B-cell or plasma cell develop-
ment and function. Overall, PADs are characterized by a malfunctioned antibody 
response which is reflected in low or undetectable levels of immunoglobulin(s). As 
a result, recurrent infection is the most common presentation leading to diagnosis of 
PADs. It would also remain the cause of most complications during the course of 
disease. Overall, physicians who are the most likely to encounter patients with 
PADs are those of infectious disease specialists [1].

Patients with chronic and recurrent respiratory infections are prone to develop 
severe respiratory conditions such as bronchiectasis and obliterative bronchiolitis. 
Therefore, patients with respiratory infections need particular attention. They should 
be prescribed an appropriate therapy as soon as possible and have to be adhering to 
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more and longer medical therapies. Immunoglobulin substitution therapy along 
with prophylactic antibiotics remained the cornerstone of treatment for PADs and 
related complications [2]. Generally, immunoglobulin replacement therapy can 
effectively reduce both incidence and severity of infections [2]. However, immuno-
globulin products contain only purified IgG antibodies and lack other antibody iso-
types. It is thus expected that pulmonary infections may persist and even flourish 
under regular immunoglobulin replacement therapy. Thereby, the patient will be 
more predisposed to chronic lung diseases and related severe sequels such as respi-
ratory failure [3]. Recent studies have identified a gap for screening protocols to 
monitor respiratory manifestations in patients with PADs [4].

(For further information you may see Aghamohammadi A, Plebani A, Lougaris 
V, Durandy A, Condino-Neto A, Kanegane H, Hammarström L.  Predominantly 
antibody deficiencies. In: Rezaei N, Aghamohammadi A, Notarangelo LD, editors. 
Primary immunodeficiency diseases: definition, diagnosis, and management. 2nd 
ed. p. 183–244.)

3.2  �X-Linked Agammaglobulinemia (Bruton’s Disease or 
BTK Deficiency)

Among the most severe types of PADs is X-linked agammaglobulinemia (XLA), 
the first PID described by Ogden Bruton in 1952. XLA is the most common mono-
genic immunodeficiency [5] resulting from mutations on the X chromosome in the 
gene encoding a tyrosine kinase, the so-called Bruton’s tyrosine kinase (Btk). These 
mutations are of loss-of-function type, making an arrest in the early stages of B-cell 
development [5]. XLA is therefore a humoral immunodeficiency characterized by 
depletion of B-cells and low levels of all immunoglobulins (IgG, IgA, IgM, IgD, 
and IgE) [6]. While the number of T-cells and NK cells varies within normal range, 
it is however realized that lack of B-cells might lower the optimal function of 
T-cells, as reflected in the diminished T-cell memory to specific antigens. For exam-
ple, patients with XLA show a defect in T-cell memory to N. meningitidis but not 
influenza [7]. The presentation of this antibody immunodeficiency is expected to 
occur (a) earlier than other types of PADs, (b) after maternal antibodies waned, and 
(c) during the first 2 years of life with recurrent and severe sinopulmonary infections 
[8–11]. However, there are reports, for example, from China, where the mean age at 
diagnosis was more than 6 years. Even, there have been reports of late-onset XLA 
(up to the fourth decade of life) [12]. Overall, the mean age at diagnosis falls within 
the range 3.2–7.7 years, whereas the mean age at onset of symptoms happens within 
the range 1.8–4.2 years [13–17, 10, 18]. This reflects the delay in diagnosis ranging 
from 1.4 to 3.6 years.

In conjunction with its expression on different cells such as B-cells, monocytes, 
macrophages, granulocytes, dendritic cells, and osteoclasts, BTK serves as a poten-
tial contributor to various intracellular functions, essentially B-cell development 
[19] and differentiation [20], natural killer (NK) cell activation [21], and T-cell 
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memory [22]. While BTK deficiency can leave the body in a state of immunodefi-
ciency (e.g., XLA), its upregulation may lead to autoimmune states, such as rheu-
matoid arthritis and systemic lupus erythematosus [19], as well as malignant states, 
notably B-cell malignancies [23], squamous cell carcinoma, and pancreatic cancer 
[24]. Hundreds of variants have been identified in the gene BTK from patients with 
XLA [25–29, 18] which may explain phenotypic divergence in XLA [30]. Therefore, 
data are integrated to investigate genotype-phenotype interactions [31]. Overall, the 
most common complications of XLA are pulmonary infections and bronchiectasis.

3.2.1  �Pulmonary Infections

Generally, infections account for the highest proportion of presenting manifesta-
tions of XLA [9, 10, 16, 29]. In particular, a prospective study of 101 individuals 
with XLA reported the presence of at least one of these three infectious complica-
tions: pneumonia, sinusitis, and chronic lung disease with bronchiectasis in 76% of 
patients with XLA [14]. Moreover, the majority of infections affect the upper and 
lower respiratory tracts [16, 10, 18, 32] and are of bacterial origin, among which 
bronchitis, pneumonia, chronic sinusitis, otitis, and conjunctivitis are the most 
common complications of XLA [33]. Infections occur not only before diagnosis 
but remain a major cause of complications during the course of disease, immuno-
globulin substitution, and death in patients with XLA [32, 10]. The most common 
infections prior to and after diagnosis include otitis media, pneumonia, and sinus-
itis [9, 29].

Pneumonia is the most common acute infection associated with XLA [14]. 
Recurrent pneumonia should be, therefore, regarded as an alarm sign for PIDs 
including XLA [34, 35]. Before the diagnosis is made, between 60% and 83% of 
patients with XLA have a history of at least one episode of pneumonia [36], and 
approximately 30% of patients have a history of hospitalization due to pneumonia 
[16]. With an adequate immunoglobulin therapy, the rate of pneumonias is reduced 
by more than 10% [14] and lies within the range of 0.00–0.10 pneumonias per treat-
ment year [13, 37]. However, approximately 50% of patients might experience dete-
rioration in their respiratory status while receiving immunoglobulin therapy [38]. 
The rate of infectious episodes during immunoglobulin therapy seems to be age-
related, since there is a threefold increased risk for infections in adult patients com-
pared with pediatric patients (2.12 vs. 0.74 infections/patient/year) [38]. More 
important is that pneumonias after initiation of immunoglobulin therapy might be 
severe as many as half of episodes might require hospitalization for intravenous 
antibiotic treatment [13]. In multivariate analysis, patients with bronchiectasis had 
a > 3-fold increased risk of pneumonia during the 5-year immunoglobulin therapy 
[14]. Its source remained unknown in almost 80% of cases. However, sputum cul-
tures could reveal the following as bacterial pathogens underlying pneumonia in 
patients with XLA: Haemophilus influenzae, Streptococcus pneumoniae, 
Staphylococcus aureus, and Mycoplasma pneumonia [13, 33]. Analysis of bron-
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choalveolar lavage (BAL) in patients with XLA without acute pulmonary function 
identified bacterial pathogens such as Haemophilus influenzae and Veillonella [39]. 
Also, bacteria that were observed through protected specimen brush samples 
included Haemophilus influenzae, β-hemolytic streptococci, and Porphyromonas 
[39]. Other bacterial pathogens found in association with pneumonia among patients 
with XLA are Pseudomonas species and M. tuberculosis [16]. Looking at chest 
X-ray, pneumonia in patients with XLA can cause peribronchial thickening and 
then segmental atelectasis [13]. Antigen-specific immunological responses might 
predict the risk of respiratory tract infections in patients with XLA. More precisely, 
individuals who developed IgG and IgM responses specific to bacteriophage phi-X 
174 were less likely to be affected by respiratory tract infections (RTI) compared 
with those who developed only IgM responses [22]. Although very rare, there are 
reports of pulmonary infections with fungal (aspergillosis and Pneumocystis jir-
oveci) [40] and viral pathogens (respiratory syncytial virus) [41–43] in patients with 
XLA even despite regular immunoglobulin substitution therapy. Chronic sinusitis 
seems to predispose individuals with XLA to pulmonary aspergillosis [40].

3.2.2  �Bronchiectasis

There are individuals with impaired pulmonary function, as revealed through pul-
monary function test, that show a normal chest X-ray [13]. However, an abnormal 
chest X-ray clearly warrants that pulmonary function is impaired [13]. Patients with 
XLA show changes in pulmonary function test (PFT) that favor obstructive lung 
disease. These include a reduction in forced expiratory volume in the first second 
(FEV1) as well as a reduction in forced expiratory flow (FEF) [13]. Pulmonary 
function abnormalities appear not to be age-related [13]. The delay in diagnosis has 
shown an inverse association with the risk of chronic lung disease. Supporting this, 
lung function decreases with aging in patients with XLA and is worsened by smok-
ing and bronchiectasis. A longitudinal study of patients with XLA (n = 8) over an 
average period of 7.6 years calculated an average annual decline of 65 ± 11 mL/year 
and 58 ± 20 mL/year for FEV1 and FVC, respectively [15]. Immunoglobulin ther-
apy dose demonstrated a negative association with lung function decline. This 
reflects the protective effect of immunoglobulin therapy [15].

Evidence of chronic lung disease (CLD) before diagnosis is present in nearly 
one-third of patients with XLA [16]. Factors known to increase the risk of CLD 
before diagnosis of XLA include higher age at diagnosis and the presence of a lower 
respiratory tract infection (LRTI) [16]. This may indicate that delayed diagnosis 
might leave patients facing higher risk of CLD [18]. CLD is observed in 40% of 
patients with XLA who had a history of LRTI.  Approximately, 30% of patients 
develop CLD later in the course of disease [16]. CLD risk after diagnosis of XLA is 
predicted by pneumonia and inappropriate immunoglobulin substitution therapy 
[16]. Study of 201 US patients with XLA identified CLD as the cause of death in 
25% of cases [9]. CLD also has been shown to have a negative impact on the life 
quality of patients with XLA [44].
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Keeping in mind the high incidence of pulmonary infections, bronchiectasis is 
considered a common complication of XLA. A study of Australian adults estimated 
a twofold incidence of infection with bronchiectasis compared to infection without 
bronchiectasis among patients with XLA (67% vs. 33%) [45]. In a multicenter study 
of 199 patients with XLA, the use of high-resolution chest CT imaging indicated a 
prevalence of bronchiectasis as high as 56% [33]. The prevalence of bronchiectasis 
increases with age [14] and that turning 18 years old was the most important factor 
predictive of bronchiectasis [33]. However, other factors associated with an increased 
risk of bronchiectasis included a history of pneumonia and treatment with IVIG 
compared with subcutaneous IG [33]. In addition, patients with chronic sinusitis 
were four times more likely to have bronchiectasis [14]. It is important that almost 
half of patients with XLA suffer from chronic sinusitis [14], whereas no effect of 
IgG levels on the risk of bronchiectasis was found [14]. The age range for develop-
ment of bronchiectasis was 7–45 years [33]. Regardless of age, bronchiectasis low-
ers lung function as reflected in reduced FEV1 [33]. Bronchiectasis is, therefore, the 
real cause of diminished life quality among patients with XLA [38]. CXR findings 
are often evident in the middle and lower lobes of the lung(s) [11]. HRCT appears to 
be more sensitive than CXR for evaluation of pulmonary abnormalities in patients 
with primary hypogammaglobulinemia including XLA [46].

3.2.3  �Chronic Pleurisy

There is report of recurrent chronic pleurisy presented with thickened pleura and 
calcification in CT imaging and intraluminal fibrosis, foamy alveolar macrophages, 
and chronic inflammation in histopathological examination of the pleural tissue 
[47]. Broad-range bacterial polymerase chain reaction (PCR) identified H. equorum-
like bacterium as the underlying pathogen of these abnormalities. Taking high-dose 
panipenem/betamipron (PAPM/BP) and clarithromycin significantly improved the 
patients’ situation.

3.2.4  �Potential Mechanisms of Respiratory Manifestations 
in XLA

Both lipopolysaccharide (LPS) and anti-IL-8/IL-8 immune complexes act as stimu-
lus to neutrophils [48]. Upon stimulation, FcγRIIa is recruited from intracellular 
compartments to the cell surface. FcγRIIa recruitment is accompanied with activa-
tion of Btk, which in turn induces the expression of adaptor molecule MyD88. In 
this manner, Btk act to direct cross talk between FcγRIIa and toll-like receptor 4 
(TLR4) [49]. It is followed by engagement of MyD88 adapter-like (Mal)/TIRAP 
interaction which plays a crucial role in TLR-dependent NF-kappaB (NF-κB) pro-
inflammatory responses [50]. Matrix metalloproteinases (MMP) mainly MMP9 
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induced by NF-κB contribute to tissue remodeling in acute lung injury. As expected, 
Btk inhibitors could abrogate the expression of both Btk and MyD88  in human 
neutrophils activated with anti-IL-8/IL-8 immune complexes [48]. Additionally, 
treatments blocking either Btk or MMP9 diminished the expression of MMP9 in 
neutrophils from mice exposed to secondhand smoke [51]. Altogether, it is plausible 
to think of Btk-targeted neutrophil-specific therapy in conditions associated with 
acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) [48] and 
chronic obstructive pulmonary disease (COPD) [51].

Ibrutinib is used in targeted therapy of malignancies and autoimmune diseases to 
inhibit BTK.  It has been shown to prevent influenza-induced acute lung injury 
through reduction of pro-inflammatory mediators [52]. Btk inhibitor RN983 showed 
much more anti-inflammatory potency than corticosteroid budesonide in mouse 
lung in form of inhalation [53]. This makes it effective in the treatment of allergic 
asthma. RNA interference (RNAi) of Btk has been demonstrated to decrease protein 
levels of Btk and phosphorylated Btk (p-Btk) and diminish the expression and acti-
vation of Btk in alveolar macrophages [54]. In a mouse model of cecal ligation and 
puncture (CLP)-induced sepsis, pretreatment with Btk RNAi was able to prevent 
epithelial cell apoptosis, pulmonary edema, vascular permeability, the expression of 
inflammatory cytokines (TNF-α, IL-1β, and IL-6) and signaling (NF-κB), and neu-
trophil lung infiltration.

On the contrary, there is evidence that the over-suppression of innate immunity 
by ibrutinib might cause toxic events. Ibrutinib can lead to epithelial cell apoptosis 
and inflammation that promote pulmonary infections [55] and fibrosis [56]. Even, 
there is report of invasive aspergillus infection in association with ibrutinib in 
patients with chronic lymphocytic leukemia [57]. These toxic effects induced by 
ibrutinib draw a picture of what happens in patients with XLA, where loss-of-
function mutations lead to downregulation of Btk.

Study of XLA mice suggest that IgM contributes to alveolar macrophage phago-
cytosis and thereby confining the fungal infection to limited areas [58]. In this man-
ner, low IgM levels in patients with XLA make them prone to develop more severe 
infections with fungal pathogens such as Cryptococcus neoformans.

B-cells act as the regulator of neutrophil migration to the site of stimulus. 
Depletion of B-cells in XLA dictates the rapid migration of neutrophils to the site 
of stimulus whereby the opportunity of macrophages to attract to the site of stimulus 
is captured, while macrophage activation is required for engagement of interferon 
gamma (IFNy)-producing T-cells, which in turn elicit an effective response to bacil-
lus Calmette-Guérin (BCG) vaccination [59]. In this manner, impairment in antitu-
berculosis immunity exists as a result of disrupted IFNy-producing T-cell-macrophage 
axis in XLA.

TLR signaling pathways as well as TLR effector function are maintained despite 
loss of Btk function [60]. Neutrophils from patients with XLA upon stimulation 
with LPS revealed activation of MAPK cascades, production of reactive oxygen 
species (ROSs), and reduction of neutrophil apoptosis. All these events occurred in 
a comparable fashion in neutrophils from controls. Particularly, ROSs are required 
for phagocytosis of pathogens [61].
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Impairment in B-cell development causes airway inflammation [62], and there-
fore allergic symptoms might be present in patients with XLA [63]. Compared with 
wild-type mice, X-linked immunodeficiency (Xid) mice exhibited an increase in 
production of cytokines (IL-4, IL-5, IL-10, IL-13, CCL5, and IFNy), lung inflam-
mation, interstitial eosinophilia, and mucus production in response to challenge 
with cockroach antigen.

3.2.5  �Management of Respiratory Manifestations in XLA

Immunoglobulin therapy helps to restore IgG levels to protective levels [13]. 
Patients on high-dose intravenous immunoglobulin therapy rather than low-dose or 
intramuscular immunoglobulin therapy are more likely to achieve recommended 
levels of IgG [64]. Analysis of serial determination of IgG levels in patients with 
XLA receiving IVIG therapy indicated that a median IgG level of 354 mg/dl pre-
dicts that individual immunity against infections is acceptable [65]. The annual inci-
dence of bacterial infections (pneumonia) was estimated to be 0.16 (0.12), 0.05 
(0.05), and 0.00 (0.00) when IgG levels are below 500 mg/dL, between 500 and 
800 mg/dL, and above 800 mg/dL [37]. Of note, a 5-year prospective study of 101 
individuals with XLA identified only one episode of pneumonia in cases with IgG 
levels >1000 mg/dL [14]. Individuals taking a high dose of IVIG (397 mg/kg) are 
expected to be infection-free [65].

Lung transplantation (LTx) is the option available for patients with bronchiecta-
sis and end-stage respiratory failure caused by XLA.  Even after LTx, regular 
immunoglobulin substitution is still required for prevention of infections [66]. 
Although it is promising that the lungs often reach an acceptable or predicted func-
tional level, post-lung transplant infection and respiratory failure remain life-
threatening [45]. The authors in [67] reported the long-term outcome of six patients 
with XLA who underwent LTx. All patients but one died within the first 3 years 
after LTx. The pulmonary infection (bronchiolitis and pulmonary sepsis) was the 
cause of death for all but one case who died from progressive multifocal 
leukoencephalopathy.

3.3  �Autosomal Recessive Agammaglobulinemia (μ Heavy 
Chain Deficiency, λ5 Deficiency, Igα Deficiency, Igβ 
Deficiency, BLNK Deficiency)

When we have a male child with congenital hypogammaglobulinemia and absent 
B-cells, the first differential diagnosis to consider is XLA, which is resulted from 
mutant BTK. When we have a female child with similar clinical and immunological 
presentation, the first differential diagnosis to consider is autosomal recessive (AR) 
agammaglobulinemia (ARA). Mutations identified as the cause of autosomal 
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recessive forms of agammaglobulinemia occur in the genes encoding molecules that 
contribute to the structure and function of pre-B-cell receptor (BCR) or its down-
stream pathways such as the μ heavy chain (IGHM), B-cell linker adaptor protein 
(BLNK), the immunoglobulin λ-like polypeptide1 (IGLL1), leucine-rich repeat-
containing 8 (LRRC8A), Igα (CD79A), and Igβ (CD79B) [31].

As pre-B-cells are known as precursors of B-cells, the pre-B-cell receptor (BCR) 
is considered as precursor of B-cell receptor. As a result, pre-BCR is an essential to 
B-cell development. It is composed of the μ heavy chain (μHC) and the surrogate light 
chain (SLC). The SLC, in turn, includes invariant Vpre-B and λ5 polypeptides. Also, 
transmembrane protein Igα in association with Igβ serves as the signal transduction 
component for the pre-BCR complex. Abnormalities in pre-BCR structure and func-
tion hinder the transition from pro-B- to pre-B-cell stage [68], predisposing individu-
als to immunodeficiency, malignancy, and autoimmunity (for review see [69]).

3.3.1  �μ Heavy Chain Deficiency

Yel et al. 1996 [70] were the first group to identify mutations in the IGHM gene as 
a cause of agammaglobulinemia. They reported seven patients from two families 
with AR B-cell defects. Patients presented between 1 and 15 months of age. Clinical 
manifestations included fever, weakness, rashes, chronic enteroviral encephalitis, 
recurrent infections (pneumonia, bronchopneumonia, and otitis), failure to thrive, 
gastrointestinal disorders, septic shock (due to Pseudomonas aeruginosa), arthritis, 
and perirectal abscesses.

Thereafter, more studies have investigated the IGHM as a potential candidate gene 
for AR B-cell defects [31, 71–74]. These studies indicate that (a) the IGHM gene is 
very polymorphic [72], (b) the presence of large deletions rather than point mutations 
is more likely in patients with agammaglobulinemia [74], and (c) mutant IGHM 
accounts for about 20–30% of patients who have AR B-cell defects [71] and as well 
for about 5% of all patients with agammaglobulinemia [74]. Also, it is concluded that 
patients carrying mutant IGHM experience an earlier onset and more difficult course 
of agammaglobulinemia compared to patients carrying mutant BTK [71]. Overall, 
mutant IGHM may cause respiratory manifestations such as recurrent upper respira-
tory tract infections (viral rhinitis, sinusitis, otitis, pharyngitis, and rhinopharyngitis), 
recurrent pneumonia, bronchopneumonia, bronchiectasis, and asthma.

3.3.2  �λ5 Deficiency

Studies show that despite allelic exclusion of Ig μ heavy chain would remain nor-
mal, B-cell development is, however, not completely [75] ablated in mice deficient 
in λ5 [76]. Minegishi et al. 1998 [77] reported a case with hypogammaglobulinemia, 
less than 1% of normal number of B-cells, and undetectable levels of CD19. He 
presented with recurrent otitis at 2 months of age.
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3.3.3  �Igα Deficiency

Minegishi et al. 1999 [78] published the first case of defect in Igα (CD79a) with 
agammaglobulinemia. The patient presented with recurrent diarrhea, failure to 
thrive, bronchitis, and neutropenia. The age at onset of disease was before 1 month 
of age. The authors demonstrated that defect in the Igα gene results in complete 
blocking of B-cell development as defect in the IGHM. This study proved that the 
functional role of Igα as a component of signal transduction molecule is not less 
than the role that the mu heavy chain plays as a structural component of pre-
BCR. The second one was reported by Wang et al. 2002 [79]. Clinical and immuno-
logic features consisted recurrent upper and lower respiratory tract infections, otitis 
media, weakness, almost complete absence of B-cells but not T-cells, hypogamma-
globulinemia, dermatomyositis, and diarrhea.

3.3.4  �Igβ Deficiency

Study in Drosophila melanogaster [80] showed that mutant Igβ is a contributing 
factor to the dissociation of Igα/Igβ, whereby the pre-BCR complex cannot be 
assembled and B-cell development is blocked. Moreover, deletion of Igβ dictated 
death in murine developing B-cells including pre-B-cells and immature B-cells 
[81]. The first patient carrying mutant Igβ (CD79b) was described by Dobbs et al. 
2007 [82]. She presented with recurrent bronchitis, persistent cough, pneumonia, 
and hypogammaglobulinemia. The age at onset of symptoms was about 5 months. 
Ferrari et al. 2007 [80] were the second group who found mutant Igβ in a patient 
presented with less than 1% of normal CD19 levels, hypogammaglobulinemia, but 
normal counts of T and NK cells. His symptoms began to appear at 8 months of age 
and included recurrent pneumonia, conjunctivitis, otitis media, sinusitis, and bron-
chitis. At the time of evaluation, he was 20 and demonstrated chronic sinusitis at his 
CT scan. The third case was recently introduced by Lougaris et al. 2014 [83]. The 
patient was a female child, whose symptoms started at 14 months of age. She pre-
sented with recurrent upper respiratory tract infections, fever, neutropenia, profound 
hypogammaglobulinemia, and complete absence of B-cells but normal numbers of 
T and NK cells.

3.3.5  �BLNK Deficiency

BLNK is essential for B-cell development and function. Mice deficient in BLNK 
failed to generate B220 + CD43− precursor B-cells and lacked mature B-cells in the 
periphery [84]. BLNK deficiency also led to reduce IL-10 production in mice [85]. 
Mutant BLNK in a patient lacking pre-B-cells or mature B-cells was first reported 
in 1999 [86]. The patient presented with recurrent otitis, pneumonia, and hypogam-
maglobulinemia. His symptoms commenced at 8 months of age. Other studies that 
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have found mutant BLNK in association with agammaglobulinemia can be found 
here [87–89]. They confirm recurrent otitis and sinopulmonary infections as the 
most common initial presentation of BLNK deficiency [88, 89]. However, other 
clinical manifestations included diarrhea, enteroviral infection, arthritis, dermatitis, 
and bronchiectasis [89].

3.4  �Other Forms of Agammaglobulinemia with Absent 
B-Cells (TCF3 Deficiency, LRRC8 Deficiency, Thymoma 
with Immunodeficiency)

3.4.1  �TCF3 Deficiency

Studies of mice have shown that the transcription factor 3 (TCF3) gene plays a cru-
cial role in B-cell development [90–92]. This gene which is also known as E22 gene 
encodes transcription factors E12 and E47. Mutations in TCF3 have been reported 
in both autosomal recessive [93] and autosomal dominant [94] agammaglobulin-
emia. The authors in [93] described a patient with B-cell acute lymphoblastic leuke-
mia (B-ALL) presented with profound hypogammaglobulinemia, recurrent 
pneumonia, meningitis, pancytopenia, and splenomegaly. His immunological find-
ings included less than 1 percent normal number of CD19+ B-cells in the periphery 
in the presence of normal counts of CD3+, CD4+, and CD8+ T-cells. Boisson et al. 
2013 [94] identified the same de novo mutation in the TCF3 gene (within the exon 
that encodes E47) in four patients with an unusual phenotype characterized by 
almost complete absence of BCR in the presence of increased expression of CD19 
on B-cells [95]. All patients presented severe hypogammaglobulinemia and less 
than 3 percent CD19+ cells in the periphery. Age at diagnosis ranged from 9 months 
to 4 years. Clinical presentations included pneumococcal meningitis, recurrent oti-
tis, vaccine-associated polio, and arthritis. Other clinical findings were dermatitis 
and hepatomegaly.

3.4.2  �LRRC8 Deficiency

Sawada et  al. 2003 [96] are the first group that isolated the leucine-rich repeat-
containing 8 (LRRC8) and showed that B-cell development is impaired in mouse 
model for a truncated expression of LRRC8. They also provided a report describing 
a girl patient with agammaglobulinemia, absence of B-cells, epicanthic folds, mild 
hypertelorism, high-arched palate, and lowered ears. The patient carried mutant 
LRRC8. To our knowledge, no other report of mutant LRRC8 in association with 
agammaglobulinemia has been published.
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3.4.3  �Thymoma with Immunodeficiency (Good’s Syndrome)

Good’s syndrome (GS) or thymoma with immunodeficiency refers to the combined 
conditions of thymoma and immunodeficiency. It is mainly characterized by thy-
moma, hypogammaglobulinemia, and low number of B-cells in the periphery. 
However, low number of T-cells and an inverted CD4/CD8 ratio are also common.

Tarr et al. 2001 [97] in the study provided a report of 5 patients with GS pre-
sented with infection as well as a review of 46 other patients with GS and infections. 
Infections have a propensity to affect the respiratory and gastrointestinal tract [98, 
99]. The following are infectious complications documented in GS: recurrent sino-
pulmonary infection, CMV disease, bacteremia, oral or esophageal candidiasis, per-
sistent mucocutaneous candidiasis, chronic diarrhea, urinary tract infections, P. 
carinii pneumonia, tuberculosis, Kaposi sarcoma, disseminated varicella, candi-
demia, wound infection with Clostridium perfringens, Mycoplasma arthritis, etc. 
However, the main clinical findings at presentation appear to be sinopulmonary 
infections with encapsulated bacteria. When compared to patients with CVID, 
patients with GS experience a more difficult course of immunodeficiency compli-
cated with opportunistic infections such as P. carinii pneumonia, mycobacterium 
tuberculosis, and mucocutaneous candidiasis, resembling that which occurs in 
human immunodeficiency virus (HIV) infection [100]. Therefore, if a patient with 
thymoma or CVID develops refractory infections, then we should consider GS as a 
differential diagnosis. Particularly, persistent infection (pneumonia) following thy-
mectomy might warrant that your patient is very likely to have GS [101–105]. 
Overall, respiratory manifestations in association with GS include recurrent sino-
pulmonary infections (sinusitis, rhinosinusitis, otitis media, and pneumonia) [106–
114] with bacterial (especially with encapsulated bacteria including Haemophilus 
influenzae), fungal (aspergillus and P. carinii), and viral (CMV and HSV) patho-
gens [115–121], tracheobronchitis [118], diffuse panbronchiolitis [122–124], gran-
ulomatous lung disease [125], and pulmonary nodules [123]. As for patients with 
other forms of agammaglobulinemia, patients with GS remain dependent on immu-
noglobulin replacement therapy. A recent study has estimated the median survival 
of 14 years for 47 patients with GS [111].

3.5  �Activated PI3K-δ Syndrome

Activated PI3K-δ syndrome (APDS) is a heterogeneous disorder associated with a 
spectrum of clinical pictures and immunological findings classified under two types 
[126]. Autosomal dominant gain-of-function mutations (E1021K and C416R) in the 
gene PIK3CD (PI3K-δ, phosphoinositide 3-kinase δ) can cause activated PI3K-δ 
syndrome type 1 (APDS1), while activated PI3K-δ syndrome type 2 (APDS2) is 
caused by an autosomal dominant gain-of-function mutation in the gene PIK3R1 
(phosphoinositide-3-kinase regulatory subunit 1), inducing the skipping of exon 11. 
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Both types are characterized with similar immunological findings including low 
levels of IgG2 and lymphocytes and high levels of IgM and B-cells [127]. Overall, 
patients with APDS are prone to recurrent respiratory infections, airway disease 
[127], lymphoproliferation, cytopenias, skin diseases, chronic EBV and CMV vire-
mia, and enteropathy [126]. All these major manifestations tend to decrease over 
time [126]. Of notable importance is that respiratory infections are the most fre-
quent, initial manifestations of APDS [126].

The prospective European Society for Immunodeficiencies (ESID)-APDS regis-
try has recently reported data on 51 patients with APDS1 and 26 patients with 
APDS2 [126]. Overall, respiratory infections, particularly pneumonia, otitis media, 
and sinusitis, were observed in nearly all patients and in most patients occurred 
before 15  years of age. Looking at CT scans, evidences of bronchiectasis were 
found in 60% of patients with APDS1 and 27% of patients with APDS2. Mean age 
at diagnosis of bronchiectasis was 11.2  years. Therapeutic options available to 
patients with APDS include antibiotics, antifungal agents, immunoglobulin replace-
ment therapy, systemic immunosuppressive therapy, and HSCT [126]. Particularly 
a cohort study of 36 patients with APDS2 revealed that recurrent upper respiratory 
tract infections were experienced by all patients [128]. Other common respiratory 
complications in this population included pneumonia and respiratory tract lym-
phoid hyperplasia, which were found in about 70% and 50% patients.

3.5.1  �Potential Mechanisms of Respiratory Manifestations 
in APDS

PI3K as lipid kinases play role to maintain normal function of airway. Abnormal 
PI3K signaling can alter airway function, so that inflammatory responses are aggra-
vated [129]. Such a condition is seen in patients with respiratory diseases especially 
allergic inflammation and asthma. Airway biopsies from 11 patients with atopic 
asthma provide evidence of increased activation of the PI3K signaling after expo-
sure to allergen [130].

PI3K-δ is a class I PI3K isoform proven to particularly contribute to both innate 
and adaptive immune responses [129]. Such contribution is resulted from its inter-
action with Akt, together triggering the PI3K-δ/Akt signaling pathway. Increased 
activation of this signaling pathway is thought to mediate airway inflammation as 
seen in obstructive lung diseases [131, 132] and induced by cigarette smoking 
[133]. Moreover, PI3K-δ is able to reduce glucocorticoid sensitivity of airways 
([131, 132]. This explains why some patients are resistant to glucocorticoids. 
Supporting this, PI3K-δ inhibitor can mitigate allergic inflammation in asthma 
models [134]. The effect remained true upon exposure to Aspergillus fumigatus. At 
least part of this anti-inflammatory effect of PI3K-δ inhibitor appears to be medi-
ated through reducing endoplasmic reticulum stress [135], hypoxia-inducible 
factor-1α (HIF-1α), and nucleotide-binding domain, leucine-rich-containing family, 

A. Saghazadeh and N. Rezaei



89

and pyrin domain-containing-3 (NLRP3) expression in lung tissue [136, 134]. All 
these factors are involved in generating inflammatory responses upon stimulation 
[136]. Additionally, PI3K-δ contributes to virus escape possibly by increasing the 
expression of B7-H1 (PD-L1) [137]. Therefore, it is well-expected that APDS, a 
condition associated with PI3K-δ upregulation, should be accompanied with bacte-
rial and viral infections as well as different respiratory manifestations.

The current literature also supports the potential of PI3K-δ to be exploited as a 
target for treatment of respiratory infections and airway diseases [138, 139]. For 
example, anti-inflammatory effect of erythromycin and dexamethasone seems to be 
mediated via suppression of PI3K-δ signaling [140]. Animal models of asthma 
demonstrate that PI3K-δ blockade hampers infiltration of inflammatory cells by 
decreasing vascular permeability [141]. Moreover, PI3K-δ inhibition can help to 
regain glucocorticoid sensitivity and, therefore, enhance anti-inflammatory effects 
of glucocorticoids [131, 132, 142]. However, attention should be paid that over-
suppression of this pathway might cause toxicities. As for APDS, PI3K-δ function 
is abnormally high in malignant states particularly B-cell malignancies [143]. As a 
result, PI3K-δ inhibitor (idelalisib) can be used to treat these malignancies [144]. 
However, it might reduce cellular respiration and so be toxic to lung tissues [145].

3.6  �LRBA Deficiency

Lipopolysaccharide (LPS)-responsive and beige-like anchor (LRBA) protein defi-
ciency is a rare PID characterized by hypogammaglobulinemia and CD19+ B-cell 
deficiency and also to a lesser extent by CD4+ T-cell deficiency and NK-cell defi-
ciency [146]. Patients with LRBA deficiency often present with recurrent infections 
(pneumonia, urinary tract infections, and otitis media), lymphoproliferative disor-
ders (lymphadenopathy, splenomegaly, hepatomegaly, and granuloma), autoim-
mune disorders (type 1 diabetes, ulcerative colitis, immune thrombocytopenic 
purpura, autoimmune hemolytic anemia, and Graves’ disease), atopic disorders 
(food allergy, insect sting allergies, allergic dermatitis, urticaria, and asthma), enter-
opathy, and failure to thrive [147, 148, 146]. Therefore, LRBA can be appropriately 
considered as a subgroup of CVID with autoimmune and inflammatory features.

A retrospective cohort of ten patients with LRBA deficiency in Israel highlighted 
chronic cough as the most common respiratory manifestation in patients with LRBA 
deficiency [147]. Less frequent respiratory manifestations were dyspnea, perioral 
cyanosis, and clubbing. Chest X-rays and CT scans in these cases provided evi-
dences of axillary, hilar, and mediastinal lymphadenopathy, consolidation, lobar 
and sub-lobar atelectasis, bronchiectasis, and interstitial lung disease [147]. Patients 
with LRBA deficiency demonstrated no serious abnormalities on PFT. They also 
were likely to have a normal bronchoscopy. Potential findings in bronchoscopy 
included tracheomalacia and adenoid hypertrophy. The mean age at onset of symp-
toms was 4.65 [147].
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In a longitudinal study of patients with LRBA (n = 17) in Iran [146], respiratory 
tract infections were the most common first presentation of immunodeficiency, seen 
in more than 40% of patients. Additionally, there were two patients (11.8%) pre-
sented with allergy and asthma. The median age at onset of symptoms and diagnosis 
were 2.0 and 7.0  years, respectively. With a median follow-up of 14  years, all 
patients (100%) developed infectious complications, which in order of frequency 
were pneumonia, sinusitis, and otitis media.

There is a case report of bronchiolitis obliterans organizing pneumonia (BOOP) 
in a 10-year-old boy who presented with recurrent respiratory infections, anemia, 
and thrombocytopenia [149]. He showed hypogammaglobulinemia of IgA and 
IgG, while IgM levels were normal. He was refractory to regular IVIG and all 
antimicrobial agents, and his respiratory condition deteriorated during these treat-
ments. Diffuse lung disease with peripheral nodules was found at CT scans. PCR 
of BAL fluid was positive for Pseudomonas aeruginosa, Pneumocystis jiroveci, 
and CMV. Looking at lung tissue, there were evidences of disseminated infiltra-
tion of inflammatory cells and bronchiolitis obliterans organizing pneumonia 
(BOOP). To establish genetic causality, combined homozygosity mapping and 
exome sequencing was performed and showed a homozygous mutation 
(NM_001199282: c.743_744insAAGA: p. Asp248Glufs*2) in the gene 
LRBA.  Each parent carried a copy of this mutation, supporting the autosomal 
recessive form of disease.

In this manner, different mutations in the gene LRBA are associated with the 
spectrum of phenotypes [150]. Even two siblings might present with incompatible 
pictures of LRBA deficiency [151].

Polymorphisms of the gene LRBA known to influence the function of LRBA 
protein have been associated with risk of pneumoconiosis in coal workers [152].

In conclusion, it is promising that respiratory manifestations of LRBA patients 
are mostly sensitive to therapy with IVIG, systemic immunosuppression, abatacept 
(CTLA4-Ig), or hematopoietic stem cell transplantation (HSCT) [147]. Drugs for 
prophylaxis of recurrent infections include antibiotics, antivirals, and antifungal 
medicines [146]. Mastoidectomy might be indicated in a severe case with frequent 
otitis media [146]. Therapeutic options for autoimmune complications vary from 
individual to individual and include IVIG, systemic immunosuppression, thymec-
tomy, and HSCT [146]. However, respiratory failure remains the leading cause of 
death in these patients [85].

3.7  �CD19 Complex Deficiencies

The CD19 complex is a transmembrane complex comprising CD19, CD21, CD81, 
and CD225. It can function as a co-receptor for B-cells that promotes B-cell 
receptor (BCR) signaling. Therefore, it is well-appreciated that defects in the 
formation of CD19 complex can cause autoimmunity and impairment of humoral 
immunity [153].
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3.7.1  �CD19 Deficiency

CD19 includes two extracellular immunoglobulin superfamily (IgSF) constant 
domains: a transmembrane region and a cytoplasmic region. Its cytoplasmic tail is com-
prised of nine tyrosine kinase residues that contribute to intracellular signaling. To our 
knowledge, there have been reported ten cases of CD19 deficiency [154–160]. The 
genetic defects responsible for CD19 deficiency include mutations resulting in prema-
ture termination codons and also missense mutations leading to an amino acid change. 
Overall, CD19 deficiency is featured by respiratory manifestations such as recurrent 
respiratory tract infections (pneumonia, bronchiolitis, and otitis media), wheezing, 
chronic obstructive pulmonary disease, atopy, and asthma [154]. 
Hypogammaglobulinemia (IgG and IgM) is also commonly found in patients with 
CD19 deficiency. Infectious pathogens found in these patients are respiratory syncytial 
virus, Haemophilus influenzae, and Streptococcus pneumoniae. CXR and CT scans 
reveal lobar atelectasis, peribronchial thickening, and bronchiectasis. Despite absence 
of CD19+ B-cells, flow cytometry can be used to confirm presence of CD20+ B-cells. 
Patients are also likely to have reduced numbers of transitional B-cells, memory B-cells, 
CD3+ T cells, and CD16+/CD56+ NK cells. Interestingly, studies indicate a delay 
between Ca2+ influx and stimulation with anti-IgM in B-cells from patients with CD19 
deficiency. It should be noted that Ca2+ influx plays a crucial role in BCR signaling.

3.7.2  �CD81 Deficiency

CD81 is a 26KDa surface protein also known as TAPA-1 (target of the antiproliferative 
antibody 1) and Tetraspanin-28 (Tspan-28). CD81 acts as regulator of proliferation of 
different cells such as glial cells, astrocytes, oocytes, and retinal pigment epithelial 
cells [161–164]. It is also required for the expression of CD19 on B-cells and thereby 
contributes to the activation of B-cells and production of antibodies against T-cell-
dependent antigens. Its deficiency interferes with the formation of CD19 complex, 
resulting in the spectrum of respiratory manifestations related to CD19 deficiency.

The authors in the study [165] presented a patient suffering from recurrent respira-
tory tract infections during the first 2 years of life. She then developed glomerulone-
phritis, recurrent thrombocytopenia, and hypogammaglobulinemia of IgG. There was 
no significant change in the numbers of B, T, and NK cells. However, flow cytometry 
revealed a reduction in the relative number of transitional B-cells and memory B-cells. 
Additionally, the patient’s B-cells showed loss of both CD19 and CD81. Genetic 
analysis revealed an intact CD19 gene but homozygous splice site mutation 
(c.561+1G>A) in the CD81 gene. While the patient’s family members (her parents 
and her brother) harboring a single copy of this mutation were immunologically 
healthy, the patient did not show the expected increase in IgA and IgG levels upon 
vaccination with tetanus toxoid and pneumococcal antigens. CD81 is thus essential to 
produce an appropriate antibody response to protein and polysaccharide antigens.
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A study of mice links CD9/CD81 double knockout to the spontaneous develop-
ment of pulmonary emphysema [166]. It is accompanied with an increase in the 
activity of matrix metalloproteinases MMP-2 and MMP-9  in alveolar macro-
phages. The role of MMPs is well-appreciated in the degradation of the alveolar 
matrix as well as in the aggravation of pulmonary inflammatory processes, which 
both events have been implicated in COPD [167]. It is thus suggested that obstruc-
tive lung disease might arise from CD81 deficiency, owing to abnormal activity of 
MMPs.

Also, allergen-induced airway activity in CD81-deficient mice is decreased com-
pared to wild-type mice [168]. CD81-deficient mice also demonstrated a reduced 
production of Th2 inflammatory cytokines IL-4, IL-5, and IL-13. It is therefore 
possible to assume that CD81 plays role in allergen-induced airway hyperactivity 
by inducing the expression of cytokines.

3.7.3  �CD21 Deficiency

CD21 or complement receptor type 2 (CR2) precursor is a 145 KDa protein impli-
cated in EBV entry [169]. It is expressed by mature B-cells and follicular dendritic 
cells, whereby activation of B-cell responses is enhanced by binding of immune 
complexes that comprise cleavage products of C3d and antigens [170]. This is ben-
eficial in combating against toxic or infectious agents and on the other hand can 
cause an imbalance favoring autoimmunity.

The study [171] provides a report of first case of CD21 deficiency. Early child-
hood respiratory tract infections forced the patient to undergo tonsillectomy at 
6 years old. Then, the patient experienced a long remission for about 20 years. At 
28 years old, his symptoms including recurrent respiratory tract infections, myal-
gia, diarrhea, and weight loss began to flare up. The pathogen found in his respira-
tory secretions was Haemophilus influenzae. The patient also showed 
hypogammaglobulinemia of IgG1 and IgG4 and was thus considered for immuno-
globulin replacement therapy. The patient’s B-cells completely lacked CD21. 
Genetic analysis revealed two heterozygous mutations: one resulting in the skip-
ping of exon 6 and the other being a premature stop codon mutation occurring in 
exon 13.

The patient reported in [172] was a 13-year-old boy who presented with myalgia, 
rigidity, and hypogammaglobulinemia of IgG1, 2, and 4. Flow cytometry revealed 
absence of CD21. Sequencing of CD21 gene identified two heterozygous muta-
tions: one nonsense mutation occurring in exon 2 and the other being a frameshift 
mutation in exon 15. Interestingly, the patient remained free of serious infections 
until writing the paper.

In the study [173], the authors have described two siblings who carried CD21 
deficiency. Symptoms began to manifest at 5 and 7 years of age. Clinical manifesta-
tions mainly included recurrent otitis media, rhinopharyngitis, bronchitis, and lobar 
pneumonia.
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3.8  �Common Variable Immunodeficiency

Common variable immunodeficiency (CVID) is the most common symptomatic 
PID estimated to occur in 1/10,000–1/200,000 depending on the study population. 
It is mainly characterized by a defective B-cell differentiation resulting in hypogam-
maglobulinemia of IgA, IgG, and IgM with two or more standard deviations below 
the normal mean. Also, about half of patients manifest characteristics of malfunc-
tioning T-cells and cytokine/chemokine system including a reduction in CD40 
ligand expression and IL-2 production [174]. Therefore, CVID covers a spectrum of 
disease phenotypes, and the diagnosis should only be made after ruling out other 
potential causes of hypogammaglobulinemia including other PIDs and immunode-
ficiency diseases due to infectious agents, malignancies, protein-losing agents, and 
drugs [175]. CVID involves a complex interaction of different disease processes. 
However, there are a few monogenetic forms of CVID that are caused by defect in 
a single gene such as ICOS [176, 177], TACI [178, 179], and CD19 [155]. Clinical 
presentations mainly include recurrent bacterial infections especially affecting 
upper and lower respiratory tracts, inflammatory diseases, autoimmune disorders, 
lymphoproliferative disorders, chronic lung diseases, gastrointestinal disorders, 
malabsorption, hepatitis, and malignancies (especially lymphomas). Clinical symp-
toms usually peak in the second or third decade of life. Early-onset disease is, how-
ever, common, especially in male patients [180]. Recently a multicenter study of 
2212 patients with CVID has reported that the median diagnostic delay is around 
4–5 years in most populations [181]. Overall, as much as all patients with CVID 
experience infectious respiratory diseases [182–184] and more than half of patients 
develop noninfectious respiratory complications as well [185].

3.8.1  �Respiratory Tract Infections

The French national study of adults with CVID (n = 252) confirmed recurrent respi-
ratory tract infections, e.g., bronchitis, sinusitis, and pneumonia, as the most com-
mon initial presentation [181]. In order they were found in about 69%, 63%, and 
58% of patients. Lower respiratory tract infections are also found in 84% of patients 
[182]. In particular, pneumonia is experienced by about 32–77% of patients [180, 
182, 184, 186]. Early-onset CVID in male (before 10 years of age) patients is con-
sidered a discrete disease entity characterized by a higher risk of infectious compli-
cations including pneumonia, but not noninfectious complications [180]. 
Encapsulated bacteria such as Streptococcus pneumoniae, Staphylococcus aureus, 
and Haemophilus influenzae are the main pathogens associated with respiratory 
tract infections in patients with CVID. In particular, Bordetella pertussis may con-
tribute to the development of respiratory disease in children with CVID. About 13% 
of patients reveal a severe defect in switched memory B-cells (IgD-CD27+ cell 
percentage ≤2% of B-cells), which is related to an increased need for antibiotic 
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therapy. Follow-up studies indicate that the incidence of acute pneumonia and otitis 
will decrease by time [186]. Other infectious respiratory manifestations that are 
possible but less frequent than the aforementioned ones include mycoplasma pneu-
monia, cryptococcal lung abscess, and Mycobacterium avium complex pulmonary 
disease [184].

3.8.2  �Chronic Lung Disease

Of note, some patients remain refractory to immunoglobulin therapy and continue 
to suffer from upper respiratory tract infections [181]. These patients are prone to 
progress to chronic sinusitis and CLD including bronchiectasis. As expected, longi-
tudinal studies show that the prevalence of chronic sinusitis and CLD will increase 
by time [186]. Studies estimate the prevalence of CLD to be between 22% and 
67.5% in patients with CVID [182–184, 186]. In particular, bronchiectasis is found 
in 37–58% of patients with CVID [181, 182]. Patients who have a positive sputum 
culture are more likely to demonstrate evidence of bronchiectasis in HRCT [187]. 
In addition to the pathogens mostly involved in respiratory tract infections including 
Streptococcus pneumoniae and Haemophilus influenzae, bronchiectasis has been 
associated with Pseudomonas aeruginosa, Staphylococcus aureus, and 
Corynebacterium spp. [182]. A severe defect in total B-cells (CD19+ cell percent-
age ≤1%) was present in about 40% of patients and was associated with a higher 
risk of bronchiectasis. In addition, patients with CD4+ cell count below 700 cells/
μL, patients with a history of pneumonia, and patients with older age were more 
prone to bronchiectasis [188].

3.8.3  �Lymphocytic Interstitial Lung Disease and Follicular 
Bronchitis/Bronchiolitis

As reviewed in [189], both profiles of lymphocytic interstitial pneumonia (LIP) and 
follicular bronchitis/bronchiolitis have been detected in lung tissues from patients 
with CVID.  LIP presents “with a diffuse, interstitial infiltrate of lymphocytes, 
immunoblasts, plasma cells, fibroblasts, and scattered macrophages that sometimes 
aggregate into granulomas” [189]. Follicular bronchitis/bronchiolitis is character-
ized by “reactive lymphoid follicles mainly around airways with minimal interstitial 
disease” [189]. While LIP has been associated with both hypogammaglobulinemia 
and hypergammaglobulinemia, follicular bronchitis/bronchiolitis does not appear to 
have been accompanied by any immunoglobulin abnormalities [189]. Clinical 
symptoms include cough, dyspnea, fever, and pleuritic chest pain.

The first case of LIP in CVID was described by Levinson et al. [190] and that the 
first case of nodular lymphoid interstitial pneumonia in CVID was documented by 
Kohler et al. [191]. Duke et al. also found two other cases with pulmonary infiltra-
tion in CXR, which were then histologically diagnosed with LIP [192].
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3.8.4  �Granulomatous Lung Disease

Generally, granulomatous lesions are found in 5.4–10% of patients with CVID 
[189]. Noninfectious diffuse lung complications which are collectively referred to 
granulomatous-lymphocytic interstitial lung disease (GLILD) predict worse sur-
vival in patients with CVID [185]. Patients with defects in T-cell function, low 
CD3+ cell count, and low CD8+ cell count are more likely to develop GLILD. The 
presence of GLILD has been linked to dyspnea, splenomegaly, restrictive pattern of 
pulmonary function (a low DLCO), consolidation, ground-glass opacity, interstitial 
infiltrates, and reticular pulmonary opacification. GLILD in CVID has been associ-
ated with a higher prevalence of HHV8 infection, leading to an increased risk of 
lymphoproliferative disorders [193]. It is promising that monoclonal antibodies and 
immunosuppressive agents can effectively assist with resolution of granulomas and 
restoration of lung structure [194]. FDG PET-CT imaging can be used to monitor 
therapeutic response [194].

3.8.5  �Pulmonary Function

The majority of patients in spirometry are normal. About 25% of patients show 
abnormal features favoring an airflow obstruction and to a lesser extent a restrictive 
pattern [187]. When compared to patients without bronchiectasis, the spirometry 
test revealed reduced values of FEV1, FEF25–75%, and FVC in patients with bronchi-
ectasis [182].

On the contrary, more than 60% of patients have abnormal MMEF. Therefore, 
there is a large subgroup of patients who are abnormal in MMEF and normal in 
spirometry [187].

3.8.6  �Imaging Findings

HRCT in patients with CVID may provide evidence of granulomatous lung disease, 
hilar and mediastinal lymphadenopathy, pulmonary nodules, ground-glass opacity, 
bronchiectasis, and reduced peribronchiectatic shadowing [187, 188]. In particular, 
patients with bronchiectasis may demonstrate parenchymal scarring, pleural thick-
ening, and atelectasis [182]. Bronchiectasis in patients with CVID has been shown 
to occur with the involvement of left lower lobe; lingual, right lower lobe; right 
middle lobe; right upper lobe; multiple lobes; and both lungs [182]. Patients with 
LIP demonstrate pulmonary infiltration especially basilar, coarse interstitial-
alveolar infiltrations in CXR [189]. Patients with ground-glass appearance are more 
likely to have a high monocyte count, reduced number of CD19 + IgM-IgD-CD27+ 
isotype-switched memory B-cells, a history of lung disease, and pulmonary 
nodule(s) and be younger than those with bronchiectasis without interstitial lung 
disease [188]. Patients who exhibit evidence of bronchiectasis on their CT scan are 
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more likely to have lower CD4+ T-cell counts [188]. Patients with five or more 
pulmonary nodules have lower CD8+ T-cell counts [188].

3.8.7  �Morbidity and Mortality

Immunoglobulin dose required for prevention of bacterial infections is between 0.2 
and 1.2 g/kg/months [195]. A higher dose of replacement immunoglobulin is, how-
ever, required to benefit cases with CLD including bronchiectasis [196]. Regular 
immunoglobulin therapy has shown to be effective in reducing the incidence of 
acute infections. A study of 50 patients with CVID with pneumonia demonstrated 
that the prevalence of pneumonia was reduced from 84% to 22% following immu-
noglobulin therapy [197]. Additionally, immunoglobulin therapy can effectively 
improve pulmonary function test results and HRCT scores in patients with CVID 
with CLD [196]. Such improvement does not appear to reach significance in cases 
with CVID without CLD [196]. Given that the mortality of CVID increases with 
age, it is not clear whether it can be effective in long term as well as short term. 
Lung transplant is the option available to patients with respiratory failure. Altogether, 
acute or chronic respiratory tract infections and associated respiratory failure are a 
leading cause of morbidity and mortality in patients with CVID [187, 186], espe-
cially in cases below 40 years of age [183].

3.9  �CD20 Deficiency

It is a humoral immunodeficiency resulting from a homozygous mutation (MS4A1) in 
a splice junction of the CD20 gene, leading to the production of nonfunctional mRNA 
species [198]. Despite normal development of antigen-independent B-cells, CD20-
deficient mice fail to generate normal antibody response to T-cell-independent anti-
gens. Also, T-cell-dependent humoral immunity is impaired in CD20 deficiency [199]. 
This is thought to be a secondary effect of the impairment in B-cell function [199].

3.9.1  �Potential Mechanisms of Respiratory Manifestations 
in CD20 Deficiency

CD20 acts as a regulator of B-cell development. It is thus well-understood that 
chronic administration of anti-CD20 antibodies can lead to B-cell depletion 
[200]. The effects that CD20 deficiency might have on lung tissues can be tackled 
in those who received anti-CD20 treatments. As reviewed by [201], anti-CD20 
treatments predispose patients to severe and refractory respiratory infections with 
bacteria, fungi, and viruses, while, anti-CD20 antibodies are being increasingly 
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used to treat autoimmune diseases and non-Hodgkin lymphoma [202]. This has 
been parallel by increasing the number of cases of pneumocystis pneumonia 
[203]. This increased susceptibility might be due to suppressive effect of anti-
CD20 antibodies on type 2 helper T (Th2) responses, e.g., production of cyto-
kines interleukin (IL)-4, IL-5, and IL-13 [202]. Moreover, there is a report of 
antisynthetase syndrome after treatment with rituximab, a CD20 monoclonal 
antibody [204]. The patient was presented with recurrent respiratory infections, 
arthropathy, and interstitial pneumonitis. Immunoglobulin replacement therapy 
was shown to improve immunodeficiency and pneumonitis. It is also interesting 
that treatment with 25-OH vitamin D3 has been shown to enhance CD20 levels 
[205].

3.10  �Other Monogenic Defects Associated with 
Hypogammaglobulinemia (ICOS Deficiency, TACI 
Deficiency, BAFF Receptor Deficiency, TWEAK 
Deficiency, and NFKB2 Deficiency)

As above explained, CVID is not usually a single-gene disorder but rather is a com-
plex disorder resulting from the combined effect of several genes. Overall, mono-
genic defects account for just 2–10% of cases with CVID [206].

3.10.1  �ICOS Deficiency

The inducible T-cell co-stimulator (ICOS) is shown to stimulate differentiation of T 
follicular helper (TFH) cells and development of Treg, Th17, and Th2 cells that can 
promote autoimmunity and local inflammation [207]. In this manner, myeloid cells 
(CD11+ cells) expressing this co-stimulator can contribute to the generation of 
inflammatory processes in lung tissues [207]. What more supports this is increased 
expression of ICOS in autoimmune conditions (acute graft-versus-host disease) and 
allergic airway diseases [208]. Also, its ligand ICOS-L display by dendritic cells is 
capable to improve Treg or Th17 responses [209], whose pathogenic roles in auto-
immunity and organ rejection have been well-described [210]. ICOS deficiency in 
mice could diminish lung tissue fibrosis [211] and delay rejection of the transplanted 
bronchus by reduction of relative numbers of Th17, Th2, and Treg cells [54]. By 
contrast, lung fibrosis was exacerbated in isolated ICOS-L deficiency and in double 
ICOS/ICOS-L deficiency [211].

Loss-of-function mutations in the ICOS gene as seen in patients with ICOS 
deficiency lead to reduce the numbers of TFH cells [212]. It has been demon-
strated that intranasal application of Protollin, a TLR4 ligand adjuvant, can play a 
protective role against allergic lower airway disease upon stimulation with pollen 
allergen. This TLR4-dependent protection was accompanied by engagement of 
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CD4+ T-cells expressing ICOS [213]. Additionally, adoptive transfer of CD4+ 
T-cells expressing ICOS could reverse allergen-induced airway hyper-responsive-
ness [213]. Whereas, inhibition of TLR4 signaling (TLR4-TRIF pathway) 
exacerbating allergen-induced airway hyper-responsiveness resulted in a reduc-
tion of CD4+ T-cells expressing ICOS [214]. Therefore, ICOS deficiency is 
expected to increase the risk of allergic airway diseases. As for B-cells expressing 
CD40, all CVID patients show diminished number of CD4+ T-cells expressing 
ICOS [215].

As above mentioned, ICOS is also implicated in development of Th2 immunity. 
Th2 cytokines (IL-5) are essential to the recruitment of eosinophils into the airway 
[216]. Therefore, it is expected that ICOS-deficient mice exhibit impairment in the 
generation of antigen-induced airway eosinophilia and inflammation [217]. It 
should be noted that CD28 also plays a crucial role in this context.

3.10.2  �TACI Deficiency

Antiviral antibodies are essential to the generation of antiviral immunity. Animals 
deficient in transmembrane activator and calcium-modulator and cyclophilin ligand 
interactor (TACI) were not able to achieve protective titers of antibodies against 
influenza virus [218]. Even, mice that carried only a single copy of mutation in the 
TACI gene showed reduction of TACI expression on B-cells and were more suscep-
tible to pneumococcal infections [219]. In this manner, TACI deficiency would pre-
dispose the lungs to viral and bacterial infections. TACI deficiency has been 
observed among patients with PADs who had hypogammaglobulinemia of IgG 
[220] and IgA [221]. It can cause phenotypes in the spectrum of clinical presenta-
tions correlated to CVID or even beyond them, for example, lymphoproliferation 
and IgG subclass deficiencies [222]. Later in life, it might lead to autoimmune dis-
orders [221, 223].

3.10.3  �NFKB2 Deficiency

Germline heterozygous mutations in NFKB2 are known to cause an early-onset 
type of CVID characterized by B-cell deficiency, T-cell deficiency, hypogamma-
globulinemia, central adrenal insufficiency, alopecia totalis or areata, and trachyo-
nychia [224–230]. They can contribute to changes in NK-cell count or function as 
well. Autoimmunity is present in the majority of patients with NFKB2 deficiency. 
Other presentations of this immunodeficiency include recurrent respiratory tract 
infections [228, 231].

Animal studies provide evidence that NFKB2 deficiency can cause serious lung 
inflammation by inducing the expression IFN-γ and thereby Th1 cytokines. Due to 
extensive infiltration of lymphocytes, this long inflammation is considered an auto-
immune condition that can be potentially fatal [232, 233].
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3.10.4  �BAFF Receptor Deficiency

B-cell-activating factor of the TNF family (BAFF) emerged as an innate mediator that 
is involved in antiviral immunity. Upon exposure to viral dsRNA, Ig class switching 
is induced by TLR3-expressing B-cells of the upper respiratory tract. NFKB activa-
tion and TLR3 signaling are central to Ig class switching, which are in turn required 
for production of IgA and IgG antibodies in response to viral antigens [234]. Patients 
in intensive care unit (ICU) show increased susceptibility to hospital-acquired pneu-
monia. This is suggested to be caused by pulmonary IgA deficiency secondary to 
antibiotic therapy. Patients in this condition often reveal low expression of BAFF 
[235]. BAFF neutralization in mice has been associated with reduction in the number 
of antibody-secreting cells (ASC) that contribute to antiviral immunity [218]. 
Interestingly, immunoglobulin D has been shown to improve immunity in basophils 
of the upper respiratory tract. Its role is mediated by increasing the expression of pro-
inflammatory in addition to B-cell stimulating factors, for example, BAFF [236].

On the other hand, BAFF acts to facilitate the cross talk between IL-1β and Th17 
cell development, whereby Th1 and Th17 responses which mainly contribute to 
inflammatory and autoimmune processes are augmented [237]. Overexpression of 
BAFF is implicated in lung fibrosis [238], and therefore its inhibition is proposed as a 
targeted therapy for conditions associated with long fibrosis such as scleroderma [239].

3.10.5  �TWEAK Deficiency

Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) binding to fibro-
blast growth factor-inducible 14 (Fn14) leads to activation of intracellular signaling 
cascades that are likely to contribute to progression of a variety of tumors favorably 
non-small cell lung cancer (NSCLC) [240].

To the knowledge of the authors, there are not any respiratory manifestations doc-
umented as complications of other monogenic defects associated with hypogamma-
globulinemia such as MOGS deficiency, TRNT1 deficiency, and TTC37 deficiency.

3.11  �Immunoglobulin Class Switch Recombination 
Deficiencies Affecting B-Cells (AICDA Deficiency, UNG 
Deficiency, MMR Deficiency, and INO80 Deficiency)

3.11.1  �AICDA Deficiency

The activation-induced cytidine deaminase (AICDA) gene encodes the enzyme 
activation-induced cytidine deaminase (AID) required to CSR in addition to Ig gene 
somatic hypermutation (SHM) [241]. More importantly, AID plays a crucial role in 
DNA methylation and reprogramming of somatic cells into induced pluripotent 
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stem cells (iPSC) [242]. Besides the role of activated B-cell CD40 signaling, bacte-
rial and viral antigens can lead to the expression of AID by engaging IL-4-secreting 
CD4+ T cells or TLR signaling [241].

Patients with AICDA deficiency often present with lymphoid hyperplasia [243]. 
Also, they frequently develop sinopulmonary infections (sinusitis and pneumonia), 
and finally their CT scan may reveal evidences of bronchiectasis [244]. 
Immunological findings include hypogammaglobulinemia of IgA, IgG, and IgE in 
addition to hypergammaglobulinemia of IgM [244].

The early clearance is an important component in engendering protective immu-
nity against pneumococci [245]. Mice deficient in AID failed to effectively clear 
pneumococcal bacteria from pulmonary tissues at early time points [246]. The issue 
was resolved by adoptive transfer of AID+ B1a cells.

3.11.2  �UNG Deficiency

The uracil-DNA glycosylase (UNG) gene encodes a base excision repair (BER) 
enzyme that functions to exclude misincorporated uracil. Cancerous cells deficient 
in UNG will develop hypersensitivity to pemetrexed (a chemotherapy drug). On the 
contrary, lung cancer cells carrying high expression of UNG reveal resistance to 
pemetrexed [247]. Moreover, it has been shown that viral UNG aids replication and 
dissemination of murine gammaherpesvirus 68 [248]. It seems that viral UNG 
expression is induced as a compensatory mechanism to increase UNG activity in 
host lung cells, which typically express low values of UNG [248]. As for AICDA 
deficiency, UNG deficiency is characterized with hypergammaglobulinemia of IgM 
along with hypogammaglobulinemia of other immunoglobulins. Also, lymphoid 
hyperplasia is commonly seen in patients with this immunodeficiency.

3.11.3  �MMR Deficiency

DNA mismatch repair (MMR) is a mechanism of DNA repair conserved during 
evolution from bacteria to humans. It provides a compensatory pathway for correct-
ing mismatched bases during DNA replication. Therefore, patients with MMR defi-
ciency are prone to genomic instability and ultimately malignant transformation. 
MMR defects have been discovered in cancers of different primary sites such as the 
colon, rectum [249, 250], stomach [251], prostate, esophagus, endometrium, oral 
cavity [252], skin, head and neck, and brain [253]. Due to their role in class switch 
DNA recombination (CSR) and somatic hypermutation (SHM), MMR components 
are required for the regulation of antibody response as well [254]. Mice deficient in 
MMR components exhibit spontaneous development of premalignant and malig-
nant lung lesions [255]. It is consistent with some observations of MMR defects in 
human lung cancers [256–258]. Moreover, defective mismatch repair system can 
contribute to chronic lung infection with Pseudomonas aeruginosa [259].
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3.11.4  �INO80 Deficiency

The INO80 ATPase takes part in formation of the ATP-dependent chromatin remod-
eling complex, which is involved in nuclear transactions, e.g., DNA replication, 
DNA repair, and transcription [260]. Energy-dependent metabolic pathways are 
accompanied by increased expression of the INO80 complex. While, defective 
INO80 complex correlates to decreased glycolysis, increased oxidative stress, and 
increased oxygen consumption. In this manner, the INO80 complex acts as a regula-
tor of respiratory capacity [261]. On the other hand, INO80 is also generated as a 
nuclear protein to assist with genome replication of herpes simplex virus [262] and 
with oncogenic transcription and tumorigenesis of non-small cell lung cancer 
(NSCLC) [263]. However, study of NSCLC cells has recently revealed that the 
increased activity of chemotherapeutic agents (cisplatin) is underpinned by 
increased expression of more than 100 genes among which is INO80 [264].

Two patients with nonsynonymous, compound heterozygous single-nucleotide 
variants in INO80 have been described in [143]. The first one presented with recur-
rent bacterial infections at 5 years of age and the second with severe and recurrent 
respiratory infections at 18  years of age. The second also progressed to chronic 
obstructive pulmonary disease (of course with a history of 35 years of smoking).

3.12  �Transient Hypogammaglobulinemia of Infancy

The physiologic hypogammaglobulinemia is what is typically happening in the first 
3–6 months of life. Along with IgG subclass deficiency, partial antibody deficiency 
with impaired polysaccharide responsiveness, and selective IgA deficiency, tran-
sient hypogammaglobulinemia of infancy (THI) is one of the common immune-
deficiency conditions of children [265], where the certain period of the physiologic 
hypogammaglobulinemia is extended. The way to diagnose THI is not straightfor-
ward; but its diagnosis requires a retrospective look of the patient characteristics: 
early hypogammaglobulinemia of at least one immunoglobulin isotype, later 
achieving normal levels for all immunoglobulin isotypes, and no diagnosis more 
likely than THI is suspected [266]. Overall, recurrent respiratory tract (pneumonia) 
infections, ENT (otitis media) infections, bronchitis, and asthma are the most com-
mon presentations of THI [267–269]. However, other infectious complications that 
may affect patients with THI include sinusitis, enteritis, lymphadenitis, meningitis, 
mastoiditis, impetigo [267], urinary tract infections, and sepsis [266]. Moreover, 
atopic reactions in THI are common and mainly include bronchial hyperreactivity, 
food allergy, and atopic dermatitis [266]. Study of a single center in Jordan esti-
mated that the average age of onset and diagnosis for THI (n = 10) are 1 and 1.6 years 
[267]. So the diagnostic delay was less than 1 year [267]. In other studies from 
Turkey and the United States, the mean age of onset was less than 1 year of age 
[266, 270]. Often it is spontaneously resolved by 3–5 years of age [270], and more 
than 90% of patients achieve normal immunoglobulin levels by 10 years of age. 
However, some patients continue to have hypogammaglobulinemia, the so-called 
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undefined/unclassified hypogammaglobulinemia. Of note is that both conditions, 
i.e., THI and undefined/unclassified hypogammaglobulinemia, share common clini-
cal characteristics [268]. However, patients with persistent antibody deficiency are 
less able to produce IgA responses against pneumococcal polysaccharide (PnPS) 
vaccine compared to patients with transient antibody deficiency [271].

3.12.1  �Respiratory Tract Infections

Infections affecting the upper and lower respiratory tract are commonly seen among 
patients with THI. Overall patients with THI have a benign clinical outcome [272]. 
They usually do not develop life-threatening infections [269] requiring long-term 
immunoglobulin replacement therapy [267]. Immediate treatment is, however, indi-
cated in severe respiratory tract infections. Also, additional treatments may be war-
ranted according to the type and severity of infection. For example, extracorporeal 
membrane oxygenation (ECMO), ribavirin, and steroid (albeit along with immuno-
globulin replacement therapy) benefited a THI case with severe human parainflu-
enza viruses (HPIVs) [273]. Moreover there are reports of Pneumocystis carinii 
pneumonia in patients with THI [274–276]. It is a life-threatening infection [277], 
and despite high rates of drug adverse reactions, drug therapy should be started once 
the diagnosis of Pneumocystis carinii pneumonia is suspected.

3.12.2  �Asthma

Studies estimate that about 27–55% of patients with THI suffer from asthma [268, 
269]. The history of recurrent upper respiratory tract infections showed a negative 
association to asthma. Whereas, patients with THI who had history of recurrent 
lower respiratory tract infections were more likely to suffer from asthma [268].

3.12.3  �Potential Mechanisms of Respiratory Manifestations 
in Transient Hypogammaglobulinemia of Infancy

Patients with THI are categorized into three according to their initial immunoglobu-
lin levels: isolated IgG deficiency, isolated IgA deficiency, isolated IgM deficiency, 
IgG and IgA deficiency, IgG and IgM deficiency, and IgG, IgA, and IgM deficiency. 
The majority of patients show IgG and IgA deficiency [266], whereas isolated defi-
ciency of IgA or IgM are relatively rare in patients with THI [269]. It has been well-
appreciated that hypogammaglobulinemia either in primary immunodeficiency 
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disorders or secondary to other conditions (malignancies and immunosuppressive 
drugs) increases the risk of infections.

It has been shown that antibody response to specific respiratory viral antigens 
(influenzas A and B, adenovirus, mycoplasma, respiratory syncytial virus, and para-
influenzas 1, 2, and 3) is more likely to be impaired in patients with THI than in 
age-matched controls without THI [270]. This is reflected in increased risk of viral 
infections in these patients.

3.13  �Selective IgA Deficiency

Selective IgA deficiency (SIgAD) is the most common PID where B-cell switching 
to IgA-producing cells is impaired [278]. For children aged 1–18 years with recur-
rent infections and warning signs of immunodeficiency, it is the most commonly 
diagnosed disease [279]. Compared to other PIDs, patients with SIgAD appear to 
less prone to lower respiratory tract infection, sepsis, skin infections, mucocutane-
ous candidiasis, dental alterations, cardiovascular malformations, angioedema, 
hospitalizations, and death [280]. The world’s epidemiology data indicate that the 
incidence of SIgAD varies by a family history of SIgAD and ethnicity ranging 
from 1:18,500 in Japan to 1:143 in the Arabian Peninsula [278, 281]. Intrinsic fac-
tors causing IgA deficiency include both monogenic mutations (TNFRSF13B/
TACI) [282, 283, 220] and chromosomal abnormalities mainly involving chromo-
some 18 [278, 1]. SIgAD is indicated by low levels of serum IgA (below 7 mg/dl) 
in presence of normal levels of IgG and IgM after the age of 4 years in whom other 
causes of hypogammaglobulinemia have not been identified. Clinical presenta-
tions may range from asymptomatic to clinically overt complications including 
recurrent sinopulmonary infections [284], autoimmune diseases [285], allergies, 
atopic disorders [286], gastrointestinal disorders, and malignancies [278]. 
Fortunately, about 65–90% of patients with SIgAD are asymptomatic [1, 287]. 
Only the minority of patients suffer from severe disease. They are those who may 
progress to CVID at later time points [278]. Follow-up study reveals that unlike 
patients with partial IgA deficiency and patients with partial IgA + IgG subclass 
deficiency, patients with selective IgA deficiency never can achieve normal levels 
of IgA during study [288]. This indicates the importance of periodic monitoring in 
these patients.

After IgG, IgA is the second most abundant immunoglobulin in the blood circu-
lation [281]. It is secreted into the circulation and mucosal secretions. Two sub-
classes of IgA are present in humans: IgA1 and IgA2. Circulating IgA which is 
mainly comprised of IgA1 (80–90%) may help to regulate immune response via 
activation of the phagocyte system and inhibition of neutrophil chemotaxis. Mucosal 
secretions mainly include IgA2, which is more resistant to bacterial proteases pres-
ent in the respiratory and gastrointestinal tract than IgA1. Secretory IgA contributes 
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to the coating of mucosa-associated bacteria and therefore plays an important role 
to prevent penetration of bacteria into the mucosa. In addition, patients with SIgAD 
demonstrated altered cytokine/chemokine system in terms of increased levels of 
CXCL10/IP-10, IL-10, and G-CSF and decreased levels of IL-9 and IL-12 (p70) 
[289]. In this manner, SIgAD is regarded as a risk factor of recurrent respiratory 
infections and bronchial hyper-responsiveness [290].

About 40–90% of patients with symptomatic SIgAD report recurrent sinopulmo-
nary infections as the most important manifestations leading to diagnosis of 
SIgAD. In particular, adults with SIgAD are more prone to upper respiratory tract 
infections (e.g., infectious conjunctivitis, common viral cold, pharyngitis, and lar-
yngitis) and lower respiratory tract infections (e.g., bronchitis and pneumonia) 
[287]. Overall, the main pathogens involved are encapsulated bacteria including 
Haemophilus influenzae and Streptococcus pneumoniae. Bronchiectasis and oblit-
erative bronchiolitis represent the most severe respiratory conditions experienced 
by patients with SIgAD. Studies demonstrate that deficiency of any of IgG sub-
classes is also present in about 20% of patients with SIgAD [291], rendering them 
more susceptible to sinopulmonary infections and respiratory insufficiency [292]. 
Moreover, patients with a low percentage of switched memory B-cells have a higher 
incidence of pneumonia and bronchiectasis compared to patients with a high per-
centage of switched memory B-cells [293]. On the contrary, an increased number of 
IgM-producing B-cells as a compensatory mechanism are commonly found in 
SIgAD. Because of the functional overlap between IgA and IgM, high levels of 
secretory IgM may protect patients against infections and help to maintain them 
asymptomatic [281]. When compared to controls without SIgAD, adults with 
SIgAD are more likely to be diagnosed with allergic rhinoconjunctivitis, but not 
asthma [287].

Rarely, SIgAD has been observed concurrent with other respiratory conditions 
including severe asthma, chronic granulomatous disease [294–296], chronic pulmo-
nary aspergillosis [297], tracheobronchopathia osteochondroplastica [298], pulmo-
nary nodules, disseminated cat-scratch disease [299], pleuropulmonary blastoma 
[300, 301], eosinophilic pneumonia [302], cryptococcal pneumonia [303], and idio-
pathic pulmonary hemosiderosis [304]. Also, SIgAD can mimic Churg-Strauss syn-
drome and hypereosinophilic syndrome [302].

As reviewed in [278], the management of patients with SIgAD includes educa-
tion and periodic monitoring (every 4–6 months), treatment of allergic and autoim-
mune disorders, prophylactic antibiotics (especially for patients with chronic and 
recurrent sinopulmonary infections), pneumococcal vaccine (especially for patients 
with IgG subclass deficiency), and intravenous or subcutaneous immunoglobulin 
replacement therapy (especially for patients with recurrent infections). 
Immunoglobulin products low in IgA that can be administered to those patients 
include lyophilized Gammagard, Gammaplex, Vigam, Iveegam, Polygam, and 
Nanogam with IgA <10 mg/ml. Also lobectomy can be considered in cases of bron-
chiectasis [305]. Monoclonal antibodies such as rituximab (anti-CD20) might be 
effective in treating autoimmune disorders associated with SIgAD such as autoim-
mune thrombocytopenia [296].
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